Weyl law in Liouville quantum gravity

Nathanaël Berestycki
Universität Wien
(joint with Mo-Dick Wong, Durham)

Roma, Feb 2023

Universality in Condensed Matter and Statistical Mechanics

Outline

(1) Introduction

Motivation, Crash introduction to LQG, Definition of Liouville Brownian motion

(2) Statement of results:

Asymptotic Weyl law for spectrum Heat kernel short-time asymptotics

(3) Problems, conjectures

Motivation

What does a random surface look like?

... and what does it mean?

Mathematically: theory emerged in 2000s

Motivation

Liouville Quantum Gravity, or Liouville conformal field theory 2d Feynmann path integrals (Polyakov, 80s)

Isothermal coordinates

Conformal and metric structures encoded by conformal factor:

$$\rho(z) \geq 0, z \in D$$

and metric takes form

$$ds^2 = \rho(z)(dx^2 + dy^2).$$

DDK Ansatz (cf. Duplantier-Sheffield)

Metric of the form

$$ds^2 = e^{\gamma h} (dx^2 + dy^2).$$

where $\gamma \in \mathbb{R} \leftrightarrow$ central charge; h is the Gaussian free field.

Gaussian free field

A random "function" $D \to \mathbb{C}$

$$(h, f) \sim \mathcal{N}(0, \sigma^2);$$

$$\sigma^2 = \iint G(x, y) f(x) f(y) dx dy$$

where G = Green function on D.

Definitions?

That gives h(z), but what about $e^{\gamma h(z)}$?

Three objects:

A Riemannian **metric** on sphere

 \mathbb{S}^2 or domain $D\subset\mathbb{C}$

$$e^{\gamma h(z)}(dx^2+dy^2)$$

A volume measure

$$e^{\gamma h(z)}dz$$

A **diffusion** (Brownian motion on surface)

$$dZ_t = e^{-\frac{\gamma}{2}h(Z_s)}dB_s.$$

What is known

Three objects:

A (Riemannian) **metric** on the sphere \mathbb{S}^2 or domain $D\subset\mathbb{C}$

$$e^{\frac{\gamma}{d_{\gamma}}h(z)}(dx^2+dy^2)$$

A volume measure

$$\mu_{\gamma}(dz) = e^{\gamma h(z)} dz$$

A **diffusion** (Brownian motion on surface)

$$dZ_t = e^{-\frac{\gamma}{2}h(Z_s)}dB_s.$$

Remark

All this holds for **any** Gaussian, log-correlated field in every dimension $d \ge 1$, *except* for the metric.

Possible programme:

What do classical theorems of geometry/analysis become in Liouville quantum gravity?

This talk:

Can you hear the shape of LQG? (Mark Kac 1966) Do eigenvalues determine the shape of a domain? Here: \rightarrow Weyl law

Gaussian multiplicative chaos

Let h = centered Gaussian field in \mathbb{R}^d , covariance

$$K(x,y) = -\log(|x-y|) + g(x,y)$$

g continuous, bounded. Set $h_{\varepsilon}=h\star\theta_{\varepsilon}$ regularisation at scale ε , where $\theta=$ convolution kernel.

Theorem (Kahane (85), Duplantier-Sheffield (2010), B. (2017), Shamov (2017))

Define:

$$\mu_{\gamma}(S) = \lim_{\varepsilon \to 0} \varepsilon^{\gamma^2/2} \int_{S} e^{\gamma h_{\varepsilon}(z)} dz$$

exists in proba. μ_{γ} is called **Liouville measure** / GMC associated to h.

Furthermore, $\mu_{\gamma} \neq 0$ iff $\gamma < \sqrt{2d}$.

Intuitively, $\mu_{\gamma}=$ uniform measure, in isothermal coordinates.

Visualisation of Liouville measure

$$\gamma = 0.2$$

Visualisation of Liouville measure

$$\gamma = 1$$

Visualisation of Liouville measure

$$\gamma = 1.8$$

Properties of Liouville measure

Some properties

- μ_{γ} non zero iff $\gamma < \sqrt{2d}$.
- No atoms: no point carries positive mass.
- "Universality": limit independent of regularisation.
- Conformal covariance.
- multifractal spectrum...

Liouville Brownian motion

Recall: $h_{\varepsilon}(z)$ = regularised field at scale ε . Then ε -regularised Liouville Brownian motion:

$$d\mathbf{Z}_{s}^{\varepsilon} = \varepsilon^{\gamma^{2}/4} e^{-\frac{\gamma}{2}h_{\varepsilon}(\mathbf{Z}_{s})} dB_{s}$$

In other words,

$$\mathbf{Z}_{s}^{\varepsilon} = B_{\phi_{\varepsilon}^{-1}(t)}; \qquad \phi_{\varepsilon}(t) = \varepsilon^{\gamma^{2}/2} \int_{0}^{t} e^{\gamma h_{\varepsilon}(B_{s})} ds$$

Theorem (B. 2015, Garban-Rhodes-Vargas 2016)

 $\lim_{\varepsilon \to 0} \mathbf{Z}_s^{\varepsilon}$ exists (i.e., $\lim_{\varepsilon \to 0} \phi_{\varepsilon}(t)$ exists). The limit is called **Liouville Brownian motion**.

Liouville Brownian motion

Properties

- Continuous; does not stay stuck
- ullet Can be started from all points simultaneously o **Feller semigroup** (Garban–Rhodes–Vargas)
- Liouville measure μ_{γ} is a.s. **invariant** (in infinite volume say).
- Spends all its time in a set of measure zero ($\mathcal{T}_{\gamma} =$ " γ -thick points").
- Can even compute $\dim(\{t: Z_t \in \mathcal{T}_\alpha\})$ (B., Jackson)
- for $\gamma > \sqrt{d}$, the trajectory has zero derivative at almost every time (Jackson).
- Spectral dimension $d_s = 2$ a.s. (Rhodes–Vargas, conjectured by Ambjørn).
- ...

Spectrum of Liouville Brownian motion

Infinitesimal generator is hard to describe but Green function is straightforward:

Liouville Green function

Fix bounded domain D. Given h a GFF in D, we have

$$\mathbf{G}_D(x,dy)=G_D(x,y)\mu_{\gamma}(dy).$$

This is a.s. a finite measure if $\gamma < \sqrt{2d}$.

Definition of eigenvalues

Say $\lambda_n>0$ is an eigenvalue of LBM if $\exists f_n\in \mathbf{L}^2(\mu_\gamma)$ such that

$$\mathbf{G}_D f_n = \frac{1}{\lambda_n} f_n$$

Heat kernel

Theorem (Maillard-Rhodes-Vargas-Zeitouni '16)

There a.s. exists a **jointly continuous** function $\mathbf{p}_t(x, y)$ such that for all nonnegative function f, for all $x \in D$,

$$\mathbb{E}_{\mathsf{x}}[f(\mathbf{Z}_t)] = \int_D f(y)\mathbf{p}_t(\mathsf{x},y)\mu_{\gamma}(dy).$$

(jointly measurable version + semigroup property: earlier in Garban, Rhodes and Vargas (2014)).

Spectrum of Liouville Brownian motion

Lemma (Maillard-Rhodes-Vargas-Zeitouni '16)

A.s. there exists an ONB of eigenfunctions $(f_n)_{n\geq 1}$ for $\mathbf{L}^2(\mu_\gamma)$ and $\lambda_n\uparrow\infty$ a.s.

Spectral representation of heat kernel:

Theorem (Maillard-Rhodes-Vargas-Zeitouni '16)

$$\mathbf{p}_t(x,y) = \sum_{n>1} e^{-\lambda_n t} f_n(x) f_n(y),$$

a.s. (both sides are jointly continuous)

Weyl law in standard Euclidean geometry

Theorem (Weyl 1912, Courant 1922...)

Let $N(\lambda) = \#$ eigenvalues $\leq \lambda$ for $-\Delta$ in $D \subset \mathbb{R}^d$. Then

$$rac{\mathit{N}(\lambda)}{\lambda^{d/2}}
ightarrow \mathit{c}_d \, \mathsf{Leb}(\mathit{D}), \qquad \lambda
ightarrow \infty$$

(explicit $c_d \in (0, \infty)$).

What is the analogue in LQG?

Which *d* shall we even use?

Weyl law in LQG

Now take d = 2, h = GFF in bounded domain D.

Theorem (B.-Wong, '23+)

Let $0 < \gamma < 2$. Let $\mathbf{N}(\lambda) = \#\{n : \lambda_n \le \lambda\}$. Then in probability,

$$\frac{\mathbf{N}(\lambda)}{\lambda} \to c(\alpha)\mu_{\gamma}(D),$$

where $\alpha = \frac{2}{\gamma} - \frac{\gamma}{2} > 0$, and

$$c(\alpha) := \frac{1}{\pi} \left\{ \mathbb{E} \left[\int_0^\infty \mathcal{I} \left(e^{\gamma(B_t - \alpha t)} \right) dt \right] + \mathbb{E} \left[\int_0^\infty \mathcal{I} \left(e^{-\gamma \mathcal{B}_t^{\alpha}} \right) dt \right] \right\}$$

 $\mathcal{I}(x)=xe^{-x}$, \mathcal{B}^{lpha} a BM with drift lpha conditioned to stay positive.

Concisely, $c(\alpha) = \frac{1}{\pi} \mathbb{E}[\int_{-\infty}^{\infty} \mathcal{I}(e^{\gamma C(t)}) dt]$, C(t) a γ -quantum cone (Sheffield).

Heat kernel asymptotics

Remark: $d = 2 \rightarrow \text{spectral dimension}$.

Theorem. (B.-Wong '23+)

For any open set $A \subset D$,

$$t \int_{A} \mathbf{p}_{t}(x,x) \mu_{\gamma}(dx) \xrightarrow[t \to 0^{+}]{} c(\alpha) \mu_{\gamma}(A)$$

in probability.

This improves on Rhodes–Vargas who proved the "spectral dimension" $d_s = 2$ (predicted by Ambjørn 1990s):

$$\mathbf{p}_t(x,x) = t^{-1+o(1)}.$$

Pointwise behaviour of heat kernel?

Q: Is it the case that

$$\mathbf{p}_t(x,x) \sim \frac{c(\alpha)}{t}$$

in probability as $t \to 0$ for $\mu_{\gamma}-$ a.e. x ?

Pros and cons:

- \ominus Dependence on x very sensitive multifractal inhomogeneities in local behaviour of h.
- \oplus Restrict to x "typical". LBM paths also spend all their time on typical points.

Local fluctuations

However, when we average over the Gaussian free field:

Theorem (B.-Wong '23+)

$$\lambda \int_0^\infty e^{-\lambda t} t \mathbf{p}_t(x, x) dt \xrightarrow[\lambda \to \infty]{d} R_{\gamma}$$

a nondegenerate random variable.

By a probabilistic Tauberian theorem, this shows

$$t\mathbf{p}_t(x,x) \not\to c(\alpha)$$

as $t \to 0$. In fact, cannot converge (a.s. or in proba) to any RV.

Local fluctuations

Still averaging over *h*,

Conjecture (B.-Wong '23+)

$$t\mathbf{p}_t(x,x)dt \xrightarrow[t\to 0^+]{d} R_{\gamma}$$

in distribution.

Missing: Tauberian theorem for convergence in distribution!

Q: quenched fluctuations? We believe there are additional logarithmic fluctuations.

Finally...

Conjecture (B.-Wong '23+)

You CAN hear the shape of LQG, a.s. : h is a.s. equal to a measurable function of $\{\lambda_n\}_{n\geq 1}$.

In fact, $\{\lambda_n\}_{n\geq 1}$ determines (D,h) up to equivalence

$$(D,h) \leftrightarrow (D',h \circ f^{-1} + Q \log |(f^{-1})'|),$$

$$Q = \frac{2}{\gamma} + \frac{\gamma}{2}$$
, $f: D \to D'$ conformal map.