Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2010/2011 TN410 - Introduzione alla teoria dei numeri Tutorato 9 (26 maggio 2011) Giacomo Milizia

1. Scrivere ciascuno dei seguenti numeri interi come somma di quattro quadrati:

$$165 = 3 \cdot 5 \cdot 11$$
, $247 = 13 \cdot 19$, $1147 = 31 \cdot 37$.

2. La successione dei numeri di Fibonacci è definita da:

$$f_0 = 0$$
, $f_1 = 1$, $f_n = f_{n-1} + f_{n-2}$ per $n > 1$.

(a) Provare che per ogni $n \ge 1$:

$$\sum_{j=1}^{n} f_j = f_{n+2} - 1.$$

(b) Provare che per $n \ge 3$ si ha:

$$f_n > \alpha^{n-2}$$

$$con \ \alpha = \frac{1+\sqrt{5}}{2}.$$

- (c) Scrivere il rapporto $\frac{f_n}{f_{n-1}}$ di due numeri di Fibonacci consecutivi con $n\geqslant 2$ come frazione continuata.
- 3. Rappresentare i seguenti numeri razionali con frazioni continuate finite semplici:

$$\frac{123}{13}$$
, $-\frac{151}{307}$, $\frac{383}{83}$.

4. Determinare i numeri razionali rappresentati dalle seguenti frazioni continuate finite semplici:

$$[-3; 1, 7, 3, 1], [0; 2, 6, 1, 5, 4, 2].$$

5. Sia $r = [a_0; a_1, a_2, \dots, a_n]$, con r > 1; provare che:

$$\frac{1}{r} = [0; a_0, a_1, a_2, \cdots, a_n].$$

- 6. Calcolare i comvergenti delle seguenti frazioni continuate semplici:
 - (a) [2;3,1,4,2,3];
 - (b) [-3; 1, 2, 1, 2, 1, 2];
 - (c) [0; 3, 7, 2, 8].

- 7. Risolvere le seguenti equazioni diofantee attraverso le frazioni continuate semplici:
 - (a) 364X + 227Y = 1;
 - (b) 158X 57Y = 1.
- 8. Un intero n > 1 si dice *privo di fattori quadratici* se non è divisibile per alcun quadrato di un intero $m \neq \pm 1$. Se n è privo di fattori quadratici, allora la sua fattorizzazione è del tipo $\prod_{i=1}^r p_i$ con p_i primi distinti. Sia $f: \mathbb{N}^+ \longrightarrow \mathbb{N}^+$ la funzione aritmetica definita da

$$f(n) = \begin{cases} 1, & \text{se } n = 1 \\ 1, & \text{se } n > 1 \text{ è privo di fattori quadratici} \\ 0, & \text{altrimenti.} \end{cases}$$

- (a) Dimostrare che f è moltiplicativa ma non completamente.
- (b) Costruire l'inversa di Dirichlet di f.
- (c) Calcolare $\mu f * \mathbf{1}$.
- 9. Si consideri la funzione moltiplicativa $F = \tau * \varphi$.
 - (a) Calcolare F(33) e $F^{-1}(33)$.
 - (b) Sia f la funzione aritmetica determinata dalla formula di inversione di Möbius. Calcolare f(33).
- 10. Sia Λ la funzione di von Mangoldt, definita nel modo seguente:

$$\Lambda(n) := \left\{ \begin{array}{ll} \log(p) & \quad \text{se } n = p^h, \ p \ \text{numero primo} \ , \ h \geq 1 \\ \\ 0 & \quad \text{altrimenti} \end{array} \right.$$

Dimostrare che:

- (a) $\log(n) = \sum_{d|n} \Lambda(d)$;
- **(b)** $\Lambda(n) = \sum_{d|n} \left(\mu(d) \log \left(\frac{n}{d} \right) \right) = -\sum_{d|n} \left(\mu(d) \log(d) \right).$