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SYMMETRIC SIMPLE EXCLUSION PROCESS (SSEP) oN Z

> Configuration n € Q := {0, 1}4, with n, = 1 for an occupied site, , = 0
for an empty site.

> Stirring dynamics: two neighboring sites are exchanged at rate 1.
> Initial profile p, : R — [0, 1] fixed, initial configuration e.g. 7,(0) =1
w.p. po(a/N).

Then, the empirical measure on a diffusive timescale

1
el
converges in a weak sense to p(t, u)du, where p is the solution to the heat
equation
O = 05p
p<0’ ) = Po



FACILITATED ExXcLUSION PROCESS (FEP)

Similar to [Goncalves, Landim, Toninelli ‘08], but with stronger kinetic
constraint

Markov generator  £f(n) =Y. ¢, ..o (M{f(r"* ) — f(n)},
with
Cowi1(M) = PNp1e (=15 01) + (1= D)0pi0Mp i (1 — 1)

The parameter p € [0, 1] tunes the asymmetry, and n***! is the configuration
where sites z and = + 1 have been exchanged.

> Bernoulli product measures are not stationary.
> No mobile cluster to mix the configuration (cooperative model).
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HYDRODYNAMIC LIMIT FOR THE SYMMETRIC FEP

Theorem (Blondel, E’, Simon, Sasada 2018 & BES 2021)

Given p,,, consider the symmetric (p = 1 — p = 1/2) process (t) started

from

W = = @ Ber(po(a/N).

el

For any smooth compactly supported H

(H, ) o= S Ho/Nyna8?) D> [ Hwp(t, u)du = (5, p,)

= N—oo R

where p s solution to the parabolic Stefan problem p(0, u) = p,(u) and

e
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TYPES OF CONFIGURATIONS

Four types of configurations, depending on the critical density p, = 1/2.

o Lowdensity : if p < 1/2

‘ Frozen configurations ‘

F={ne | nny., =0}

.-l IQI IQI | IQI |

o Largedensity : if p > 1/2,

‘ Ergodic configurations ‘

E={neQ|(1-n,)(1-n,,,) =0}

-__IQIQI IQI IQI IQI

‘ Transient Bad configurations ‘

TB={neQ | nm.1 #F0}.

.-l | IQIQI | IQI |

‘ Transient Good configurations ‘

TG={neQ|(1-n,)(1-n,4) # 0}

-__IQIQI IQIQI | IQI




LAW OF LARGE NUMBERS

The hydrodynamic limit is in essence a law of large numbers for the
particle system:

O (H,mN)y = N*(H, Lnyy2) + dM],
—0

>~ (N*ANH, g(n,n2))

where g(n) = (9,(n)) <z is alocal function of the configuration.



LAW OF LARGE NUMBERS

The hydrodynamic limit is in essence a law of large numbers for the
particle system:

O,(H,7NY = N2(H, Ln,n2) + dM]NT
—0

~ (N?ANH, g(nin2))

— 0,

where g(n) = (9,(n)) <z is alocal function of the configuration.



LAW OF LARGE NUMBERS

The hydrodynamic limit is in essence a law of large numbers for the
particle system:

<H,7TtN> = N2<HantN2> +thN7Ha
—0

=~ (H,g(1:n2))

where g(n) = (9,(n)) <z is alocal function of the configuration.

law of large numbers around z = h, can be replaced by their average

under the grand canonical state 7, ),

2p—1
G (Myn2) [Ep(t,m)(g> = 71{P21/2}(t3x>

= Weak formulation of the HDL



(GRAND CANONICAL MEASURES

Kinetic constraint = Bernoulli product measures not stationary.
Canonical states = uniform measures on ¢&.

The symmetric FEP is actually reversible w.r.t. GC states =
pe(1/2,1].

,» for

[> 7, is supported on the infinite ergodic component.

[> 7, is a Bernoulli product measure conditioned to having isolated empty
sites (ergodic component)

[> 7, exhibits long-range correlations as p \, 1/2.



ENTROPY TOOLS AND EQUILIBRIUM DISTRIBUTIONS

Classical techniques for HDL based on entropy bounds on the dist. ;) of
n,n2 and 7., namely

[> Guo, Papanicolaou and Varadhan’s entropy method,
Hy(pi' | 7,) <CN,
> Yau’s relative entropy method
Hy(pi' | m,,) = o(N).

Superecritical case, /" can charge £¢, and 7 , charges only & = entropy
estimate fails. Need to prove transient time = O(N?).

General case, no real hope for entropy methods : no reference measures
because of the two phases, no smooth solutions to the HDL.



STRATEGY OF PROOF

[> Supercritical case, GPV’s entropy method can be adapted, by proving
that the ergodic component is reached in a subdiffusive time.

> General case:

» entropy methods cannot be used, so we adapt Funaki’s scheme for parabolic
Stephan problems.

» The one-block estimate is based on a De Finetti-type decomposition for
translation invariant stationary states.

» The two blocks estimate is bypassed by directly proving that the Young
measure is a dirac.



HYDRODYNAMIC LIMIT FOR THE ASYMMETRIC FEP

Theorem (E’, Simon, Zhao 2022)

Given p,,, consider the asymmetric (p € (1/2,1]) process 7(t) started from

pN = g = @ Ber(py(z/N)).

el
For any smooth compactly supported H
1 P
N 2 HE/NnN) 5 [ o was
where p is the unique entropy solution to the hyperbolic Stefan problem
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p(0, 1) = po(u)

where $H(p) = %
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Possible strategies of proof

> GPV’s entropy method for hyperbolic systems ? No two-blocks
estimate in the asymmetric case.

> Yau’s relative entropy method ? Only useful until the first shock, and
even so, not at all straightforward for two-phased systems, and no smooth
solution a priori even before the shock because of the Stefan problem.

> Fritz’s compensated compactness arguments ? Blackbox tools, very
technical, and requires adding up some lower-order stirring dynamics.

[> Attractiveness ? A priori not available here.
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MAPPING WITH FZRP : DYNAMICS

1 2 3 4

= If the exclusion process is driven by the facilitated generator, the
corresponding facilitated zero-range process (FZRP) seen from the
tagged empty site is driven by the generator

L7g(w) = Y 14 oy { PP ) + (1= gl 1) — g(w) }.
yeZ



PROPERTIES OF THE FZRP

> “facilitated” ZRP is attractive: there is coupling such that

WO)SCO) = wlt) <) .

[> Stationary states : product geometric measures with no empty sites,

density o > 1,
k-1

1 1
Vo(wo = k) = 1{k21}a (1 - &)

> coupling arguments tricky : process is not ergodic: equilibrium states
only exist in the supercritical phase o > 1.
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HYDRODYNAMICS FOR THE FZRP

Theorem (E’, Simon, Zhao 2022)

Given an initial profile o, consider the asymmetric (p € (1/2,1]) FZRP
w(t). Assuming that for any smooth compactly supported H, under the initial
distribution,

% yze; H(y/N)w, — | H(w)ag )

then for any t > 0

% y}e; H(y/N)w, (tN) 5 [ Hoyate. o

where « is the unique entropy solution to the hyperbolic Stefan problem

O+ (2p —1)0, { (a; 1)1{021}} a(0,u) = ag(uw).

4

+ Hydrodynamic limit for attractive particle systems on 7¢, F. Rezakhanlou.
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MACROSCOPIC MAPPING

> Denote X, = X,(¢) the position of the tagged empty site in the FEP, and
v, [p] = limy_, . X,(¢)/N its macroscopic position at time ¢.
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MAPPING HYDRODYNAMICS

Now, to prove the HDL for the FEP given that of the FZRP, one can use that

5 SN H(@/N) 2 3w, (N[ o, )(y/N) + O(1/N),

xrel yez

where u = u,(v) is the inverse mapping of v = v,(u). Assuming everything is
smooth, thanks to the HDL for the FZRP

¥ SN e w)w/N) = [ att.o)[H o u))dn

yez R

and by a change of variable v  u,(v), the right hand side becomes
/p(t, u)H (u)du,
R

where p is given by p(u) = 12 (v).
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Now, to prove the HDL for the FEP given that of the FZRP, one can use that

5 SN H(@/N) 2 3w, (N[ o, )(y/N) + O(1/N),
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where u = u,(v) is the inverse mapping of v = v,(u). Assuming everything is
smooth, thanks to the HDL for the FZRP

¥ SN e w)w/N) = [ att.o)[H o u))dn

yez R

and by a change of variable v  u,(v), the right hand side becomes

/p(t, u)H (u)du,
R

where p is given by p(u) = 12 (v).

 Problem: everything needs to be smoothed out, because of the hyperbolic
equation, and because of the Stefan problem.



CURRENT WORK

> Phase transition(s) for the FEP/CLG in higher dimensions,
with A. Roget, A. Shapira and M. Simon.

> Effect of boundary interactions on the FEP,
with M. Simon.

> Large deviations for the FEP,
with O. Blondel.
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