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Abstract. In a previous paper of one of us [Europhys. Lett. 59 (2002), 330–336] the
validity of Greene’s method for determining the critical constant of the standard map (SM)
was questioned on the basis of some numerical findings. Here we come back to that analysis
and we provide an interpretation of the numerical results, by showing that the conclusions
of that paper were wrong as they relied on a plausible but untrue assumption. Hence no
contradiction exists with respect to Greene’s method. We show that the previous results,
based on the expansion in Lindstedt series, do correspond to the critical constant but for a
different map: the semi-standard map (SSM). For such a map no Greene’s method analogue
is at disposal, so that methods based on Lindstedt series are essentially the only possible
ones. Moreover, we study the expansion for two simplified models obtained from the SM
and SSM by suppressing the small divisors. We call them the simplified SM and simplified
SSM, respectively; the first case turns out to be related to Kepler’s equation after a proper
transformation of variables. In both cases we give an analytical solution for the radius of
convergence, that represents the singularity in the complex plane closest to the origin. Also
here, the radius of convergence of the simplified SM turns out to be lower than that of the
simplified SSM. However, despite the absence of small divisors these two radii are lower
than those of the true maps (i.e. of the maps with small divisors) when the winding number
equals the golden mean. Finally, we study the analyticity domain and, in particular, the
critical constant for the two maps without small divisors. The analyticity domain turns out
to be a perfect circle for the simplified SSM (as for the SSM itself), while it is stretched
along the real axis for the simplified SM, yielding a critical constant which is larger than its
radius of convergence.

1. Introduction

The Taylor-Chirikov map [12, 23] or standard map (SM) is one of the best known nonlin-
ear models showing the onset of chaos in Hamiltonian systems. It describes with some level
of approximation many physical systems. Among these there are numerous applications to
plasma-physics, the field in which it was originally introduced. The SM is also exactly re-
lated to the time evolution of the “kicked rotor” and the equilibrium condition for a chain of
masses superpositioned on a periodic potential. The latter model is known as the Frenkel-
Kontorova (FK) model. This model is of equal importance for solid state physics as the SM
is for plasma physics. It has, e.g., been applied to Josephson junctions arrays, charge den-
sity waves and surface friction [19]. More importantly, due to their simplicity and, yet, the
complex behaviour they show, these minimalistic models have had an enormous impact for
the understanding in complex phenomena such as nonlinearity, chaos, quasi-periodicity, and
commensurate-incommensurate transitions. Although now part of any text-book in nonlinear
physics and studied extensively over many years, the SM and FK still bear many unsolved
problems. The most intriguing one of these is the sudden transition from smooth to chaotic
orbits in the SM when the coupling parameter K is increased above a critical value Kc. In the
FK model this transition is connected to change from a sliding to a pinned state and bears the
name of Aubry transition (or analyticity breaking transition).

Key words and phrases. Standard map; semi-standard map; Frenkel-Kontorova; perturbation theory; critical
constant; natural boundary.
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The theoretical framework that characterizes this transition originates from the Kolmogorov-
Arnol′d-Moser (KAM) theorem [2], that deals with the problem of small divisors that can occur
in any perturbation expansion for quasi-integrable systems. In fact, the KAM theorem can be
used to prove the non-chaotic behaviour of the SM for very small coupling K and sufficiently
irrational winding number ω. Other arguments can then be applied to prove that a chaotic
regime exists for values of K large enough giving an upper bound to Kc. For ω equal to the
golden mean there exists an analytical bound by Mather, Kc < 4/3 [34], and the computer
assisted proof of MacKay and Percival Kc < 63/64 ≈ 0.9844 [33]. Moreover, another computer
assisted analysis of Jungreis excluded the value K = 0.9718 for possible occurrence of invariant
circles (smooth orbits) [27].

There exist several methods to calculate Kc precisely, among which Greene’s method [23] has
shown to be one of the most effective giving the estimate Kc = 0.971635. This method is based
on the assumption that the dissolution of invariant curves can be associated with the sudden
change from stability to instability of nearby closed orbits. The renormalization technique of
MacKay (cf. Ref. [32], §4.4.1) is a further refinement of this method and has established the
same value (cf. p. 199 of the quoted reference) with higher digit precision with respect to
the original Greene’s result. Yet, Greene’s hypothesis has only been partly proven. A result
by Falcolini and de la Llave [16] and, independently, by MacKay [31] yields that the critical
constants for symplectic maps can never be higher than the ones obtained by Greene’s method.
Recently, the result has been extended to nontwist maps by Delshams and de la Llave [14].
Hence, Kc ≤ 0.971635 for the SM with the golden mean as winding number. We mention that
MacKay also showed that Greene’s method does not apply to every map [31]. However, in the
case of the SM, the situations for which no rigorous result can be given are considered unlikely;
cf. the discussion in Refs. [16, 31].

Another way to calculate (or, at least, to estimate) Kc is through the Lindstedt series
expansion. Any smooth invariant curve in the SM can be described, for complex K small
enough, say |K| < ρ, where ρ will depend on the winding number of the curve, by an analytic
function which conjugates the dynamics to the unperturbed one. Of course ρ provides a lower
bound for Kc, which is essentially the maximum real value of K for which there is an analytic
invariant curve with the fixed winding number (more precise definitions will be given below).
By writing down the Taylor expansion and equating the Taylor orders in the functional equation
satisfied by this conjugation function, the Fourier-Taylor coefficients can, in principle, be derived
from the ones of lower order. In Ref. [42] an evaluation of this expansion, always in the case of
the golden mean, to high orders led the authors to infer a convergence to a value Kc ∼ 0.97978,
which is higher than Greene’s result1. In this article, we revisit that analysis and show that an
apparent plausible assumption made in Ref. [42] is falsified beyond Taylor order n > 200. As a
result, the Lindstedt expansion does not contradict Greene’s result. The value Kc ∼ 0.97978,
however, does correspond to the critical value for a different map, the semi-standard map
(SSM); cf. also Ref. [24]. We come back to this in Sect. 3; though, we not since now that this
method is fundamental for the SSM, where no analogue of Greene’s method exists (see also the
comments at the end of Sect. 2).

Aubry [3] proposed another method, which is probably not very effective for high precision
evaluation in a computer algorithm, but still interesting. It is based on an eigenvalue calculation
of the dynamical matrix for the FK chain close to the critical point. Although this, in principle,
requires the diagonalization of an infinite matrix, one can use the fact that the eigenvector of
the lowest mode tends to localize [43]. The instability of the FK chain can than be determined
in successive approximants by calculating the determinants of finite matrices of increasing size.

1Note that the fact that ρ and Kc are different can not invoked to explain the discrepancy, because of the
direction of the inequality between the two quantities. One could also wonder what information about Kc can
be inferred from ρ other than a lower bound. In general none, but one has strong numerical evidence that
ρ = Kc for the golden mean.
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Another effective method is the frequency analysis method proposed by Laskar, which has
been applied to the standard map in Ref. [30], giving for the golden mean a critical value
Kc = 0.9718, which is close to Greene’s value. In Ref. [11] it has been used to study numerically
the dependence of the critical constant on the winding number.

Finally we mention the use of Padé approximants2 to study numerically the entire analyticity
domain. This is a powerful numerical tool even if is it less precise than other methods for
detecting the critical constant Kc and not completely under control from a rigorous point of
view. It has, for instance, been employed in Ref. [4] and, very recently, in Ref. [5], where
the existence of a natural boundary for the analyticity domain of the SM has been checked
numerically. Always with the aim of studying the analyticity domain Falcolini and de la
Llave [17] developed a variant of Greene’s method working for complex values of the parameter
K that gives an alternative to the Padé approximants approach. An implementation of Padé
approximants will be given below (in Sect. 4), though for a case in which the analytical solution
is known.

Eventually, these approaches are assumed to converge to the same value. However, the
proof of this is highly non-trivial. The ultimate goal, of course, would be to gain an analytical
expression for Kc. This is still far beyond our capabilities. Inspired by the desire to investigate
further the influence of the small divisors in the Lindstedt series expansion, we introduce two
simplified models by setting rigorously all the divisors equal to 1 both for the SSM and the
SM. In the latter case, this is a very well known model, Kepler’s equation [50], which turns out
to have a very similar transition and can be solved analytically. The radii of convergence are
found to be lower than those determined with the methods described above for the SM and
SSM, respectively, in case of golden mean winding numbers.

This article is organized as follows. In Sect. 2 we recall the definition of the SM and SSM. In
Sect. 3 we come back to the analysis of Ref. [42] showing that, contrary to what was asserted
in that paper, the Lindstedt expansion does not violate Greene’s method, and we make the
comparison between the SM and SSM. In our opinion the analysis in Sect. 3 gives some insight
onto the mechanism of break up of the invariant curves, and leaves some open problems: this
will be discussed to more extent in Sect. 5. In Sect. 4 we present a new model in which we
suppress the small divisors and give an analytical expression both for the radius of convergence
and the critical constant. Moreover, the analysis in Sect. 4 has some consequence on the cases
with small divisors in relation with the appearance of a natural boundary in the analyticity
domain; this is further discussed in Sect. 5. Finally we end up with the conclusions in Sect. 5.

2. The (Semi-) Standard Map

The SM and SSM can be written as(
xi+1

xi

)
= T

(
xi

xi−1

)
=

(
2xi + V ′(xi) − xi−1

xi

)
, (1)

with {xi} defined mod 1, and

V ′(x) =






K

2π
sin(2πx) for the SM,

K

4πi
exp(i2πx) for the SSM.

(2)

The resulting sequence {xi mod 1}, for i = 2, . . .∞, originating from a starting point (x1, x0)
corresponds to a discrete trajectory on an invariant curve, when the latter exists. Such a
trajectory for the SM can be related to the equilibrium positions of an infinite FK chain

2The (L, M)-Padé approximant for a function f(x) is given by the ratio of two polynomials, f(x) ≈
PL(x)/QM (x), with PL = p0 + p1x + . . . + pLxL and QM = 1 + q1x + . . . qMxM . Hence, the simple Tay-
lor expansion of order n can be considered as a special case of Padé approximant with L = n and M = 0.
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where particles with harmonic nearest neighbour coupling are placed on a periodic potential
V (x) = K(2π)−2(1 − cos(2πx)). The SSM has not a similar counterpart, but is much simpler
in its mathematics, and this is basically the reason why it was considered by Greene and
Percival [24]. By definition, in terms of the lift of the map, the winding number or rotation

number of an orbit is given by

ω ≡ 〈xi+1 − xi〉 ≡ lim
n→∞

n∑

i=0

xi+1 − xi

n
= lim

n→∞

xn − x0

n
, (3)

when the limit exists. For low coupling K and ω incommensurate to the periodicity of V ′, there
exists a continuous function g(x; K, ω) such that the positions {xi mod 1} can be expressed as
xi = g(iω+ϕ; K, ω), where ϕ is an arbitrary phase. This function is often called the conjugating

function or, in context with the FK model, the modulation or hull function. Its shape depends
on the winding number ω and on the coupling parameter K.

The conjugating function satisfies the functional equation

2g(x; K, ω) − g(x + ω; K, ω) − g(x − ω; K, ω) = −V ′
(
x + g(x; K, ω)

)
. (4)

For K large enough the function g(x; K, ω) becomes discontinuous. For the SM this implies
that the orbits become chaotic and for the FK that the chain of particles gets pinned together
with the appearance of a phonon gap.

There are several quantities of interest which one can introduce in order to study the tran-
sition from regular to chaotic dynamics. As the function g(x; K, ω) is analytic for K close to
the origin one can consider its series expansion in powers of K,

g(x; K, ω) =

∞∑

n=1

Kng(n)(x; ω), (5)

and define the radius of convergence ρ(ω) as

ρ(ω) = inf
x∈[0,1]

(
lim sup

n→∞

∣∣∣g(n)(x; ω)
∣∣∣
1/n )−1

. (6)

Note that the infimum appears in the definition of the radius of convergence because, as a
result of the incommensurate winding number ω, each invariant curve is filled densely by any
trajectory lying on it. Hence, existence of the invariant curve itself requires the latter to be
defined for all x ∈ [0, 1].

The critical constant is defined as the (positive) real value Kc(ω) such that for K > Kc(ω)
the conjugating function is not analytic any more3. It is believed that the analyticity domain
of the conjugating function has a natural boundary [24, 4, 5]: this means that g(x; K, ω) has
a set of singularities in terms of K that form a closed curve around the origin in the complex
plane. Hence, the radius of convergence ρ(ω) corresponds to the singularity closest to the
origin, while the critical constant Kc(ω) corresponds to the intersection of this curve with the
(positive) real axis. By definition one has Kc(ω) ≥ ρ(ω), so that by estimating the radius
of convergence one finds a lower bound for the critical constant. Furthermore, it is generally
accepted that Kc(τ) = ρ(τ) for the golden mean4 τ = (

√
5 − 1)/2 ≈ 0.618034, whereas there

is strong numerical evidence that Kc(ω) can be much larger than ρ(ω) for winding numbers
which have very large partial quotients in their continued fraction expansion5 [11, 9]. It is also

3The reason why one usually does not considers the negative critical constant, that is the negative value
K ′

c(ω) such that for K < K ′

c(ω) there is no longer an analytic invariant curve, is that K ′

c(ω) = −Kc(ω) for the
SM.

4The golden mean is sometimes in other literature defined as the inverse of this value: (
√

5 + 1)/2 = τ−1 ≈
1.618034.

5For an introduction of the continued fraction theory and a discussion of the basic properties we refer
to the classical textbook by Hardy and Wright [26]. In the continued fraction expansion of a number ω =
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commonly believed (on the basis of numerical simulations and heuristic arguments) that Kc(ω)
has the highest value for the golden mean ω = τ .

So far, the most accurate method to calculate Kc is based on Greene’s method (also known
as residue criterion). In this method the infinite trajectory {xi mod 1} with irrational wind-
ing number ω is approached by successive approximants which are periodic trajectories with
rational winding numbers ωj = pj/qj tending to ω, and xi+qj

mod 1 = xi. Hence, pj and qj

are at each level j two integer values whose ratio gives a better estimate of ω for each incre-
ment in j and ω = limj→∞ ωj. These numbers can, for instance, be obtained using the best
approximants in the continued fraction expansion of ω. For ω = τ this results in the ratios
of subsequent Fibonacci numbers (τ ≈ Fj−1/Fj with F0 = F1 = 1 and Fj = Fj−1 + Fj−2

for j > 1). Conclusively, Greene’s method tells how to construct the periodic orbits and to
measure their stability by means of a suitable quantity, called the residue, which does not tend
to zero any more for K > Kc.

Besides being only partly proven, Greene’s method has also some other limitations. For
instance, this method does not work for other interesting models, as the SSM and Siegel’s
problem [39], where the construction of periodic orbits fails. One can also easily check the
non-existence of smooth periodic orbit by a first orders perturbation theory. The best general
alternative is the Lindstedt series expansion. This method is more generally applicable (it also
works for the SSM and for any Hamiltonian systems close to an integrable one), but, in view of
a numerical implementation, is less accurate than Greene’s method for the SM and, in general,
is more suitable for studying the radius of convergence rather than the critical constant.

3. The Lindstedt series expansion

3.1. Standard Map. A way to study the transition is by means of the Lindstedt series, which
in this case means the expansion of the function g(x; K, ω) both in Fourier and in Taylor series.
Such expansions were originally introduced by Lindstedt and Newcomb to study problems in
celestial mechanics [37]. By defining the Fourier transform as

g(x; K, ω) =
+∞∑

k=−∞

ĝk(K, ω) e2πikx with inverse: (7)

ĝk(K, ω) =

∫ 1

0

dx g(x; K, ω) e−2πikx,

and expanding

ĝk(K, ω) = Kĝ
(1)
k (ω) + K2ĝ

(2)
k (ω) + K3ĝ

(3)
k (ω) + . . . , (8)

we end up with Fourier-Taylor coefficients ĝ
(n)
k (ω), where n is the Taylor index and k is the

Fourier index. Of course, ĝ
(n)
k (ω) depends on ω, but henceforth we withdraw such a dependence

in order not to overwhelm the notation, whenever no ambiguity can arise.
Now, using Eq. (4) we can relate the Fourier-Taylor coefficients of order n by the ones with

lower Taylor index by [42]

D2
k ĝ

(n)
k =

i

4π

{
δ1,k − δ−1,k

}
δ1,n +

i

4π

∞∑

m=1

(i2π)m

m!

∑

n1+n2+...+nm=n−1

(9)

{ ∑

k1+k2+...+km=k−1

ĝ
(n1)
k1

ĝ
(n2)
k2

. . . ĝ
(nm)
km

− (−1)m
∑

k1+k2+...+km=k+1

ĝ
(n1)
k1

ĝ
(n2)
k2

. . . ĝ
(nm)
km

}
,

[a0, a1, a2, . . .] = a0 + 1/(a1 + 1/(a2 + 1/(. . .))), the numbers aj are called the partial quotients, while the

rational numbers qj/pj = [a0, a1, a2, . . . , aj ] are called the best approximants for ω.
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with

D2
k ≡ 1

ĝk(K, ω)

∫ 1

0

dx
(
2g(x; K, ω)− g(x + ω; K, ω) − g(x − ω; K, ω)

)
e−2πikx (10)

= 2
(
1 − cos(2πkω)

)
=

(
2 sin(πkω)

)2
,

and where
∑

n1+n2+...+nm=n±1 implies a summation of all possible integers n1, n2, . . . , nm with

the constraint that
∑m

i=1 ni = n ± 1. There are ways to reduce the number of summations in
Eq. (9). One possible way was proposed in Ref. [42] to construct an extended matrix P (n, k, m)
defined as

P (n, k, m) =
(2πi)m

m!

∑

n1+n2+...+nm=n

∑

k1+k2+...+km=k

ĝ
(n1)
k1

ĝ
(n2)
k2

. . . ĝ
(nm)
km

. (11)

One can show that P (n, k, m) = 0 if |k| > n or m > n. This gives rise to the following recursive
relations [42]:

P (1,±1, 1) =
∓1

2D2
1

, (12)

P (n, k, 1) = −1

2
D−2

k

n−1∑

m=1

[
P (n − 1, k − 1, m) − (−1)mP (n − 1, k + 1, m)

]
,

P (n, k, m) =
1

m

n−m+1∑

n′=1

min{n′,k+n−n′}∑

k′=max{−n′,k−n+n′}

P (n′, k′, 1)P (n − n′, k − k′, m − 1), 1 < m ≤ n,

from which we can distract the Fourier-Taylor coefficients by

ĝ
(n)
k =

P (n, k, 1)

2πi
. (13)

The entries of P are all real and obey the symmetry relation P (n, k, m) = (−1)mP (n,−k, m).
Moreover, besides being zero for |k| > n and m > n, P (n, k, m) has zero values whenever k +n
is odd. Hence, k = n, n − 2, . . . ,−n are the only non-zero entries of P .

The relations of Eqs. (12) are very efficient to evaluate ĝ
(n)
k , and they were used in Ref. [42]

to reach a Taylor order of approximately n = 200. To go beyond this limit, sufficient computer
power and time is needed as both the computation time and the number of non-zero matrix
entries increase with ∼ n3. Hence, memory can become a severe problem as the number of
entries that have to be stored can easily go beyond the maximum allowed allocation limit of the
computing system. Also the precision has to be high enough in order to minimize numerical
errors, but this problem is easily solved without requiring a precision as high as in the case
of winding numbers close to rational numbers, as in Ref. [5], where the small divisors could
become really small and up to 480 digits were needed. In this work, we reached the level
n = 700 (see Fig. 1) and we believe that going beyond this order is not very profitable for
obtaining a more accurate evaluation of Kc. We come back to these results after addressing
the small divisor problem that arises from Eq. (12).

From Eq. (10) and the second line in Eq. (12) one sees that even for irrational values of ω, the
terms D−2

k can become arbitrarily high for some k. This effect is a typical example of the small

divisor problem (or small denominator problem), that can strongly prevent the convergence of
any perturbative series. In fact, in general it requires a stronger condition than irrationality,
such as a Diophantine condition6 [2]. Among all the irrational numbers, the golden mean τ
suffers the least from the small divisor problem and has therefore the highest convergence radius

6The usual Diophantine condition requires |ωq− p| > 1/C0|q|γ for all (p, q) ∈ Z
2 with q 6= 0 and for suitable

positive constants C0 and γ. But one can require also the Bryuno condition, which is a condition stronger than
irrationality but weaker than the usual Diophantine condition; cf. for instance Refs. [8, 21] in the case of the
SM.
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Kc(τ). The golden mean is “relatively difficult” to approximate by rational numbers as those
arising, for instance, from the continued fraction expansion7 (one can say that it is the “most
irrational number”). As addressed above, the best approximants for the golden mean are given
by the ratios Fj/Fj+1, where {Fj} is the sequence of the Fibonacci numbers. Therefore, the
small divisors will be largest for k = Fj . From the exact relation Fj−1 − Fjτ = (−τ)j+1, one
can show that for j → ∞

D−2
Fj

≈ 1

4π2

( 1

τ2

)j+1

∼ (2.618)j+1. (14)

However, we would like to stress that the small divisor problem is not the only mechanism
causing the breakdown of the perturbative approach. This becomes evident in Sect. 4 where
we introduce the model that arises when we rigorously set D−2

k = 1 for all k in the series of
Eq. (12). Clearly, this simplified expansion can not be affected by the small divisors. However,
it still has a radius of convergence and a critical constant, as shown by the analytical solution.
As the radius of convergence ρ of this simplified model is found to be lower than ρ(τ) = Kc(τ)
for the SM, it proves that the golden mean winding number is remarkably resistant to the
problem of small divisors. The full analysis of this model is given in Sect. 4.

Coming back to the results of Fig. 1, we see that indeed the evolution of P (n, k, 1) makes
sudden jumps at the Fibonacci numbers as expected from Eq. (14). Besides, deceptively the

values n = k = Fj seem to determine the whole power law behaviour of ĝ
(n)
k , which is true till

Taylor order n ∼ 200. This assumption made in Ref. [42] allows for a further simplification of
Eq. (12) by defining the reduced matrix Q(n, m) ≡ P (n, n, m) obeying the relations

Q(1, 1) =
−1

2D2
1

, (15)

Q(n, 1) = −1

2
D−2

n

n−1∑

m=1

Q(n − 1, m),

Q(n, m) =
1

m

n−m+1∑

n′=1

Q(n′, 1)Q(n − n′, m − 1), 1 < m ≤ n.

This set of equations make high order (∼ n = F20 = 10946) evaluations accessible for computer
calculations. At this order the value of the radius of convergence seems to stabilize near ρ =
0.97978 , but this is still higher than the one obtained by Greene’s method. As a consequence,
validity of Greene’s method was questioned in the quoted paper [42].

The more elaborated calculations in this work show that the assumption made in Ref. [42]
was actually wrong as shown by the high order behaviour in Fig. 1. Still, we find that k = n
gives the maximum for |P (n, k, 1)| whenever n is a Fibonacci number. However, the character
of the evolution changes from being peaked to more smooth oscillations. Clearly, the line
connecting the points (Fj , |P (Fj , Fj , 1)|) does no longer dominate the increment of the entries

of P for n > 200. As |P (n, kmax(n), 1)|1/n shows local maxima for (n, kmax) = (383, 377) and
(n, kmax) = (622, 610) just after F13 and F14, we fitted the line α2λ

n
2 through the corresponding

points. From this fit, λ2 = 1.0248, the estimate for Kc ≈ λ−1
2 = 0.9758 is obtained. Although

still higher than Greene’s value, it is already considerably lower than ρ = 0.97978 obtained
from Eqs. (15) for n = F20 = 10946. Note that the latter approach of Ref. [42] for this
lower approximant n = F14 = 610, as obtained from the line λn

1 (See Fig. 1), would result
in ρ ≈ 1/λ1 = 0.9817, still approximately 0.002 higher than the nearly converged value of
ρ = 0.97978. Hence, a decay of 0.004 from 0.9758 at n = 622 to 0.9716 at n → ∞ is not
unlikely. As a consequence, contrary to the results of the restricted series (15), there is no
evidence at all that the full Lindstedt series (12) violates Greene’s hypothesis. This also shows

7A more formal statement is that τ allows the smallest values of C0 and γ in the Diophantine condition (see
previous footnote). Hence, it is the number that is the most distant from all rational numbers.
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that a further simplification of Eqs. (12) is not easily obtained and that an accurate evaluation
of Kc based on the Lindstedt perturbation is severely demanding.
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Figure 1. |P (n, kmax, 1)| as a function of n. This is defined as the maximum
value of |P (n, k, 1)| of all k; hence, kmax = kmax(n) is defined as the k value
where |P (n, k, 1)| has this maximum. The inset in the lower corner shows kmax

as function of n. The inset in the left upper corner is an enlargement of the first
200 terms together with |P (n, n, 1)| (dashed line). From these figures, one can
clearly detect sudden boosts in the function |P (n, kmax, 1)| where kmax = n at
the Fibonacci values (dashed vertical lines). However, whereas for n < 200 the
character is sharply peaked at these values, its behaviour changes for higher
orders. Still kmax = n for n a Fibonacci number, but the intersecting line
described by α1λ

n
1 does no longer dominate the complete evolution of all the

|P (n, k, 1)| terms. λ1 = 1.0186 is determined by the line through (n, k) =
(F13, F13) = (377, 377) and (n, k) = (F14, F14) = (610, 610). λ2 = 1.0248
is set by the line through (n, k) = (383, 377) and (n, k) = (622, 610) where
|P (n, kmax(n), 1)|1/n shows local maxima in n. The inversed values, λ−1

1 ≈
0.9817 and λ−1

2 ≈ 0.9758 are assumed to converge for higher n to Kc for the
SSM and SM, respectively.

3.2. Semi-Standard Map. When evaluating Eq. (1) for the SSM (2), the factors δ−1,k and
−(−1)m

∑
. . . are not present in Eq. (9). It is then straightforward to show that the only

non-zero entries of P (n, k, m) in (11) are those with n = k. Hence, the assumption made in
Ref. [42] that gave rise to Eqs. (15) does not corresponds to the critical constant of the SM,
but still gives the correct value for SSM. A result by Davie [13] shows that, for maps including
the ones we are considering, the radius of convergence (6) is equal to

ρ(ω) =
(

lim sup
n→∞

max
|k|≤n

∣∣∣ĝ(n)
k (ω)

∣∣∣
1/n )−1

. (16)

Therefore, the radius of convergence for the SM cannot be larger than the radius of convergence
of the SSM, but of course it implies only a lower bound on the critical constant. Numerically
by using Padé approximants in Ref. [5] it has been found that for certain values of the winding
number ω, the radius of convergence of the SM is strictly smaller than the radius for the
SSM. For the golden mean it is hard to improve upon simple power series using Padé, but for
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other numbers closer to resonant values it is possible and the phenomenon becomes much more
evident.

The fact that the radius of convergence for these numbers is lower for the SM than for the
SSM implies, by (16), that dominant contributions arise from terms with Taylor orders n for

which |ĝ(n)
kmax

| > |ĝ(n)
n |, where kmax = kmax(n) is defined as the value of k maximizing |P (n, k, 1)|

at fixed n. This is exactly what emerges from the numerics as noted above and shown in Fig. 1
for n > 200. Clearly, this is not the case for the SSM where one can limit to k = n. Hence,
in Ref. [42] Kc(τ) = ρ(τ) was actually determined for the SSM to be 0.97978 at Taylor order
n = F20 = 10946. In the calculations of this work, we went to order n = F24 = 75025, that gave
the value 0.97937. As the root criterion saturates very slowly, the numerical results provide
essentially only an (accurate) upper bound for the radius of convergence.

To summarize, we found that, also for the golden mean, the radius of convergence for the
SM is strictly less than the radius of convergence for the SSM. Therefore, as a general comment
we can remark that for the SM the presence of all harmonics in the Fourier expansion of the

Taylor coefficients, that is g(n)(x; ω) =
∑

k∈Z
ĝ
(n)
k (ω)e2πix, has a double effect. On the one

hand the radius of convergence becomes smaller with respect to that of the SSM. On the other
hand, the critical constant Kc(ω) can be larger than its radius of convergence ρ(ω). For the
golden mean the two values are equal as emerges numerically [17], but for other values they can
be appreciably different. One can imagine that the first phenomenon is due to the presence of

contributions ĝ
(n)
k (ω) larger (in modulus) than ĝ

(n)
n (ω), while the second one is a consequence

of deep cancellations between the harmonics of given perturbative order. These two effects
are, in general, much more dominant for winding numbers ω close to rational values (see for
instance Refs. [5, 6, 8, 9, 10]).

4. Putting small divisors to unity

4.1. Introduction of the simplified maps. An interesting study appears if we set rigorously
all possible small divisors equal to unity: Dk = 1 for all k in Eqs. (12) and (15). Although the
inspiration of this model was simply the study of the perturbation expansion when the small
divisors have no effect, we can retrace from this series back to a functional relation as the one
in Eq. (4) for a function h(x; K)

h(x; K) +
K

4πi
exp

(
i2π

(
x + h(x; K)

))
= 0 for the SSM and (17)

h(x; K) +
K

4π
sin

(
2π

(
x + h(x; K)

)
= 0 for the SM,

where ω has vanished. Hence, the divergence of the simplified series corresponds to values K
where the functional equations (17) have no analytical solution any more. A logical next step
would be to relate Eqs. (17) to the iteration of a map similar to Eq. (1). As the relation (17) does
no longer contain the arguments x±ω this is not so evident. However, one can relate the function
h(x; K) to the hull function of a FK-type system. It can be shown that this corresponds to a
one-dimensional Einstein solid that is interacting with an external incommensurate potential8.
Due to the lack of neighbour interaction, which makes each particle independent, it is highly
unusual to describe for such a system the equilibrium coordinates by a collective hull function.
Still, there are no restriction not to do so and one can even give such a function a physical
meaning. As known from the FK model, the continuous shape of the hull function is directly
associated with the existence of a sliding mode where the FK chain can slide over the periodic
potential without cost of energy [19, 43]. In this case, the complete phonon spectrum is given
by sum of oscillations of the individual particles that are not zero in general. The sliding mode
appears when we add an extra degree of freedom to the system as shown in Fig. 2.

8The Einstein model is a well known approximation in solid physics where the vibrations of a lattice of N
atoms is treated as a set of 3N independent harmonic oscillators in one dimension [29]
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ξ

Figure 2. Illustration of the FK model (top) and the system that obeys
Eq. (17) (bottom). The latter corresponds also to the FKT model without
neighbour interaction. All particle are connected to the upper rod whose po-
sition is given by ξ. A sliding mode may exist when ξ can be varied.

Here, all particles have no interaction with their neighbours, but are connected to an upper
rod. When the rod has an infinite mass compared to the particle masses, the system is basically
an Einstein solid. However, if we assume that the position of the rod may vary according to a
coordinate ξ an extra phonon mode exist that is zero for K < Kc in this system. Hence, the
breakdown of the Lindstedt expansion (12) with Dk = 1 for all k can be also related to a real
physical sliding-pinning transition. The model as illustrated in Fig. 2 is also equal to a special
case of the Frenkel-Kontorova-Tomlinson (FKT) model where each particle is connected to a
rod by a spring with spring constant cr and additionally to its neighbours with a coupling cn

9.
The FKT model has been proposed to study more realisticly the frictional behaviour between
atomic surfaces [45, 46, 25]. The model that is described by Eq. (17) simply corresponds to the
FKT system with cr = 1 and cn = 0. The nice thing is that the perturbation series of Eqs. (17)
can be solved exactly. To show this, we will start with the more simple SSM case.

4.2. Radii of convergence for simplified maps.

4.2.1. Simplified SSM. It can be convenient to use following normalization

R(n, m) = n!(−2)nQ(n, m), (18)

with matrix entries that are integer and positive and with R(n, n) = 1. From Eq. (12) and (18)
with D−2

n = 1 we derive

R(n, 1) = n

n−1∑

m=1

R(n − 1, m), (19)

R(n, m) =
1

m

n−m+1∑

n′=1

(
n

n′

)
R(n′, 1)R(n − n′, m − 1), 1 < m ≤ n.

9The simple Tomlinson model [41] is not the system in Fig. 2 as this usually consists of only one single
oscillator (particle). This ancient model is now often applied to simulate the “stick-slip” motion of an atomic
force microscope (AFM)-tip over a sample surface.
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Note that the recursive relations in Eq. (19) for m > 1 coincide with those satisfied by the

Stirling numbers of first and second kind, S
(m)
n and S

(m)
n respectively10. Of course what is

different is the relation for m = 1.
From relations (19) with R(1, 1) = 1 the following exact equality can be proven

R(n, m) = nn−m

(
n − 1

m − 1

)
. (20)

The proof of this equation is given in the appendices in two ways. In App. A.1 we derive this
proof using the argument of induction. In App. B.1 we give a proof based on the tree formalism
that was firstly introduced in Refs. [15, 36], then extended and formalized in Ref. [20]. The first
proof is quite elementary, but a little elongated. The second is short, but less self-contained
as it requires some knowledge of the previous publications about the tree formalism (but of
course it becomes very simple for any reader acquainted with such a technique). Furthermore,
the latter is most practical for the more complicated proof for the simplified SM in Eq. (17).
Now, from Eq. (18) and (20) we deduce that

Q(n, 1) = (−1)n nn−1

2nn!
, (21)

which shows a power law behaviour ∼ aλn for large n giving the radius of convergence as
ρ = 1/λ. Hence,

ln |Q(n, 1)| ∼ (n − 1) ln(n) − n ln(2) − ln(n!). (22)

Then by using11 [47]

ln(n!) ≈
(
n +

1

2

)
lnn − n +

1

2
ln(2π), (23)

we get

ln |Q(n, 1)| = n(1 − ln(2)) − 3

2
ln(n) − 1

2
ln(2π) (24)

⇒ |Q(n, 1)| ∼ 1√
2πn3

(
1

2
e

)n

,

yielding a radius of convergence ρ = 2/e ≈ 0.735759. This value is less than the SSM value
or SM value. This can be a bit contra-intuitive, as one could have expected that the possible
occurrence of small divisors would give a lower ρ. Apparently, this does not happen for the
golden mean. This can be understood by the following reasoning. Although the small divisor
factors D−2

k can become arbitrary large for some k giving a boost to the series (12) and (15),
at most values of k they will be considerable smaller than 1 resulting in an opposite effect.
Hence, for the golden mean as winding number the latter effect seems to be more dominant
yielding an even higher value for ρ than the case where all D−2

k terms are equal to 1. We can
say that, in fact, for the golden mean the small divisors “are not so bad”, whereas they become
really small for winding numbers much closer to rational values (that is with very large partial
quotients in their continued fraction expansion).

10The Stirling numbers of the first kind S
(m)
n are defined by the requirement that (−1)n−mS

(n)
m is the

number of permutations of n symbols which have exactly m cycles. The Stirling number of the second kind

S
(m)
n is equal to the way of partioning a set of n elements into m non-empty subsets. See [1], p. 824, §24.1.3

and §24.1.4, with r = m − 1.
11This is a refinement of the well known Stirling’s formula ln n! ≈ n lnn − n.
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4.2.2. Simplified SM. The simplified SM considered in Eq. (17) is well known in celestial
mechanics [50] after applying the following variable transformation. Write K/2 = −e and
2πx = M where e is the eccentricity and M is the mean anomaly. Then the eccentric anomaly
E = 2π(x + h(x; K)) is related to M through Kepler’s equation M = E − e sin E, which is
exactly the second equation in Eq. (17).

The recursive relations (12) with D−2
k = 1 have also an exact solution that we write here:

P (n, k, 1) =






(−1)n+(n−k)/2

2n

kn−1

((n − k)/2)!((n + k)/2)!
, for |k| ≤ n and k + n is even

0, otherwise,

(25)

which can be obtained by the Lagrange inversion theorem [48, 50]. We present a new derivation
of this relation based on the tree formalism in App. B.2

Then, by using Eq. (16) we see that we have to compute the maximum over k of |P (n, k, 1)|.
By assuming that the maximum is reached for some k which is not too close to n12 (an assump-
tion that we shall verify a posteriori), we can approximate the factorial appearing in Eq. (25)
with Stirling’s formula (23). This gives rise to

|P (n, k, 1)| ∼ 1

2n

kn−1en

(1
2 (n − k))

1

2
(n−k)(1

2 (n + k))
1

2
(n+k)

1

(1
4 (n2 − k2))

1

2

(26)

∼ 2en

n2

1

σ(1 − σ2)
1

2

(
σ

(1 − σ)
1

2
(1−σ)(1 + σ)

1

2
(1+σ)

)n

,

where we have defined σ = k/n ∈ [−1, 1]. Hence, we have to compute the maximum of the
function

E(σ) = σ exp

[
−1 − σ

2
ln(1 − σ) − 1 + σ

2
ln(1 + σ)

]
. (27)

By taking the derivative ∂E(σ)/∂σ = 0, we find that the maximum is reached at a value σmax

that satisfies following relation:

2 + σmax ln(1 − σmax) − σmax ln(1 + σmax) = 0, (28)

yielding σmax ≈ 0.833557. Hence, kmax = σmaxn ≈ 0.833557n. Using Eq. (28), E(σmax)
simplifies to E(σmax) = 1

e
σmax√
1−σ2

max

. Inserting this relation into Eq. (26) gives

|P (n, kmax, 1)| ∼ 2

n2σ2
max

λn+1, (29)

with λ = σmax√
1−σ2

max

. This yields a radius of convergence ρ = λ−1 ≈ 0.662743, which is known

as the Laplace limit [18]. This value is again smaller than the radius of convergence of the true
SM (recall that for the golden mean the radius of convergence ρ(τ) equals Kc(τ)). Moreover,
similar to the true maps, this SM-analogue transition value ρ is lower than the one of the SSM.

4.3. The critical constant and the analyticity domain. The argument above gives only
information about the location of the singularities closest to the origin. The solution of the
functional equations (17) could still exists for real values of K larger than the radius ρ. This
would correspond to the situation where h(x; K) is still analytic for K > ρ real, but at which
the power series (5) and (8) are no longer defined. In particular, there could be no singularity
at all on the real axis so that an analytical form of h(x; K) could still exists for K → ∞.

To analyze the extent of the analyticity domain and the critical constants, we need to
“evaluate” the summations of Eqs. (5) and (8). This means that we need to find the functional
form h(x; K) that corresponds to the power series, but, contrary to the summation itself, can
still be perfectly defined for |K| > ρ.

12It is immediate to realize that the maximum is reached for some k ≥ n/2.
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In the following analysis, we will show that the analyticity domains for the simplified maps
are, like those for the true maps, also constrained by a closed boundary. More precisely, we
find that for fixed x there are only a few singularities, but the union over all x ∈ [0, 1] of such
singularities reconstruct a closed curve surrounding the origin. Hence, outside this natural
boundary there is no function h(x; K) that can be obtained by an analytic continuation of
the power series around K = 0. Although very unlikely, this does not completely exclude the

existence of a very different function, say h̃(x; K), that is defined outside this domain and obeys
Eq. (17) and may even persist for K → ∞. Recurrence phenomena, such as appearance and
disappearance of an invariant curve with given winding number when varying the parameter
K, are known to occur for certain maps [49], but, for instance, this is not the case of the SM.

4.3.1. Simplified SSM. As for this model one has ĥk(K) = ĥ
(k)
k Kk, we can directly write down

the summation of Eq. (5) for the function h(x; K):

h(x; K) =

∞∑

k=1

ĥ
(k)
k Kke2πikx. (30)

Inserting the expression (21) gives

h(x; K) =
1

2πi

∞∑

k=1

(−1)k kk−1

2kk!
Kke2πikx =

1

2πi

∞∑

k=1

|Q(k, 1)|Kkeπik(2x+1). (31)

To find the full analyticity domain of h(x; K), one basically has to fix a certain value for x, say
x = x′, and search for the singularities in K of the function h(x′; K) by e.g. using the Padé
approximants method. Then, one has to repeat, in principle, this procedure for all possible
values of x and collect the set of all singularities to construct the full analyticity domain.
Finally, the radius of convergence ρ is then the complex singularity closest to the origin, while
Kc is the smallest (positive) real singularity, if any.

Vice versa, we could also fix the argument φ of the complex value K, such that K = |K|eiφ.

The summation (31) will then be maximized for x = −( φ
2π + 1

2 ), where each term in the sum
turns into a positive value. For these values of K and x, by using the inclusion argument and
the root criterion on the delimiting series, one can show that the radius of convergence is given
by 2/e. Hence, for each x there is one singularity at K = − 2

e e−i2πx, and the complete set over
all x forms a closed curve that is a circle around the origin.

Note that this is very different from the true maps with the small divisors. Although not
proven, numerical studies (for instance Ref. [5] and references quoted therein) suggest that
for the true SM and SSM the function g(x; K, ω) has for each value of x, independently of its
value, an infinite set of singularities forming the same (for each x) natural boundary. Numerical
analysis [5] shows that the natural boundary of the true SSM, at fixed x, is a circle13 just as
in this simplified model when the union on all x is taken. This property appears to be true
irrespective to the choice of ω as long as it fulfills a Diophantine condition [2], or even a Bryuno
condition. For the SM with golden mean as winding number this curve resembles close to a
circle, but not very smooth and slightly elongated (about 1%) along the imaginary axis [17].

13It is easy to prove that the analyticity domain in K, that is by taking the union over all values of x ∈ [0, 1],
is a circle for the true SSM, as first pointed out in Ref. [35]. However, to our knowledge, there is no analytical
proof that it is a circle for a fixed value of x.
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4.3.2. Simplified SM. Taking the power series (8) for ĥk(K) for the simplified SM using Eq. (25)
we have

ĥk(K) =

∞∑

n=1

1

2πi
P (n, k, 1)Kn (32)

=
1

2πi

∞∑

n=|k|,|k|+2,...

Kn (−1)n+(n−k)/2

2n

kn−1

((n − k)/2)!((n + k)/2)!
.

Changing variables to j = (n − |k|)/2 gives

ĥk(K) =
(−1)k

2πik

∞∑

j=0

(−1)j

22j+|k|j!(j + |k|)! (|k|K)2j+|k| =
(−1)k

2πik
J|k|(K|k|), (33)

with Jv(z) the Bessel function of the first kind [22, 44] defined (for integers v) as

Jv(z) ≡
∞∑

j=0

(−1)j

22j+vj!(j + v)!
z2j+v. (34)

As these Bessel functions Jv(z) have no singularities in z, neither has ĥk(K) in K. Therefore,
the Fourier coefficients do not give direct information about Kc. On the other hand, one can

conclude from Eqs. (33) and (34) that |ĥk(K)| is maximized for pure imaginary K, so that
the singularity closest to the origin is lying on the imaginary axis, on a distance ρ from the
origin. Here, the individual terms in Eq. (34) can not cancel as (−1)j is then neutralized by
z2j ∼ K2j = (−1)j |K|2j.

We can now try to evaluate the Fourier series (7) for h(x; K):

h(x; K) =

+∞∑

k=−∞

(−1)k

2πik
J|k|(|k|K) exp(2πikx) (35)

=
∞∑

k=1

(−1)k

πk
Jk(kK) sin(2πkx).

Further simplification is achieved by taking the derivative with respect to x and searching the
singularities in

h′(x; K) =

∞∑

k=1

2(−1)kJk(kK) cos(2πkx) (36)

instead of h(x; K); this is allowed as the two problems are equivalent.
From the series (36) we can guess for which values of x the singularities will be Kc and ρ

respectively. As Jk(kK) is positive for real values 0 < K < 1 (see p. 534 in [44]), we need to
compensate the (−1)k term by cos(2πkx). This is achieved for x = 1

2 that reduces Eq. (36) to

h′(1/2; K) = 2

∞∑

k=1

Jk(kK), (37)

which has the exact solution (see formula (1) at p. 615 in [44])

2

∞∑

k=1

Jk(kK) =
K

1 − K
. (38)

Hence, h′(1/2; K) has a singularity at K = 1, yielding the critical constant Kc = 1, a well
known result in celestial mechanics [50].

The complete analyticity domain can be found in Ref. [50], p. 219. In Fig. 3 we represent
what can be obtained by using Padé approximants for some values of x. What emerges is that
the function h(x; K) has for each value of x a pair of complex singularities closest to the origin
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symmetric with respect to the real axis. For x going from 0 to 1/2 such singularities move
continuously from −1 to 1 along two (symmetric) curves which pass through the points ±iρ at
x = 1/4 (see Fig. 3). Hence the entire set of singularities closest to the origin lies on a curve
which is smooth except at K = ±1, where it has a discontinuity in its first derivative (cf. again
Ref. [50], p. 219).

-1 -0.5 0.5 1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

Figure 3. Singularities in K of the function h(x; K) for the SM without small
divisors for x varying in [0, 1]. The radius of convergence ρ corresponds to the
value x = 1/4, while the critical constant Kc = 1 corresponds to x = 1/2. The
curve is symmetric with respect to both the real and the imaginary axes.

An important feature is, however, that, as already noted in a similar context by Simon [40],
a natural boundary in K for fixed x seems to appear only in the presence of small divisors.
In fact, the latter give rise to the occurrence of sudden peaks yielding a pattern similar to
lacunary series [28], for which natural boundaries can be proved to arise. Hence, these peaks
seem to be responsible of the formation of the natural boundary as suggested by Prange (cf.
again Ref. [40]).

5. Conclusions

We showed by a numerical evaluation of the Lindstedt series up to order n = 700 that a
previously assumed violation of Greene’s criterion [42] was ungrounded. The assumption that
allowed the restricted series (15) was falsified for orders n > 200. The resulting critical constant
did not correspond to the SM, but is still the true one for the SSM. From our numerics, we
conclude that, for the golden mean, the SSM critical constant is strictly higher than the SM.
This seems to be generally true for all winding numbers, but it is specifically difficult to prove
for the golden mean where both constants are very close. Still, the numerics till order n = 700
do not give a complete convergence. An evaluation that would compare to the accuracy of
Greene’s method would rely on a prohibitive computational effort.

Note that our analysis leaves some open problems. As we have seen, the small divisors

introduce some sudden jumps in the coefficients ĝ
(n)
k (ω) whenever k is a Fibonacci number, or

more generally (for ω 6= τ) the denominator of a best approximant for the winding number ω,
and one has |k| ≤ n for the SM, hence one could think, as done in Ref. [42], that the most
dominant terms in the Taylor expansion of g(x; K, ω) are those with n the denominator of a
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best approximant and k = n. In principle this conjecture could seem very plausible, but in
fact, as the analysis above shows, it is wrong, even if it appears as numerically supported up
to rather high Taylor orders n (up to n ∼ 200). If one bears in mind Davie’s result (16),
the only possibility left is that there are Taylor orders n such that |P (n, k, 1)| is maximized
for k = kmax(n) < n. It would be interesting to study the dependence of kmax(n) on n. An
interesting problem would be also to understand which are the values of n at which the peaks
of |P (n, kmax, 1)| appear. They are very likely related to the best approximants, but the exact
nature of such a relationship deserves further investigation. An already remarked consequence
of our analysis is that also for the golden mean the SM has a radius of convergence lower
than that of the SSM. Even if such a property has been numerically checked for other winding
numbers [10], it is not a priori obvious that it has to hold for the golden mean14. Our result
suggests that the radius of convergence for the SM is always less than that of the SSM for all
winding numbers, but we leave such a property as a conjecture.

In addition to the analysis performed in Sect. 3, we have proposed a simplified model that
appears when the small divisors in the SM and SSM are suppressed. We have showed that this
model maintains many features of the SM and SSM. It has an analytical solution in both cases,
and it corresponds to Kepler’s equation in case of the SM. Also here, the analogue of the SM
has a lower value than the one of the SSM. Moreover, surprisingly, the radii of convergence
are lower than the true models for golden mean winding numbers. This proves that the golden
mean winding number is remarkably resistant to the small divisor effect and falsifies a common
misconception that the small divisor problem is the dominant and only mechanism for the
analyticity breaking transition. The fact, that the simplified model still has a transition with
a value even lower than the true maps for the golden mean, shows that this is not the case.

Finally, we studied the full analyticity domain for the two models (the case of the SM was
well known in literature, as it correspond to the celebrated Kepler’s equation). Also here, there
are striking differences between the simplified and the true maps. Similar to the true maps,
the set of singularities form a natural boundary. However, whereas the SM and SSM all the
singularities in K for the function g(x; K, ω) are present for any value of x (that is there is
a natural boundary at fixed x), the situation is quite different for the simplified maps. The
simplified SSM has only one singularity in the complex K-plane for the function h(x; K) at
each value of x. The simplified SM has for each value of x two singularities symmetric with
respect to the real axis, except for the singularities on the real axis for x = 0 and x = 1/2
which are single. The closed natural boundary is retained after gathering all singularities for
all x.

This natural boundary is a perfect circle in case of the simplified SSM (such as it is for the
true SSM), while it is a more stretched curve for the simplified SM with a discontinuity in the
first derivative on the real axis at K = ±1. This shows that the radius of convergence of the
simplified SSM equals its critical constant, as it was found for the true SSM. In contrast, the
simplified SM has a critical constant of Kc = 1 that is higher than its radius of convergence.
In that respect, the simplified SM resembles more the true SM with winding numbers close
to rational values. Also this is a bit of a surprise, as one would expect the contrary, but it
is consistent with the trend mentioned above. It is almost as if the model, in which all small
divisors were eliminated, still suffers more from this effect than the true SM with the golden
mean: somehow the small divisors for the golden mean introduce sort of a rotational symmetry
for the analyticity domain.

Therefore, we believe that the study of these kind of simplified analytical models are a
worthy prerequisite for the understanding of the SM, SSM and FK models and, in particular,
the influence of the small divisors. For instance our results about the simplified SSM gives
further support that the existence of a natural boundary at a single fixed x is created by

14To make an analogy, also the equality ρ(ω) = Kc(ω) is certainly false for most of ω, but still it holds for
ω = τ .
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the presence of small divisors, in agreement with the general remarks at the end of Sect. 4. In
particular, this shows that the circular shape of the analyticity domain of the SSM is not simply
due to the fact that the corresponding conjugating function depends on K and x through the
variable η = K e2πix (see App. B.1). On the contrary, there is some deeper reason for this to
occur as the above argument cannot explain the existence of the natural boundary, neither its
circular shape, for a single fixed value of x.
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Appendix A. Induction proof

A.1. Proof of Eq. (20). Assuming that relation (20) is true up to some Taylor order n − 1,
then the first relation of Eq. (19) for n yields

R(n, 1) = n
n−1∑

m=1

(n − 1)n−1−m

(m − 1)!

(n − 2)!

(n − 1 − m)!
(39)

= n
n−2∑

m=0

(n − 1)m

(n − 2 − m)!

(n − 2)!

m!

= n
n−2∑

m=0

(n − 1)m

(
n − 2

m

)
= n

(
(n − 1) + 1

)n−2
= nn−1.

The second relation of Eq. (19) is slightly more difficult. One can write

R(n, m) =
1

m

n−m+1∑

n′=1

(
n

n′

)(
n − n′ − 1

m − 2

)
n′(n′−1)(n − n′)(n−n′−m+1) (40)

=
1

m

n−m+1∑

n′=1

n!

n′!(n − n′)!

(n − n′ − 1)!

(m − 2)!(n − n′ − m + 1)!
n′(n′−1)(n − n′)(n−n′−m+1)

=
1

m

n−m+1∑

n′=1

n!

n′!(m − 2)!(n − n′ − m + 1)!
n′(n′−1)(n − n′)(n−n′−m)

=
1

m

n−m+1∑

n′=1

n!

(m − 2)!(n − m + 1)!

(
n − m + 1

n′

)
n′(n′−1)(n − n′)(n−n′−m)

=
m − 1

m

n−m+1∑

n′=1

(
n

m − 1

)(
n − m + 1

n′

)
n′(n′−1)(n − n′)(n−n′−m)

=
m − 1

m

(
n

m − 1

) n−m∑

n′=0

(
n − m + 1

n′ + 1

)
(n′ + 1)n′

(n − n′ − 1)(n−n′−1−m)

=
(m − 1)(n − m + 1)

m

(
n

m − 1

) n−m∑

n′=0

(
n − m

n′

)
(n′ + 1)n′−1(n − n′ − 1)(n−n′−1−m).
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Using Abel’s identity [38]

(x + y)(x + y − añ)ñ−1 =
ñ∑

k=0

(
ñ

k

)
xy(x − ak)k−1[y − a(ñ − k)]ñ−k−1, (41)

with k = n′, ñ = n − m, a = −1, x = 1, y = m − 1 yields

mnn−m−1 =

n−m∑

n′=0

(
n − m

n′

)
(m − 1)(1 + n′)n′−1(n − n′ − 1)n−m−n′−1, (42)

hence

R(n, m) =
(m − 1)(n − m + 1)

m

(
n

m − 1

) n−m∑

n′=0

(
n − m

n′

)
(n′ + 1)n′−1(n − n′ − 1)(n−n′−1−m)

= (n − m + 1)

(
n

m − 1

)
nn−m−1 =

n − m + 1

n

n!

(m − 1)!(n − m + 1)!
nn−m

=
(n − 1)!

(m − 1)!(n − m)!
nn−m =

(
n − 1

m − 1

)
nn−m, (43)

which concludes the proof as the case n = 1 is trivial.

Appendix B. Tree formalism

B.1. Proof of Eq. (20) for m=1. First of all, by defining α = 2πx and u(α) = 2πg(x; K, ω)15

one can write the functional relation that the function u(α) has to satisfy as u(α) + (K/2i)
exp(iα + iu(α)) = 0 for the SSM and u(α) + K sin(α + u(α)) = 0 for the SM. Note that in the
case of the SSM the function u, which in principle depends on two parameters K and α (for a
given ω), is in fact a function of the only parameter η ≡ Keiα.

In terms of the function u(α) the functional equation (4) becomes, for the SM,

2u(α) − u(α + 2πω) − u(α − 2πω) = −K sin(α + u(α)), (44)

in which we recognize Eq. (1.4) of Ref. [6], with ε = K. For the SSM we have the same
equation with the sine function replaced with (2i)−1 exp(iα + iu(α)). Then we can envisage
the same tree expansion as in Ref. [6]; see formula (2.2), where, to make a relation with the
notations we are using now, k and ν are what we are denoting with n and k, respectively16.
Moreover γ(νℓv

) = −Dνℓv
, hence it is −1 in our case, and one has νv = 1 for the SSM and

νu ∈ {±1} for the SM. At the end we find

ĥ
(n)
k =

1

2πi

(−1)n

2n

∑

ϑ∈Tn,k

Val(ϑ), Val(ϑ) =
∏

u∈ϑ

1

mu!
νmu+1

u , (45)

where the trees ϑ, the branching numbers mu and the set of trees Tn,k of order n (that is with
n nodes) and with momentum k flowing through the root line (that is such that

∑
u∈ϑ νu = k)

are defined as in Ref. [6]. Extensions of notations to more general maps are easily obtained;
see for instance Ref. [7].

In the case of the SSM, Eq. (45) reduces to

ĥ(n)
n =

1

2πi

(−1)n

2n

∑

ϑ∈Tn,n

Val(ϑ), Val(ϑ) =
∏

u∈ϑ

1

mu!
, (46)

as νu ≡ 1, and the sum over trees of order n can be written as a sum over all possible
configurations of branching numbers {mu}u∈ϑ with the constraint

∑
u∈ϑ mu = n − 1: indeed

15Of course, besides α, u also depends on K and ω.
16In fact we need only p. 162 of the quoted reference, where the tree formalism is introduced.
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they are the only labels of the trees, and their values uniquely determine the elements of Tn,n.

Therefore we can rewrite ĥ
(n)
n as

ĥ(n)
n =

1

2πi

(−1)n

2n

∑

m1+...+mn=n−1

1

m1! . . .mn!
=

1

2πi

(−1)n

2n

nn−1

n!
, (47)

where we have used the multinomial theorem
∑

m1+...+mn=p

n!

m1! . . .mn!
xm1

1 . . . xmn
n = (x1 + . . . + xn)

p
, (48)

which extends the binomial theorem to n > 2; see [1], §24.1.3.

B.2. Proof of Eq. (25). In the case of the SM, without small divisors, we can still use formula
(45), but now one can have νu = ±1.

As k =
∑

u∈ϑ νu we see that, first, k can assume only the values −n,−n+2,−n+4, . . . , n−
4, n−2, n (so that, in particular, (n±k)/2 is even), and, second, in order to have a contribution

to ĥ
(n)
k we have to put (n−k)/2 mode labels νu equal to −1 and the remaining (n+k)/2 mode

labels equal to 1. Moreover for any tree ϑ ∈ Tn,k we can write
∏

u∈ϑ

νmu+1
u =

( ∏

u∈ϑ

νu

)( ∏

u∈ϑ

νmu
u

)
= (−1)(n−k)/2

∏

u∈ϑ

νmu
u , (49)

which inserted into Eq. (45) gives, by using again the multinomial theorem,

ĥ
(n)
k =

1

2πi

(−1)n+(n−k)/2

2n

(
n

(n − k)/2

) ∑

m1+...+mn=n−1

νm1

1 . . . νmn
n

m1! . . .mn!
(50)

=
1

2πi

(−1)n+(n−k)/2

2n

kn−1

((n − k)/2)!((n + k)/2)!
,

which yields Eq. (25).
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