Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2009/2010 AL110 - Algebra 1 Tutorato 12 (21 dicembre 2009)

Tutorato 12 (21 dicembre 2009)

E. Di Gloria - D. Menichetti

- 1. Stabilire quali dei seguenti polinomi sono irriducibili in $\mathbb{Q}[X]$:
 - (a) $f(X) = X^3 + 6X^2 9X + 3$
 - (b) $g(X) = X^3 + 2X^2 + 2X + 4$.
- 2. Si considerino i polinomi di $\mathbb{Q}[X]$:

$$f(X) = X^4 - X^3 - 4X^2 + 4X, \quad g(X) = X^2 + \lambda.$$

- (a) Determinare i valori di $\lambda \in \mathbb{Q}$ per i quali f(X) è divisibile per g(X).
- (b) Determinare i valori di $\lambda \in \mathbb{Q}$ per i quali f(X) e g(X) sono primi tra loro
- (c) Determinare i valori di $\lambda \in \mathbb{Q}$ per i quali f(X) non è divisibile né primo con g(X).
- 3. Sia

$$h(X) = X^4 + 6X^3 + 12X^2 + 12X + 7 \in \mathbb{Z}[X];$$

determinare un numero intero α in modo tale che per $h(X - \alpha)$ si possa applicare il criterio di Eisenstein.

- 4. Decomporre i seguenti polinomi in fattori irriducibili in $\mathbb{Z}[X]$:
 - (a) $f(X) = X^4 4X^2 + 2X 1$
 - (b) $g(X) = 3X^4 7X^3 13X^2 + 35X 10.$
- 5. Sia $\theta = \frac{2\pi}{5}$.
 - (a) Verificare che $\cos 2\theta + \cos \frac{\theta}{2} = 0$.
 - (b) Provare che $\cos\theta$ è una radice del polinomio

$$2(4X^4 - 4X^2 + 1) - X - 1.$$

(c) Decomporre in fattori irriducibili in $\mathbb{Z}[X]$ il polinomio

$$8X^4 - 8X^2 - X + 1$$

e dedurne che $\cos\theta$ è una radice di un polinomio di secondo grado a coefficienti in $\mathbb{Z}.$

(d) Determinare $\cos \theta$.

- 6. Nell'anello $\mathbb{Z}_7[X]$ si considerino i polinomi $f(X)=X^4+\overline{3}X^3-\overline{2}X^2-\overline{2}X+\overline{4}$ e $g(X)=X^2+\overline{2}X+\overline{4}$.
 - (a) Decomporre f(X) e g(X) in fattori irriducibili in $\mathbb{Z}_7[X]$.
 - (b) Trovare il MCD(f(X), g(X)).
- 7. Decomporre i seguenti polinomi in fattori irriducibili:
 - (a) $f(X) = X^4 + 4$ rispettivamente in $\mathbb{Z}[X], \mathbb{Q}[X], \mathbb{R}[X], \mathbb{C}[X]$;
 - (b) $g(X) = X^3 \overline{2}X^2 \overline{5}X + \overline{2} \text{ in } \mathbb{Z}_7[X];$
 - (c) $h(X) = X^4 + \overline{2}X^3 + \overline{2}X \overline{1}$ in $\mathbb{Z}_3[X]$.
- 8. Provare che il polinomio $X^3+17X+36\in\mathbb{Z}[X]$ è irriducibile in $\mathbb{Q}[X]$ applicando il criterio di irriducibilità mod p per un opportuno numero primo p.