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Abstract. We consider the one-dimensional nonlinear Schrödinger equation with Dirich-
let boundary conditions in the fully resonant case (absence of the mass term). We investi-
gate conservation of small amplitude periodic solutions for a large measure set of frequen-
cies. In particular we show that there are infinitely many periodic solutions which continue
the linear ones involving an arbitrary number of resonant modes, provided the correspond-
ing frequencies are large enough, say greater than a certain threshold value depending on
the number of resonant modes. If the frequencies of the latter are close enough to such a
threshold, then they can not be too distant from each other. Hence we can interpret such
solutions as perturbations of wave packets with large wave number.

1. Introduction and set-up

We consider the nonlinear Schrödinger equation in d = 1 on the interval [0, π], given by

{

−iut + uxx = ϕ(|u|2)u,
u(t, 0) = u(t, π) = 0,

(1.1)

where ϕ(x) is any analytic function ϕ(x) = Φx + O(x2) with Φ 6= 0. More generally we can take, instead
of ϕ(|u|2)u, any function f(u, u) which is real analytic in its arguments, provided the two following
conditions are fulfilled: the function f is odd in (u, u) and the dominant order is still of the form Φ|u|2u.
The first condition is likely only a technical one, while the second one is a non-degeneracy condition which
is essential in the derivation of our results. In principle it could be removed, but then all the forthcoming
analysis should be suitably changed.

We shall consider the problem of existence of resonant periodic solutions for (1.1), i.e. solutions arising
from superpositions of several unperturbed harmonics, and we shall show how suitably adapting the
techniques in Ref. [11] we can solve the problem.

The nonlinear Schrödinger equation has many physical applications, in nonlinear optics, plasma physics
and fluid dynamics, and generally in any problem of evolution of quasi-monochromatic wave packets
with moderate amplitude in strongly dispersive and weakly nonlinear media. The complex amplitude
modulation of the packet is found to be described approximately by the cubic nonlinear Schrödinger
equation. For a discussion of the applicative relevance of the equation we refer to Refs. [1], [5], [16], [17],
[18], [19], [20], and papers quoted therein. The most studied equation of the form (1.1), with in principle
any boundary conditions, is indeed the cubic one, and often equations containing high order terms are
called generalised nonlinear Schrödinger equations. The particular relevance of the cubic equation is that
it is completely solvable (i.e. integrable) on the line, as shown in Ref. [20], and on the interval with
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periodic boundary conditions, as shown in Ref. [14] by using the finite-gap approach first introduced in
Ref. [15]. Other initial boundary values, including Dirichlet boundary condition on the semi-line and on
the interval, have been recently considered in Refs. [8], [7] and [12], where the problem is shown to be
reducible to the study of a system of ODE with algebraic right-hand side for the spectral data.

Existence of periodic (as well as quasi-periodic) solutions for (1.1) is well known; see for instance
Refs. [13] and [3], and, very recently, Ref. [9], where more general nonlinearities are also considered,
including the ones discussed after (1.1). The fact that no linear term as µu (mass term) appears in (1.1)
introduces no further difficulties with respect to the case with mass. In this respect the situation is very
different from the case of the nonlinear wave equation, where the completely resonant case (µ = 0) can
not be studied in the same way as the case with mass: there, when µ = 0 only very special solutions
of the linearized equation are found to be continuable in the presence of nonlinearities, for values of the
periods which have those of the linearized equation (unperturbed periods) as Lebesgue density points
[11] (the last result improves the previous ones where the unperturbed periods were found to be only
accumulation points [2]). On the contrary in the case of the nonlinear Schrödinger equation, just because
the cases µ = 0 and µ 6= 0 are faced in the same way, all the periodic solutions for µ = 0 are obtained in
the quoted papers as continuations of oscillations involving only one single mode.

Here we consider directly the case µ = 0, and first we show how to recover the known results with
a different technique, based on the Lindstedt series method introduced in Refs. [10] and [11]. Hence
we discuss how to obtain other more complicated periodic solutions which arise from superposition of
several (non-arbitrary) unperturbed modes. Such solutions look like perturbations of wave packets: the
larger is the number N of involved harmonics the higher is the minimum allowed wave number of the
corresponding wave packet. Moreover the width of the packet can be large with respect to the wave
number only if the latter is large too, so that the smaller is the wave number the narrower is the wave
packet itself. To give an idea of the phenomenology for instance, already for N = 2, we find that it is
possible to continue for ε 6= 0 a packet involving for instance the two modes 7 and 8, but none with
modes, say, 1 and 2. We note since now that the solutions that we find are special, as we impose that all
amplitudes to be real. We do not think that such a constraint is necessary, but it rather simplifies the
analysis of some non-degeneracy conditions of the unperturbed solutions.

If ϕ = 0, or f = 0, every solution of (1.1) can be written as

u(t, x) =

∞
∑

n=1

Unein2t sin nx =
∑

n∈Z∗

anein2teinx, a−n = −an, (1.2)

where we have set Z∗ = Z \ {0}. For εΦ > 0 we rescale u →
√

ε/Φu in (1.1), so obtaining

{

iut + uxx = ε|u|2u + O(ε2),
u(t, 0) = u(t, π) = 0,

(1.3)

where O(ε2) denotes an analytic function of u, u and ε of order at least 2 in ε, and we define ωε = 1 + ε.
We shall consider ε small and we shall show that for all m0 ∈ N there exists a solution of (1.3), which

is 2π/ωε-periodic in t and ε-close to the function

u0(ωεt, x) = a(ωεt, x) − a(ωεt,−x), (1.4)

with
a(t, x) = Aeim2

0teim0x, A =
m0√

3
, (1.5)
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provided ε is in an appropriate Cantor set (depending on m0 and on the nonlinearity f(u, ū)). We shall
look for a solution of the form

uε(t, x) =
∑

(n,m)∈Z
2

einωt+imxuε,n,m, uε,n,m ∈ R, uε,n,m = −uε,n,−m (1.6)

which is analytic both in x and t, and periodic in t. Then we shall use the norm

‖F (t, x)‖r =
∑

(n,m)∈Z
2

Fn,mer(|n|+|m|) (1.7)

for analytic functions.

Theorem 1. Consider the equation
{

−iut + uxx = f(u, u),
u(t, 0) = u(t, π) = 0,

(1.8)

where f(u, u) is any real analytic function, odd under the transformation (u, u) → (−u,−u), such that
f(u, u) = Φ|u|2u + O(|u|5) with Φ 6= 0. For all m0 ∈ N, define u0(t, x) = a(t, x) − a(t,−x), with a(t, x)
as in (1.5). There are a positive constant ε0 and a set E ∈ [0, ε0], both depending on m0, satisfying

lim
ε→0

meas(E ∩ [0, ε])

ε
= 1, (1.9)

such that for all ε ∈ E, by setting ωε = 1 + ε, there exists a 2π/ωε-periodic solution uε(t, x) of (1.1),
analytic in (t, x) and of the form (1.6), with

∥

∥

∥uε(t, x) −
√

ε/Φu0(ωεt, x)
∥

∥

∥

κ
≤ C ε

√
ε, (1.10)

with κ = κ0 log 1/ε0, for some constants C, κ0 > 0. If f(u, u) = ϕ(|u|2)u, with ϕ analytic, then one has
uε,n,m = 0 for all n 6= m2

0 and E = [0, ε0], that is no value of ε ∈ [0, ε0] has to be excluded.

As in Ref. [11] we start by considering the case f(u, u) = ϕ(|u|2)u, with ϕ(x) = x, which contains all
the relevant features of the problem. In principle, with respect to the case (1.8), this introduces further
symmetry properties which drastically simplify the problem, but if we ignore these simplifications we
shall be able immediately to extend the analysis to more general nonlinearities, as in (1.8). This will be
done in Section 4, where we shall also show how to deal with more general periodic solutions. The result
we obtain at the end is the following one.

Theorem 2. Consider the equation (1.1), where ϕ(x) = Φx+O(x2) is an analytic function, with Φ 6= 0,
or, more generally, the equation (1.8). For all N ≥ 2 there are sets of N positive integers M+ and sets
of real amplitudes {am}m∈M+, such that the following holds. Define

a(t, x) =
∑

m∈M+

eim2t+imxam, (1.11)

and set u0(t, x) = a(t, x)−a(t,−x). There are a positive constant ε0 and a set E ∈ [0, ε0], both depending
on the set M+, satisfying

lim
ε→0

meas(E ∩ [0, ε])

ε
= 1, (1.12)
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such that for all ε ∈ E, by setting ωε = 1 + ε, there exist a 2π/ωε-periodic solution of (1.1) uε(t, x)
analytic in (t, x) and of the form (1.6), with

∥

∥

∥uε(t, x) −
√

ε/Φu0(ωεt, x)
∥

∥

∥

κ
≤ C ε

√
ε, (1.13)

with κ = κ0 log 1/ε0, for some constants C, κ0 > 0.

In the proof of Theorem 2 a characterization of the sets M+ and of the amplitudes am will be provided.
Hence the proof is constructive. What is found is that, by setting

M =
∑

m∈M+

m2, ‖a‖2 =
∑

m∈M+

a2
m, am ∈ R, (1.14)

one has to require ‖a‖2 = M/(4N − 1) and a2
m = 4‖a‖−m2, which fixes the value of each amplitude, up

to the sign (and up to an overall phase in the case (1.1), which, however, can be chosen to be zero under
the request for the amplitudes to be real: we shall come back to this in a moment). In words, this means
that the integers in M+ have to be large enough and close enough to each other, so that the solutions
which can be continued appear as wave packets with large Fourier label (wave number). More precisely
we shall find that for fixed N the harmonics have to be large enough – at best proportionally to N2 –,
while the width of the packet can not be smaller than O(N). Then the wave packets with the smallest
allowed wave numbers (which are the ones surviving for the largest values of ε) will have a width which
is of order of the square root of the wave number.

Note that the level of difficulty of Theorem 1 in the case (1.1) is much lower than that of Theorem 2
(or even of Theorem 1 in the case (1.8)). The first is a result on the existence of a nonlinear ground state,
and, with the Ansatz u(t, x) = exp(iωεt)v(x), it becomes a bifurcation problem for the function v(x).
Hence there is no small divisors problem, and other easier methods could be envisaged to prove that,
no matter which linear eigenvalue is considered, there are nearby nonlinear solutions. The advantage
of the method that we present is that it can be extended, with just a few slight adaptations, to prove
existence of the periodic solutions of Theorem 1 in the case (1.8) and, mostly, of Theorem 2, which is on
the contrary a substantially more difficult endeavour, as it mixes up different linear modes.

We can make a comparison between the nonlinear Schrödinger equation and the nonlinear wave equa-
tion, in the case of zero mass. For the wave equation only very special periodic solutions can be continued
in the presence of nonlinearities, and this is due to the fact that the Q equation involves simultaneously
all the harmonics. For the nonlinear Schrödinger equation one finds infinitely many periodic solutions,
because there are infinitely many (but still not arbitrary) sets of harmonics which can be excited.

Note that for a fixed set of harmonics we construct explicitly only a few periodic solutions which
continue the unperturbed ones (we have 2N of them because of the arbitrariness of the amplitude signs).
For simplicity we looked only for real values of the amplitudes am. Indeed in this way it turns out to
be very easy to check some non-degeneracy conditions that we need in order to solve the equations to
all orders. The drawback is that we find only special periodic solutions. It can be that, by relaxing
the condition that the amplitudes be real, more general solutions can be found. We did not investigate
further the problem, but we think that, at least in the case (1.1), one should be able to fix the unperturbed
solution up to some arbitrary phases. This should mean that each amplitude am can be written as ρmeiθm ,
with (ρm, θm) ∈ R+ × T, and likely there is some arbitrariness in choosing the angles θm (at best there
can be N free parmeters, because of the symmetry θ−m = θm + π). For N = 1 this simply yields that
the unperturbed solution (1.5) is defined up to an arbitrary phase θ0.
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Finally we note that, as the case of non-zero mass µ can be reduced to that of zero-mass with the
exponential substitution u(t, x) = exp(−iµt)w(t, x), Theorem 2 implies existence of families of quasi-
periodic solutions with two-dimensional frequency vectors for the nonlinear Schrödinger equation with
mass, or even further periodic solutions when the perturbed frequency ωε becomes commensurate with
µ. Also such solutions are not known in literature.

From a technical point of view the discussion below heavily relies on [10] and [11]. We confine ourselves
to explain how the renormalization group analysis developed in those papers applies to the nonlinear
Schrödinger equation, by outlining the differences everywhere they appear and showing how they can be
faced. Hence a full acquaintance with those paper is assumed to follow all the details of the technical parts.
The discussion of Theorem 2 requires some new ideas, and involves problems which can be considered as
typical of number theory and matrix algebra.

2. Lindstedt series expansion

2.1. Strategy of the proof. We proceed in three steps.

1. We perform a Lyapunov-Schmidt type decomposition. Namely we look for a solution of (1.3) of the
form

u(t, x) =
∑

(n,m)∈Z
2

einωt+imxun,m = v(ωt, x) + w(ωt, x),

v(t, x) =
∑

m∈Z

eim2t+imxvm,

w(t, x) =
∑

(n,m)∈Z
2

n6=m2

eint+imxwn,m,

(2.1)

with un,m ∈ R and ω = ωε = 1 + ε. In order to satisfy the Dirichlet boundary conditions, the solutions
(if any), must verify

un,m = −un,−m, (2.2)

for all n, m ∈ Z. Another property that will be used in the following is that the subspace with un,m real
is invariant with respect to (1.1) and (1.8).

Inserting (2.1) into (1.3) gives two sets of equations, called the Q and P equations [6], which are given,
respectively, by

Q m2vm = [f(v + w, v + w)]m ,

P
(

ωn − m2
)

wn,m = ε [f(v + w, v + w)]n,m , n 6= m2,
(2.3)

where we denote by [F ]n,m the Fourier component of the function F (t, x) with labels (n, m), so that

F (t, x) =
∑

(n,m)∈Z
2

einωt+mx[F ]n,m, (2.4)

and we shorthand [F ]m the Fourier component of the function F (t, x) with label n = m2; hence [F ]m =
[F ]m2,m. We shall consider first the case f(u, u) = |u|2u.

2. We study equation the Q equation in (2.3), in the limit ε → 0 (and so wn,m → 0), and prove that
it admits non-degenerate solutions u0(t, x) in appropriate finite dimensional subspaces; in particular in
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the case of Theorem 1, for ε = 0 we get vm = 0 for all |m| 6= m0 and v±m0 = ±A so that u0(t, x) =
a(t, x) − a(t,−x).

3. We solve iteratively the P equation for w(t, x) using renormalization techniques; similarly, using the
non-degeneracy of u0(t, x), we solve the Q equation for

v(t, x) − u0(x, t) ≡ V (x, t) =
∑

m∈Z

eim2t+imxVm. (2.5)

2.2. The Q equation. The Q equation in (2.3), in the limit ε → 0 (and so wn,m → 0) is

m2vm(ε = 0) = [|v(ε = 0)|2v(ε = 0)]m, (2.6)

therefore a non-trivial infinite dimensional equation for the coefficients vm(ε = 0). Following the scheme
proposed in the previous section we set: vm(ε = 0) = 0 for all |m| 6= m0 and v±m0(ε = 0) = ±A, with A
defined as in (1.5), so that u0(t, x) = a(t, x) − a(t,−x), which is clearly a solution of (2.6).

Let us now consider the Q equation at ε 6= 0. With the notations of (2.4), and recalling that we are
considering for the moment being f(u, u) = ϕ(|u|2)u, with ϕ(x) = x, we have

[

|v + w|2(v + w)
]

m
= [|v|2v]m + [|w|2w]m + [2|v|2w + wv2]m + [2|w|2v + vw2]m

≡ [|v|2v]m + [G2(v, w)]m,
(2.7)

where G2(v, w) is at least linear in w.
As said in the previous section we write v = a + b + V , with b(ωt, x) = −a(ωt,−x), i.e.

b(t, x) = Beim2
0t−im0x, B = −A, (2.8)

so that we obtain

[|v|2v]m = |A|2Aδm,m0 + |B|2Bδm,−m0 + 2|A|2Bδm,−m0 + 2|B|2Aδm,m0

+ 2|A|2Vm + 2|B|2Vm + 2ABV−mδm,−m0 + 2BAV−mδm,m0

+ V mA2δm,m0 + 2V −mABδm,±m0 + V mB2δm,−m0 + [G1(v)]m,

(2.9)

where G1(v) is at least quadratic in V .
Then, by setting G(v, w) = G1(v) + G2(v, w), the Q equation in (2.3) can be rewritten for m = m0 as

m2
0Vm0 = 2|A|2Vm0 + 2|B|2Vm0 + V m0A

2 + 2ABV −m0 + 2BAV−m0 + [G(v, w)]m0 , (2.10)

and for positive m 6= m0 as

m2Vm = 2|A|2Vm + 2|B|2Vm + [G(v, w)]m, (2.11)

while the equation for negative values of m can be obtained by using the symmetry properties (2.2),
which imply V−m = −Vm.

By defining α = |A|2 = AA and using the identities

α = AA = BB = −AB = −BA, β = AA = BB = −AB = −BA, (2.12)
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which follow trivially from the definitions of A and B in (1.5) and (2.8) respectively, we can rewrite (2.10)
as

m2
0Vm0 = 4αVm0 + βV m0 − 2βV −m0 − 2αV−m0 + [G(v, w)]m0 , (2.13)

where we have used that α = |A|2 = m2
0/3. By using once more the identities (2.2) and imposing that the

coefficients Vm be real, so that α = β in (2.12), we can write (2.13) and the equation (2.11), respectively,
as

{

m2
0Vm0 = 9αVm0 + [G(v, w)]m0 ,

m2Vm = 4αVm + [G(v, w)]m,
(2.14)

so that we find














Vm0 = − 1

6α
[G(v, w)]m0 ,

Vm =
1

m2 − 4α
[G(v, w)]m,

(2.15)

respectively for positive m0 and m 6= m0.

2.3. The P equation. The P equation in (2.3) involves small divisors; as in Refs. [10] and [11] we
handle them by appropriately renormalizing the frequencies.

Given a sequence {νm(ε)}|m|≥1, such that νm = ν−m, we define the renormalized frequencies as

ω̃2
m ≡ ω2

m − νm, ωm = |m|, (2.16)

and the quantities νm will be called the counterterms.
By the above definition and the parity properties (2.2) the P equation in (2.3) can be rewritten as

(

ωn − ω̃2
m

)

wn,m = νmwn,m + ε[f(v + w, v + w)]n,m

= ν(a)
m wn,m + ν(b)

m wn,−m + ε[f(v + w, v + w)]n,m,
(2.17)

where
ν(a)

m − ν(b)
m = νm. (2.18)

Finally we write

wn,m = g(n, m)
(

µν(a)
m wn,m + µν(b)

m wn,−m + µε[|v + w|2(v + w)]n,m

)

, (2.19)

where

g(n, m) =
1

ωn − ω̃2
m

, n 6= m2, (2.20)

and we look for a solution un,m in the form of a power series expansion in µ,

un,m =
∞
∑

k=0

µku(k)
n,m, (2.21)

with u
(k)
n,m depending on ε and on the parameters ν

(c)
m , with c = a, b and |m| ≥ 1.

2.4. Recursive equations. So we obtain recursive definitions of the coefficients u
(k)
n,m. The coefficients

w
(k)
n,m verify for k ≥ 1 the equations

w(k)
n,m = g(n, m)

(

ν(a)
m w(k−1)

n,m + ν(b)
m w

(k−1)
n,−m + [|v + w|2(v + w)](k−1)

n,m

)

, (2.22)
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where

[|v + w|2(v + w)](k)
n,m =

∑

k1+k2+k3=k

∑

−n1+n2+n3=n
−m1+m2+m3=m

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

, (2.23)

with

u(0)
n,m =







A, if n = m2 and m = m0,
−A, if n = m2 and m = −m0,
0, otherwise

u(k)
n,m =

{

V
(k)
m , if n = m2 ,

w
(k)
n,m, if n 6= m2, k ≥ 1 ,

(2.24)

while the coefficients V
(k)
m verify for k ≥ 1 the equations

V (k)
m = g(m2, m)

∑

k1+k2+k3=k

∑∗

−n1+n2+n3=m
−m1+m2+m3=m

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

, (2.25)

where

g(m2, m) =















− 1

2m2
0

, if |m| = m0 ,

3

3m2 − 4m2
0

, if |m| 6= m0 ,
(2.26)

and the ∗ means that there appear only contributions either with at least one coefficient with n 6= m2 or
with at least two labels ki ≥ 1.

It is easy to realize that to any order k one has u
(k)
n,m = 0 whenever n 6= m2

0, and the same remains
still true if we replace f(u, u) = Φ|u|2u with any function of the form f(u, u) = ϕ(|u|2)u (one can check
this obvious property, for instance, by induction on k). For the time being, however, we ignore such a
property, and we proceed as if every value of n was possible. The reason to do this is that in such a way
the results that we can find for the case f(u, u) = ϕ(|u|)2u can be extended immediately to the more
general case of equation (1.8).

To prove Theorem 1 we can proceed in two steps as in Ref. [11]. The first step consists in looking
for the solution of the recursive equations by considering ω̃ = {ω̃m}|m|≥1 as a given set of parameters
satisfying the Diophantine conditions (called respectively the first and the second Mel′nikov conditions)

∣

∣ωn ± ω̃2
m

∣

∣ ≥ C0|n|−τ ∀n ∈ Z∗ and ∀m ∈ Z∗ such that n 6= m2, (2.27)
∣

∣ωn ±
(

ω̃2
m ± ω̃2

m′

)∣

∣ ≥ C0|n|−τ ∀n ∈ Z∗ and ∀m, m′ ∈ Z∗ such that |n| 6= |m2 ± (m′)2|,

with positive constants C0, τ . We can assume without loss of generality C0 ≤ 1/2.

We shall show in Section 3 how to adapt the discussion in Ref. [11] in order to obtain the following
result.

Proposition 1. Consider a sequence ω̃ = {ω̃m}|m|≥1 verifying (2.27), with ω = ωε = 1 + ε and such
that |ω̃2

m −m2| ≤ C1ε for some constant C1. For all µ0 > 0 there exists ε0 > 0 such that for |µ| ≤ µ0 and
0 < ε < ε0 there is a sequence ν(ω̃, ε; µ) = {νm(ω̃, ε; µ)}|m|≥1, where each νm(ω̃, ε; µ) is analytic in µ, such
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that there are coefficients u
(k)
n,m which solve the recursive equations (2.22) and (2.25), with νm = νm(ω̃, ε),

and define a function u(t, x; ω̃, ε; µ) which is analytic in µ, analytic in (t, x) and 2π/ωε-periodic in t.

Then in Proposition 1 one can fix µ0 = 1, so that one can choose µ = 1 and set u(t, x; ω̃, ε) =
u(t, x; ω̃, ε; 1) and νm(ω̃, ε) = νm(ω̃, ε; 1).

The second step, also to be proved in Section 3, consists in inverting (2.1), with νm = νm(ω̃, ε) and ω̃
verifying (2.27). This requires some preliminary conditions on ε, given by the Diophantine conditions

|ωn ± m| ≥ 2 C0|n|−τ0 ∀n ∈ Z∗ and ∀m ∈ Z∗ such that n 6= m, (2.28)

with a positive constant τ0 > 1. Then we can solve iteratively (2.1), by imposing further non-resonance
conditions besides (2.28). At each iterative step one has to exclude some further values of ε, and at the end
the left values fill a Cantor set E with large relative measure in [0, ε0] and ω̃ verify (2.27). Of course in the
case (1.1), which yields n = m2

0, no further condition has to be imposed as one has |m2−m2
0| ≥ 1 > |εm2

0|
for fixed m0 and ε small enough.

The result of this second step can be summarized as follows.

Proposition 2. In the case (1.8) here are δ > 0 and a set E ⊂ [0, ε0] with complement of relative
Lebesgue measure of order εδ

0 such that for all ε ∈ E there exists ω̃ = ω̃(ε) which solves (2.1) and satisfy
the Diophantine conditions (2.27) with |ω̃2

m −m2| ≤ C1ε for some positive constant C1. In the case (1.1)
the same result holds for all ε ∈ [0, ε0].

The proof follows the same strategy as in Ref. [11]. The slight changes will be discussed in Section 3.

3. Renormalization and proof of Theorem 1

We refer to Section 3 in Ref. [11] for the basic definitions of trees (cf. in particular Definition 2). With
respect to that paper the diagrammatic rules are changed as follows.

(1) We call nodes the vertices such that there is at least one line entering them. We call end-points the
vertices which have no entering line. We denote with L(θ), V (θ) and E(θ) the set of lines, nodes and
end-points, respectively. For any vertex V (node or end-point) there is one and only one line ℓ exiting it,
so that we can set ℓ = ℓ.

(2) There can be two types of lines, w-lines and v-lines, so we associate with each line ℓ ∈ L(θ) a badge
label γℓ ∈ {v, w} and a momentum (nℓ, mℓ) ∈ Z

2
, to be defined in item (6) below. One has γℓ = v if

nℓ = m2
ℓ , and γℓ = w otherwise. One can not have (nℓ, mℓ) = (0, 0). All the lines coming out from the

end-points are v-lines.

(3) With each line ℓ coming out from a node we associate a propagator gℓ = g(nℓ, mℓ), with g(n, m)
defined in (2.20) and (2.26) if the line comes out from a node, while one has gℓ = 1 if the line ℓ comes
out from an end-point.

(4) If we denote by s the number of lines entering the node V one can have either s = 1 or s = 3. In the
latter case we call L the set of lines entering V: we associate with each line ℓ ∈ L a label s(ℓ) ∈ {±1} with
the constraint

∑

ℓ∈L s(ℓ) = 1. Also the nodes V can be of w-type and v-type: we say that a node is of
v-type if the line ℓ coming out from it has label γℓ = v; analogously the nodes of w-type are defined. We
can write V (θ) = Vv(θ) ∪ Vw(θ), with obvious meaning of the symbols; we also call V s

w(θ), s = 1, 3, the

9



set of nodes in Vw(θ) with s entering lines, and analogously we define V s
v (θ), s = 1, 3. One has s = 3 for

all V ∈ Vv (so that V 1
v = ∅ unlike Ref. [11]). If V ∈ V 3

v (θ) and two entering lines come out of end points
then the remaining line entering V has to be a w-line. If V ∈ V 1

w(θ) then the line entering V has to be a
w-line.

(5) With each end-point V we associate a mode label (n, m), with m = ±m0 and n = m2
0, and an

end-point factor

V =

{

A, m = m0 ,
−A, m = −m0 .

(3.1)

while with each node V we associate a node factor

η =







1/3, V ∈ Vv(θ) ,
ε, V ∈ V 3

w(θ) ,

ν
(c)
mℓ

, V ∈ V 1
w(θ) ,

(3.2)

where Vv = V 3
v (cf. item (4)), and c = a if mℓ = mℓ, where ℓ is the line entering V, while c = b if

mℓ = −mℓ, with the same notations.

(6) The momentum (nℓ, mℓ) of a line ℓ = ℓ coming out from a node V is given by

nℓ =
∑

∈E(θ)
�

(−1)S(,ℓ)n, mℓ =
∑

∈E(θ)
�

(−1)S(,ℓ)m +
∑

∈V 1
w(θ):c=b

�

(−2mℓ), (3.3)

where S(W, ℓ) is the number of lines ℓ with s(ℓ) = −1 between W and ℓ.

Note that the rules given above look simpler with respect to Ref. [11]. This is due essentially to the
fact that the Q equation is much simpler in the present case.

Introducing a multiscale decomposition as in Section 4 of Ref. [11] we can define for the lines ℓ with
γℓ = w the propagator on scale h ≥ −1 as

g
(h)
ℓ = χh(|ωnℓ − ω̃2

m|) gℓ =
χh(|ωnℓ − ω̃2

m|)
ωnℓ − ω̃2

m

, (3.4)

where χh(x) is a C∞ function non-vanishing for 2−h−1C0 < |x| < 2−h+1C0 if h ≥ 0 and for |x| > C0 if
h = −1.

This leads to new diagrammatic rules, which differ with respect to the previous ones because item (6)
has to be replaced by the following one.

(6′) Each line carries, besides the momentum (nℓ, mℓ) ∈ Z
2
, also a scale label hℓ ≥ −1 for γℓ = w and

a scale label hℓ = −1 for γℓ = v. The corresponding propagator g
(hℓ)
ℓ is given by (3.4) with h = hℓ for

γℓ = w, while is the same as before for γℓ = v.

Then for each tree θ one can define the tree value as

Val(θ) =





∏

ℓ∈L(θ)

g
(hℓ)
ℓ









∏

∈V (θ)

η









∏

∈E(θ)

V



 , (3.5)

10



so that one has
u(k)

n,m =
∑

θ∈Θ
(k)
n,m

Val(θ), (3.6)

where Θ
(k)
n,m is the set of tress θ of order k, that is with |Vw(θ)| = k, and with momentum (n, m) associated

with the root line (we omit the proof, as it proceeds exactly as for Lemma 2 in Ref. [11]). Note that one
has |Vv(θ)| ≤ 2|Vw(θ)| = 2k and |E(θ)| ≤ 2(|Vw(θ)| + |Vv(θ)|) + 1 ≤ 6k + 1 (cf. Lemma 3 in Ref. [11]).

Clusters and self-energy graphs are defined as in Ref. [11] (cf. Definitions 6 and 7). In particular we
call ℓ1

T and ℓ2
T the lines exiting and entering (respectively) the self-energy graph T . Given a self-energy

graph T with momentum (n, m) associated to the line ℓ2
T the corresponding self-energy value is given by

Vh
T (ωn, m) =

(

∏

ℓ∈T

g
(hℓ)
ℓ

)(

∏

∈V (T )

η
)(

∏

V∈E(T )

V
)

, (3.7)

where h = h
(e)
T is the minimum between the scales of the two external lines of T (they can differ at most

by a unit and h
(e)
T ≥ 0), and, given a self-energy graph, one has

n(T ) ≡
∑

∈E(T )

(−1)S(,ℓ1T )n = 0,

m(T ) ≡
∑

∈E(T )

(−1)S(,ℓ1T )m +
∑

∈V 1
w(T )

c=b

(−2mℓ) ∈ {0, 2m}, (3.8)

by definition of self-energy graph. One says that T is a self-energy graph of type c = a when m(T ) = 0
and a resonance of type c = b when m(T ) = 2m.

The following results hold.

Lemma 1. Assume that there is a constant C1 such that |ω̃2
m−m2| < C1ε for all m ≥ 1. If |ωnℓ− ω̃2

m| <
1/2 and ε is small enough then min{nℓ, m

2
ℓ} > 1/4ε.

Proof. One has ωn − ω̃2
m = εn + (n − m2) + νm, so that |ωn − ω̃2

m| > 1/2 for n 6= m2 and 0 < n < 1/3ε.
Moreover if |ωn − ω̃2

m| < 1/2 then one has n > 0 and m2 > ωn − |νm| − 1/2 > 1/4ε.

Hence if nℓ < 1/4ε we can bound |g(nℓ, mℓ)| ≤ 2 while if nℓ ≥ 1/4ε in general we can bound
|g(nℓ, mℓ)| ≤ 2h+1C−1

0 . To any line ℓ with nℓ < 1/4ε we can assign a scale label hℓ = −1.

Lemma 2. Assume that there is a constant C1 such that |ω̃2
m − m2| < C1ε. Define h0 such that

2h0 < 16C0/
√

ε < 2h0+1. Then for h ≥ h0 one has

Nh(θ) ≤ 4k2(2−h)/τ − Ch(θ) + Sh(θ) + Mν
h (θ), (3.9)

where Nh(θ) is the number of lines in L(θ) on scale h, Ch(θ) is the number of clusters in θ on scale h,

Sh(θ) the number of self-energy graphs in θ with h
(e)
T = h and Mν

h (θ) is the number of ν-vertices (i.e.
nodes V of w-type with s = 1) in θ; for more details cf. Definition 8 and Lemma 5 of Ref. [11].

Proof. The proof as for Lemma 5 of Ref. [11]. Again the only case which deserves attention is when one
has a cluster T with two external lines ℓ and ℓ1 both on scales ≥ h, so that, with the same notations as
in Ref. [11], one has

2−h+2C0 ≥
∣

∣ω(nℓ − nℓ1) + ηℓω̃
2
mℓ

+ ηℓ1ω̃
2
mℓ1

∣

∣. (3.10)

11



Then |nℓ − nℓ1 | = |m2
ℓ ±m2

ℓ1
| would require |nℓ −nℓ1 | ≥ |mℓ|+ |mℓ1 | > 1/

√
ε, while (3.10) would become

2−h+2C0 > |ε(nℓ −nℓ1)|− 2C1ε. Combining the two inequalities one would obtain C02
−h+3 >

√
ε, which

contradicts the condition h ≥ h0. Then one proceeds as in Ref. [11].

Lemma 3. Assume that there is a constant C1 such that |ω̃2
m − m2| < C1ε. Then one has

h0−1
∏

h=0

∏

ℓ∈L(θ)
hℓ=h

|g(hℓ)
ℓ | ≤ Ck

2 ε−k/2, (3.11)

for some positive constant C2.

Proof. If h < h0 one has |g(hℓ)
ℓ | ≤ C02

−h0+1 <
√

ε/4, and the number of lines ℓ with scales 0 ≤ hℓ < h0

can be bounded by the total number of lines ℓ with label γℓ = w, which is less than k.

The renormalized expansion is defined as in Section 5 Ref. [11], with the only difference that now the
action of the localization operator L is such that

LVh
T (ωn, m) = Vh

T (ω̃2
m, m), (3.12)

so that, in the definition of the set E0(θ) (see item (7′) in Section 5 of Ref. [11]), we set ωm = ω̃2
m/ω.

Up to these notational changes no other difference appears with respect to the discussion carried out in

Ref. [11], hence we introduce the set Θ
(k)R
n,m of renormalized trees by adding the following further rules to

the previous ones.

(7) With the nodes V of w-type with s = 1 (ν-vertices) and with h ≥ 0 the minimal scale among the lines

entering or exiting V, we associate a factor 2−hν
(c)
h,m, c = a, b, where (n, m) and (n,±m), with |m| ≥ 1,

are the momenta of the lines, and a corresponds to the sign + and b to the sign − in ±m.

(8) The set {hℓ} of the scales associated to the lines ℓ ∈ L(θ) must satisfy the following constraint (which
we call compatibility): fixed (nℓ, mℓ) for any ℓ ∈ L(θ) and replaced R with 11 at each self-energy graph,
one must have χhℓ

(|ωnℓ| − ω̃mℓ
) 6= 0.

In terms of the renormalized trees we can write

un,m = u(0)
n,m +

∞
∑

k=1

µk
∑

θ∈Θ
(k)R
n,m

Val(θ), (3.13)

where, for |m| ≥ 1 and h ≥ 0, ν
(c)
h,m is given by

2−hµν
(c)
h,m = µν(c)

m +
1

2

∑

σ=±

∑

T∈T
(c)

<h

µkT Vh
T (σω̃m, m), (3.14)

with c = a, b, and T (c)
<h denoting the set of self-energy graphs T of type c with hT < h. The tree value

Val(θ) is defined recursively as in equations (5.5) to (5.7) in Ref. [11]. Call L0(θ), V0(θ) and E0(θ) the
sets of lines, nodes and end-points, respectively, in θ which are not contained in any self-energy graph,
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and S0(θ) the set of maximal self-energy graphs, i.e. self-energy graphs which are not contained in any
self-energy graphs. We can write Val(θ) in (3.13) as

Val(θ) =
(

∏

ℓ∈L0(θ)

g
(hℓ)
ℓ

)(

∏

V∈V0(θ)

η
)(

∏

V∈E0(θ)

V
)(

∏

T∈S0(θ)

RVh
(e)

T

T (ωnℓT
, mℓT

)
)

, (3.15)

where ℓT denotes the line entering T , and we have set

RVh
(e)

T

T (ωnℓT
, mℓT

) = Vh
(e)

T

T (ωnℓT
, mℓT

) − LVh
(e)

T

T (ωnℓT
, mℓT

), (3.16)

with Vh
(e)

T

T (ωnℓT
, mℓT

) given by

Vh
(e)

T

T (ωnℓT
, mℓT

) =
(

∏

ℓ∈L0(T )

g
(hℓ)
ℓ

)(

∏

V∈V0(T )

η
)(

∏

V∈E0(T )

V
)(

∏

T ′∈S0(T )

RVh
(e)

T ′

T ′ (ωnℓT ′ , mℓT ′ )
)

, (3.17)

if L0(T ), V0(T ), E0(T ) and S0(T ) are the sets of lines, nodes, end-points and maximal self-energy graphs
in T which are not contained in any self-energy graph internal to T .

Now we proceed exactly as in Ref. [11].
First (by Lemma 7 of Ref. [11]) we have that the expansion (3.13) is well defined, for νh,m = O(ε);

namely we have that that the coefficients (3.13) are bounded by |un,m| ≤ D0ε
|m|/4m0ε|n|/4m2

0.

The presence of the factor ε|m|/4m0ε|n|/4m2
0 , instead of the factor ε e−κ(|n|+|m|)/4 in equation (5.8)

of Ref. [11], is due to the fact that the end-points carry a mode label (±m0, m
2
0), so that in order

to have a momentum (n, m) flowing through the root line one needs at least k∗ nodes, with k∗ >

min{|m|/m0, |n|/m2
0}, and for θ ∈ Θ

(k))R
n,m the tree value Val(θ) is in general proportional to εk/2 by

(3.11) (the discussion is very similar to that performed in Ref. [10], which we refer to for further details).
Then (by Lemma 8 and Lemma 9 of Ref. [11]) we have that under the same conditions also the r.h.s.

of (3.14) is well defined. Moreover (by Lemma 10 of Ref. [11]) we find that it is indeed possible to choose

ν
(c)
m such that νh,m = O(ε) for any h. We omit the other details which can be easily worked out by

looking at the quoted reference.
This completes the proof of Proposition 1.

We now pass to Proposition 2: we look for the perturbed frequencies ω̃m(ε) which solve (2.16) and
satisfy the Diophantine conditions (2.27) for ε ∈ E , where E is a Cantor set of relative large measure. We
proceed as in Section 6 of Ref. [11], with some minor differences (which are in fact simplifications) that
we outline below.

The condition (2.28) on ε can be imposed exactly as in Ref. [11] (Lemma 14), and requires ε ∈ E(0),
with E(0) a suitable subset of [0, ε0], with ε0 as in Proposition 1, of large relative measure provided one
sets τ0 > 1.

We define a sequence ω̃ = {ω̃(p)
m }∞m=1 by setting

(ω(0)
m )2 = ω2

m,

(ω̃(p)
m )2 = ω2

m − νm(ω̃(p−1)
m , ε), p ≥ 1,

(3.18)

with νm(ω̃
(p)
m , ε) well defined on a Cantor set E(p) where, as in equation (6.11) of Ref. [11], the Mel′nikov

conditions (2.27) are satisfied with ω̃m = ω̃
(p)
m .
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By reasoning as for Lemma 16 of Ref. [11] the following result is immediately obtained.

Lemma 4. For all p ≥ 0 there exists a positive constant C3 such that |νm(ω̃(p), ε)| < C3ε.

Hence for all fixed p the hypotheses of Proposition 1 are satisfied and νm(ω̃
(p+1)
m , ε) is well defined on

some smaller Cantor set E(p+1) ⊂ E(p).
By reasoning as for Lemma 15 of Ref. [11] (Section 6) we have that the difference between the frequencies

at two subsequent steps decreases exponentially:

max
m∈Z

|νm(ω̃(p), ε) − νm(ω̃(p−1), ε)| ≤ Cεp, (3.19)

so that the sequence {ω̃(p)}∞p=0 has a limit ω̃(∞) ≡ ω̃(∞)(ε) which satisfies the equations (2.18) and is well

defined on a Cantor set E = E(∞).
To conclude the proof of Proposition 2 we still need to impose the Mel′nikov conditions in (2.27), with

ω̃m = ω̃
(p)
m (ε) and to verify that the set of ε which satisfy such conditions for all p is of large relative

measure and has the origin as a density point. To do this, we evaluate the measure of the complementary
set to E(p) in [0, ε0] defined by

f1(ε(t)) ≡ (1 + ε(t))n − (ω̃(p)
m (ε(t)))2 = t

C0

|n|τ , t ∈ [−1, 1], ε(t) ∈ (0, ε0), (3.20)

when dealing with the first Mel′nikov conditions (cf. equation (6.30) of Ref. [11]), and through

f2(ε(t)) ≡ (1+ε(t))|nℓ|− |(ω̃(p)
m (ε(t)))2± (ω̃

(p)
m′ (ε(t)))

2| = t
C0

|n|τ , t ∈ [−1, 1], ε(t) ∈ (0, ε0), (3.21)

when dealing with the second Mel′nikov conditions. The functions f1 and f2 depend also on n, m and
n, m, m′, respectively: we are not making explicit such a dependence in order not to overwhelm the
notations.

The measure of the complementary set is then bounded by

∑∗

n,m∈Z

C0

|n|τ max
ε∈(0,ε0)

|∂f1/∂ε|−1 +
∗

∑ C0

|n|τ n,m,m′∈Z

max
ε∈(0,ε0)

|∂f2/∂ε|−1, (3.22)

where ∗ means that in the sums over n, m, m′ one only has to consider those values n, m, m′ such that both
f1(ε) and f2(ε) can be small, say smaller than 1/4. As in Ref. [11] one has to use that |∂fj/∂ε| ≥ |n|/2
for j = 1, 2.

In the case of the first Mel′nikov conditions one has to consider only the values of n such that n ≥
N0 = O(ε−1

0 ), as |νm| < C1ε, and for each n the set M0(n) of m’s such that f1(ε) < 1/4 contains at
most 2 + ε0

√
n values. Therefore the measure of the set of excluded values of ε turns out to be bounded

proportionally to
∞
∑

n=N0

C0

nτ+1

(

2 + ε0

√
n
)

≤ const. ε1+δ1
0 , (3.23)

with δ1 > 0 provided one takes τ > 1.
In the case of the second Mel′nikov conditions one has to use that if |n| is close to |m2 − (m′)2| then

|n| is of order ||m| − |m′|| (|m|+ |m′|), with |m| − |m′| 6= 0, so that |m|+ |m′| ≤ |n|. This means that for

14



each n the number of pairs (m, m′) one has to sum over is at most proportional to 2 + ε0|n|2. The same
happens (trivially) when |n| is close to m2 + (m′)2. In both cases one has to sum only on the values of n
such that |n| ≥ N0 = O(ε−1

0 ), so that one has to exclude a set of values of ε whose measure is bounded
proportionally to

∞
∑

n=N0

C0

nτ+1

(

2 + ε0n
2
)

≤ const. ε1+δ2
0 , (3.24)

with δ2 > 0 provided one takes τ > 2.
The argument above is for fixed p. By taking into account that the centers of the intervals of excluded

values of ε get closer and closer at each iterative step p (cf. Lemma 17 in Ref. [11]), we find that we
have to apply the construction above only for a finite number of steps p0(n) (growing proportionally to
log |n|), at the price of enlarging the sizes of the first p0(n) intervals. The conclusion is that if we set
τ > 2 we have that E(∞) has large relative measure. Again we refer to Ref. [11] for further details.

4. Extension of the results and proof of Theorem 2

The extension of the results of the previous sections to the case in which ϕ(x) is any analytic function with
ϕ′(0) 6= 0, can be easily dealt with by reasoning as in Section 8 of Ref. [11]. Essentially the diagrammatic
rules change as one has to take into account also the contributions of order higher than three arising from
the nonlinearity, which means that now s can be any odd positive integer and for each node V with s > 1
the node factors η depend on the function ϕ.

If we use that w
(k)
n,m = 0 for n 6= m2

0 then we see that in fact we have no small divisor problem: the
quantity |ωn ± ω̃2

m| = |ωm2
0 ± ω̃2

m| is bounded from below for all m ∈ Z \ {±m0}, provided ε is small
enough. Hence in the case (1.1) the discussion can be substantially simplified.

The advantage of the proof given in Section 3 is that it still applies to any f(u, u) as in (1.8). In such
a case there is no longer a symmetry property which imposes n = m2

0, so that n can really assume any
value. Therefore we need the Diophantine conditions (2.27) and we have to exclude some values of ε.
This leads naturally to the set E defined in the statement of Theorem 1. As for the diagrammatic rules
now also the constraints on

∑

ℓ∈L s(ℓ), besides the node factors, depend on f .
No extra difficulty arises with respect to the analysis of Section 3, so we pass directly to discuss the

case of more general periodic solutions to be continued.
For ε = 0 we call v0 = v(ε = 0) = a + b the solution of the Q equation in (2.3), by writing

a(t, x) =

∞
∑

m=1

ameim2t+imx, (4.1)

with coefficients am ∈ R to be determined, and setting b(t, x) = −a(t,−x). Then the Q equation becomes

m2v0,m =
∑

−m1+m2+m3=m
−m2

1+m2
2+m2

3=m2

v0,m1v0,m2v0,m3 = 2v0,m

∑

m′ 6=m

v0,m′v0,m′ + v0,mv0,mv0,m, (4.2)

so that we obtain
v0,m

(

m2 − 2‖v0‖2 + |v0,m|2
)

= 0, (4.3)

where we have defined

M = {m ∈ Z : v0,m 6= 0} , M+ = {m ∈ M : m > 0} , (4.4)
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and set
‖v0‖2 ≡

∑

m∈Z

v2
0,m =

∑

m∈M

v2
0,m. (4.5)

Hence (4.3) can be satisfied either if v0,m = 0 or, when v0,m 6= 0, if

‖v0‖2 =
2M

4N − 1
, (4.6)

where we have set
2N = |M| = # {m ∈ M} , 2M =

∑

m∈M

m2. (4.7)

By inserting (4.6) into (4.3), setting

am = v0,m, m > 0, ‖a‖2 =
∑

m∈M+

a2
m =

1

2
‖v0‖2, (4.8)

and writing M+ = {m1, m2, . . . , mN}, with mk < mk+1, k = 1, . . . , N − 1, we obtain

a2
mk

= 4‖a‖2 − m2
k =

4

4N − 1

(

m2
1 + m2

2 + . . . + m2
N

)

− m2
k, k = 1, . . . , N, (4.9)

which makes sense as long as

max
m∈M+

m2 ≤ 4

4N − 1

∑

m∈M+

m2. (4.10)

The following result is easily proved.

Lemma 5. For all N ≥ 2 there are solutions of (4.9) such that 4‖a‖2 is not an integer.

Proof. To obtain a solution one can take mk = mN − (N − k) for k = 1, . . . , N , and choose mN ≥
4N(N −1). Choose mN = (4N + j)(N −1), with j ∈ {0, 1}: then 4(m2

1 + . . .+m2
N) can not be a multiple

of 4N − 1 for both j = 0 and j = 1.

Here we are confined ourselves only to an existence result. Of course more general solutions can be
envisaged, with more spacing between the involved wave numbers mk. The result above can indeed be
strengthened as follows.

Lemma 6. For all N ≥ 2 and for all increasing lists of positive integers I := {i1, . . . , iN−1} there exists
mN (I) (mN for short) such that (4.10) has a solution in the set M+ = {mN − iN−1, . . . , mN − i1, mN}
with 4‖a‖2 6= m2 for all m /∈ M.

Proof. Fix the set of integers I = {i1, . . . , iN−1}, and consider the expression M − (N − 1/4)j2 for
j ∈ N. For j = mN it becomes a polynomial of degree two in mN , with positive leading coefficient 1/4
and positive discriminant. Hence there is an integer K1 such that for all mN > K1 one has f1(mN ) ≡
M − (N − 1/4)m2

N > 0, hence (4.10) is satisfied.
The inequality M − (N − 1/4)j2 > 0 is trivially satisfied for j ≤ mN , so that it is enough to look an

integer mN > K1 such that one has f2(mN ) ≡ M − (N − 1/4)(mN + 1)2 < 0. Again f2 is a polynomial
of degree two in mN , with positive leading coefficient 1/4 and positive discriminant, so that there exist

16



two integers K2 < K3 such that f2(mN ) < 0 for K2 < mN < K3. Moreover K3 −K2 ≥ 4(N − 1), so that
there is mN satisfying (4.10) such that 4‖a‖ 6= j2 for all j ∈ N.

The condition 4‖a‖2 6= m2 for all m ∈ M, required in Lemma 6 and implied by Lemma 5, implies
that the solution v0(t, x) is non-degenerate, namely the linearized operator acting on V is invertible, so
that Vm turns out to be defined iteratively to all orders (compare (2.15) in the case of Theorem 1 with
Lemma 8 below). The request for the amplitides am to be real was motivated just with the aim of making
straightforward the check of the non-degeneracy condition.

To have solutions of (4.9) requires the integers in M+ to be large enough, and not too distant from
each other. Indeed, at best, the distance between the harmonics is O(N), while the harmonics themselves
are greater than some threshold value, which is O(N2) – cf. the proof of Lemma 5. Hence the solutions
whose existence is stated in Lemma 5 have the form of wave packets centered around some harmonic
(wave number) large enough, with a width proportional to the square root of the wave number. In
general, if the harmonics are very large with respect to the threshold value, then also the width of the
packet can be large. Not however that in order to be sure that the quantity 4‖a‖2 is not a squared integer
in the proof of Lemma 6 we required mN (hence the wave number of the corresponding packet) to be
not too large. Moreover we are more interested in wave packets with wave number not too large, as the
larger is the latter the smaller is the corresponding value ε0 appearing in the statement of Theorem 2, as
we shall see.

Hence we have proved the following result.

Lemma 7. For any N there are sets M and functions v0(t, x) = a(ωt, x) − a(ωt,−x), with

a(t, x) =
∑

m∈M+

eim2ωt+imxam, (4.11)

which solve the Q equation with ε = 0.

Moreover, by using once more the parity properties V−m = −Vm, one obtains, generalising (2.14) to
the case N > 1 and with the same meaning as there for the function G(v, w), for m ∈ M+

∑

m′∈M+

Am,m′Vm′ = [G(v, w)]m , (4.12)

where A is an N × N matrix with entries

Am,m′ =

{

m2 − 4‖a‖2 − 5a2
m, m = m′ ,

−8amam′ , m 6= m′ ,
(4.13)

It is also easy to check that, if the amplitudes am are chosen to be real, then also the amplitudes Vm

and wn,m can be found to be real (as remarked in Section 2 the condition un,m ∈ R is consistent with
equation (1.8)).

Then the following result holds.

Lemma 8. For M chosen according to Lemma 6 (or Lemma 5), one has for m ∈ M+

Vm =
∑

m′∈M+

Dm,m′ [G(v, w)]m′ , (4.14)
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with D a N × N non-singular matrix. For positive m /∈ M+, an analogous, simpler expression is found
of the form (4.14) with

Vm = (m2 − 4‖a‖2)−1 [G(v, w)]m (4.15)

where the coefficients (m2 − 4‖a‖2) are not zero by Lemma 6 (or Lemma 5). The amplitudes Vm for
negative m are easily obtained by noting that Vm = −V−m.

Proof. To obtain (4.14) it is sufficient to prove that the matrix A with entries (4.13) is not singular. By
using (4.3) we can write the diagonal entries of A as Am,m = −6a2

m. Then one realizes immediately that
one has

detA = (−1)N detDN (6, 8)

N
∏

m=1

a2
m, (4.16)

where DN (p, q) is the N ×N matrix with diagonal entries p and all off-diagonal entries q. One can easily
prove that detDN (p, q) = (p − q)N−1(p + (N − 1)q). As in our case p = 6 and q = 8 (so that p 6= q and
p < (N − 1)q for all N ≥ 2) the assertion follows. Finally equation (4.15) is a direct generalisation of
(2.9).

This allows us to extend the analysis of the previous section to the case in which the function v0 is of
the form considered here. At the end Theorem 2 is obtained, with the set M chosen according to Lemma
6.

Following Section 2 we insert the series expansion (2.21) in the P equation in (2.19) and in the new Q
equation, as given by (4.14) and (4.15). The iterative P equation (2.22) is unchanged, while, by equation
(4.15) and by Lemma 8, the iterative Q equation (2.25) should be substituted by

V (k)
m = g(m2, m)

∑

k1+k2+k3=k

∑∗

−n1+n2+n3=m2

−m1+m2+m3=m

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

, (4.17)

with g(m2, m) = (m2 − 4‖a‖2)−1, for m /∈ M, and

V (k)
m =

∑

m′∈M+

Dm,m′

∑

k1+k2+k3=k

∑∗

−n1+n2+n3=(m′)2

−m1+m2+m3=m′

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

(4.18)

for m ∈ M+, while V
(k)
m = −V

(k)
−m for m ∈ M \M+.

Let us consider first the case f(u, u) = |u|2u. The tree expansion is as in Section 3, with the following
differences. In item (5) now to each end-point a mode label (n, m), with m ∈ M and n = m2, and an
end-point factor V = σam , with σ = sgn m are associated. Moreover each line ℓ carries two momentum
labels (nℓ, mℓ) and (n′

ℓ, m
′
ℓ), with mℓ and mℓ′ both in M or in its complement. If mℓ, m

′
ℓ ∈ M they are

both either in M+ or in M \ M+, and the propagator gℓ is not diagonal any more, as it is given by
gℓ = Dm,m′ (see (4.15)), while if mℓ, mℓ′ /∈ M then mℓ = m′

ℓ and gℓ = g(m2, m), with g(m2, m) given as
after (4.17); like in the previous case one has nℓ = m2

ℓ and n′
ℓ = (m′

ℓ)
2 for such lines. Also for the lines

of type w we set nℓ = n′
ℓ and mℓ = m′

ℓ, but one has nℓ 6= m2
ℓ in such a case.

The momentum (n′
ℓ, m

′
ℓ) is recursively defined as

n′
ℓ =

∑

ℓ∈L

(−1)s(ℓ)nℓ, m′
ℓ =

∑

ℓ∈L

(−1)s(ℓ)mℓ, (4.19)
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for V ∈ V 3
w(θ) ∪ V 3

v (θ), and
n′

ℓ = nℓ, mℓ = δc,amℓ − δc,bmℓ, (4.20)

for V ∈ V 1
w , if ℓ denotes the line entering V.

The self-energy graphs T with momentum (n, m) associated to the line ℓ2
T are characterized by the

relations n(T ) = nℓ1
T
− nℓ2

T
= 0 and m(T ) = mℓ1

T
− mℓ2

T
∈ {0, 2m}. No other differences arise with

respect to Section 3, so that the analysis can be carried out in the same way.
For more general f one reasons as at the beginning of this Section. We do not describe in detail the

obvious changes of notations.
Of course the value of ε0 depends on the set M, and in particular it goes to zero when N → ∞ (as M

diverges in such a case) and, for fixed N , when M → ∞.
The conclusion is that infinitely many unperturbed solutions which are trigonometric polynomial with

an arbitrary number of harmonics can be continued in presence of nonlinearities. The case of polynomials
of degree 1 (Theorem 1) is the one usually considered in literature, while the case of polynomials of higher
order (Theorem 2) is new. In the latter case the only request on the harmonics is that the corresponding
wave numbers have to be close enough to each other and that larger is their number the larger are their
values.
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