SYMMETRIC AND ASYMMETRIC HYDRODYNAMICS FOR THE FACILITATED EXCLUSION PROCESS VIA MAPPING

BASED ON J.W. WITH O. BLONDEL, M. SASADA, M. SIMON AND L. ZHAO

Clément Erignoux, INRIA Lille

Rome, February 6-8 2022

- \triangleright Configuration $\eta \in \Omega := \{0,1\}^{\mathbb{Z}}$, with $\eta_x = 1$ for an occupied site, $\eta_x = 0$ for an empty site.
- **Stirring dynamics**: two neighboring sites are exchanged at rate 1.
- $> \text{ Initial profile } \rho_0: \mathbb{R} \to [0,1] \text{ fixed, initial configuration e.g. } \eta_x(0) = 1 \\ \text{ w.p. } \rho_0(x/N).$

Then, the **empirical measure** on a diffusive timescale

$$\pi^N_t = \frac{1}{N} \sum_{x \in \mathbb{Z}} \eta_x(tN^2) \delta_{x/N}$$

converges in a weak sense to $\rho(t,u)du$, where ρ is the **solution to the heat equation**

$$\begin{cases} \partial_t \rho = \partial_u^2 \rho \\ \rho(0,\cdot) = \rho_0 \end{cases}.$$

FACILITATED EXCLUSION PROCESS (FEP)

Similar to [Gonçalves, Landim, Toninelli '08], but with stronger kinetic constraint

Markov generator
$$\quad \mathcal{L}f(\eta) = \sum_{x \in \mathbb{Z}} c_{x,x+1}(\eta) \{ f(\eta^{x,x+1}) - f(\eta) \},$$

with

$$c_{x,x+1}(\eta) = p\eta_{x-1}\eta_x(1-\eta_{x+1}) + (1-p)\eta_{x+2}\eta_{x+1}(1-\eta_x).$$

The parameter $p \in [0,1]$ tunes the asymmetry, and $\eta^{x,x+1}$ is the configuration where sites x and x+1 have been exchanged.

- No mobile cluster to mix the configuration (cooperative model).

FACILITATED EXCLUSION PROCESS (FEP)

Similar to [Gonçalves, Landim, Toninelli '08], but with stronger kinetic constraint

Markov generator
$$\quad \mathcal{L}f(\eta) = \sum_{x \in \mathbb{Z}} c_{x,x+1}(\eta) \{ f(\eta^{x,x+1}) - f(\eta) \},$$

with

$$c_{x,x+1}(\eta) = p\eta_{x-1}\eta_x(1-\eta_{x+1}) + (1-p)\eta_{x+2}\eta_{x+1}(1-\eta_x).$$

The parameter $p \in [0, 1]$ tunes the asymmetry, and $\eta^{x,x+1}$ is the configuration where sites x and x+1 have been exchanged.

- No mobile cluster to mix the configuration (cooperative model).

FACILITATED EXCLUSION PROCESS (FEP)

Similar to [Gonçalves, Landim, Toninelli '08], but with stronger kinetic constraint

$$\text{Markov generator } \quad \mathcal{L}f(\eta) = \textstyle \sum_{x \in \mathbb{Z}} c_{x,x+1}(\eta) \{f(\textcolor{red}{\eta^{x,x+1}}) - f(\eta)\},$$

with

$$c_{x,x+1}(\eta) = p\eta_{x-1}\eta_x(1-\eta_{x+1}) + (1-p)\eta_{x+2}\eta_{x+1}(1-\eta_x).$$

The parameter $p \in [0, 1]$ tunes the asymmetry, and $\eta^{x,x+1}$ is the configuration where sites x and x + 1 have been exchanged.

- No mobile cluster to mix the configuration (cooperative model).

HYDRODYNAMIC LIMIT FOR THE SYMMETRIC FEP

Theorem (Blondel, E', Simon, Sasada 2018 & BES 2021)

Given ρ_0 , consider the **symmetric** (p=1-p=1/2) process $\eta(t)$ started from

$$\mu^N = \mu^N_0 := \bigotimes_{x \in \mathbb{Z}} Ber(\rho_0(x/N)).$$

For any smooth compactly supported H

$$\langle H, \pi^N_t \rangle := \frac{1}{N} \sum_{x \in \mathbb{Z}} H(x/N) \eta_x(tN^2) \xrightarrow[N \to \infty]{\mathbb{P}} \int_{\mathbb{R}} H(u) \rho(t,u) du = \langle H, \rho_t \rangle$$

where ρ is solution to the parabolic Stefan problem $\rho(0,u)=\rho_0(u)$ and

HYDRODYNAMIC LIMIT FOR THE SYMMETRIC FEP

Theorem (Blondel, E', Simon, Sasada 2018 & BES 2021)

Given ρ_0 , consider the **symmetric** (p=1-p=1/2) process $\eta(t)$ started from

$$\mu^N = \mu^N_0 := \bigotimes_{x \in \mathbb{Z}} Ber(\rho_0(x/N)).$$

For any smooth compactly supported H

$$\langle \pmb{H}, \pi^N_t \rangle := \frac{1}{N} \sum_{x \in \mathbb{Z}} \pmb{H}(\pmb{x/N}) \eta_x(tN^2) \xrightarrow[N \to \infty]{\mathbb{P}} \int_{\mathbb{R}} \pmb{H}(\pmb{u}) \rho(t, u) du = \langle \pmb{H}, \rho_t \rangle$$

where ρ is solution to the parabolic Stefan problem $\rho(0,u)=\rho_0(u)$ and

STEFAN PROBLEM

$$\partial_t \rho = \frac{1}{2} \partial_u^2 \left\{ \frac{2\rho - 1}{\rho} \mathbf{1}_{\{\rho \geq 1/2\}} \right\}.$$

Types of configurations

Four types of configurations, depending on the **critical density** $\rho_c = 1/2$.

• Low density : if $\rho < 1/2$

Frozen configurations

$$\mathcal{F} = \{ \eta \in \Omega \mid \eta_x \eta_{x+1} \equiv 0 \}$$

Transient Bad configurations

$$\mathcal{TB} = \{ \eta \in \Omega \mid \eta_x \eta_{x+1} \not\equiv 0 \}.$$

• Large density : if $\rho > 1/2$,

 ${\it Ergodic}\ configurations$

$$\mathcal{E} = \{ \eta \in \Omega \mid (1 - \eta_x)(1 - \eta_{x+1}) \equiv 0 \}$$

Transient Good configurations

$$\mathcal{TG} = \{ \eta \in \Omega \mid (1 - \eta_x)(1 - \eta_{x+1}) \not\equiv 0 \}$$

LAW OF LARGE NUMBERS

The hydrodynamic limit is in essence a **law of large numbers** for the particle system:

$$\begin{split} \partial_t \langle H, \pi_t^N \rangle &= N^2 \langle H, \mathcal{L} \eta_{tN^2} \rangle + \underbrace{d M_t^{N,H}}_{\longrightarrow 0}, \\ &\simeq \langle N^2 \Delta^N H, g(\eta_{tN^2}) \rangle \end{split}$$

where $g(\eta)=(g_x(\eta))_{x\in\mathbb{Z}}$ is a local function of the configuration.

law of large numbers around $x \Rightarrow h_x$ can be replaced by their average under the grand canonical state $\pi_{\rho(t,x)}$,

$$g_x(\eta_{tN^2})\mapsto \mathbb{E}_{\rho(t,x)}(g)=\frac{2\rho-1}{2\rho}\mathbf{1}_{\{\rho\geq 1/2\}}(t,x)$$

⇒ Weak formulation of the HDL

LAW OF LARGE NUMBERS

The hydrodynamic limit is in essence a **law of large numbers** for the particle system:

$$\begin{split} \frac{\partial_t \langle H, \pi_t^N \rangle &= N^2 \langle H, \mathcal{L} \eta_{tN^2} \rangle + \underbrace{dM_t^{N,H}}_{\longrightarrow 0}, \\ &\simeq \langle \underbrace{N^2 \Delta_N}_{} H, g(\eta_{tN^2}) \rangle \\ &\longrightarrow \partial_u^2 \end{split}$$

where $g(\eta) = (g_x(\eta))_{x \in \mathbb{Z}}$ is a **local function** of the configuration.

law of large numbers around $x \Rightarrow h_x$ can be replaced by their average under the grand canonical state $\pi_{\rho(t,x)}$,

$$g_x(\eta_{tN^2})\mapsto \mathbb{E}_{\rho(t,x)}(g)=\frac{2\rho-1}{2\rho}\mathbf{1}_{\{\rho\geq 1/2\}}(t,x)$$

⇒ Weak formulation of the HDL

LAW OF LARGE NUMBERS

The hydrodynamic limit is in essence a **law of large numbers** for the particle system:

$$\begin{split} \langle H, \pi_t^N \rangle &= N^2 \langle H, \eta_{tN^2} \rangle + \underbrace{dM_t^{N,H}}_{\to 0}, \\ &\simeq \langle H, g(\eta_{tN^2}) \rangle \end{split}$$

where $g(\eta) = (g_x(\eta))_{x \in \mathbb{Z}}$ is a **local function** of the configuration.

law of large numbers around $x \Rightarrow h_x$ can be replaced by their average under the grand canonical state $\pi_{\rho(t,x)}$,

$$g_x(\eta_{tN^2})\mapsto \mathbb{E}_{\rho(t,x)}(g)=\frac{2\rho-1}{2\rho}\mathbf{1}_{\{\rho\geq 1/2\}}(t,x)$$

⇒ Weak formulation of the HDL

GRAND CANONICAL MEASURES

 $\mbox{Kinetic constraint} \Longrightarrow \mbox{Bernoulli product measures not stationary}.$

Canonical states = **uniform measures on** \mathcal{E} .

The symmetric FEP is actually **reversible w.r.t. GC states** π_{ρ} , for $\rho \in (1/2, 1]$.

- $> \pi_{\rho}$ is supported on the **infinite ergodic component**.
- $ightharpoonup \pi_{
 ho}$ is a Bernoulli product measure conditioned to having isolated empty sites (ergodic component)
- $> \pi_{\rho}$ exhibits **long-range correlations** as $\rho \searrow 1/2$.

ENTROPY TOOLS AND EQUILIBRIUM DISTRIBUTIONS

Classical techniques for HDL based on **entropy bounds** on the dist. μ_t^N of η_{tN^2} and π_{α} , namely

□ Guo, Papanicolaou and Varadhan's entropy method,

$$H_N(\mu_t^N \mid \pi_{\rho}) \le CN,$$

> Yau's relative entropy method

$$H_N(\mu_t^N \mid \pi_{\rho_t}) = o(N).$$

Supercritical case, μ_t^N can charge \mathcal{E}^c , and π_ρ charges only $\mathcal{E} \Rightarrow$ entropy estimate fails. Need to prove **transient time** = $O(N^2)$.

General case, no real hope for entropy methods : no reference measures because of the two phases, no smooth solutions to the HDL.

STRATEGY OF PROOF

Supercritical case, GPV's entropy method can be adapted, by proving that the ergodic component is reached in a subdiffusive time.

> General case:

- entropy methods cannot be used, so we adapt Funaki's scheme for parabolic Stephan problems.
- The one-block estimate is based on a De Finetti-type decomposition for translation invariant stationary states.
- The two blocks estimate is bypassed by directly proving that the Young measure is a dirac.

HYDRODYNAMIC LIMIT FOR THE ASYMMETRIC FEP

Theorem (E', Simon, Zhao 2022)

Given ρ_0 , consider the asymmetric ($p \in (1/2, 1]$) process $\eta(t)$ started from

$$\mu^N = \mu^N_0 := \bigotimes_{x \in \mathbb{Z}} Ber(\rho_0(x/N)).$$

For any smooth compactly supported H

$$\frac{1}{N} \sum_{x \in \mathbb{Z}} H(x/N) \eta_x(tN) \xrightarrow[N \to \infty]{\mathbb{P}} \int_{\mathbb{R}} H(u) \rho(t,u) du$$

where ρ is the **unique entropy solution** to the hyperbolic Stefan problem

$$\begin{cases} \partial_t \rho + (2p-1)\partial_u \left\{ \mathfrak{H}(\rho) \mathbf{1}_{\{\rho \geq 1/2\}} \right\} &, \quad \textit{where} \quad \mathfrak{H}(\rho) = \frac{(1-\rho)(2\rho-1)}{\rho}. \end{cases}$$

HYDRODYNAMIC LIMIT FOR THE ASYMMETRIC FEP

Theorem (E', Simon, Zhao 2022)

Given ρ_0 , consider the asymmetric ($p \in (1/2, 1]$) process $\eta(t)$ started from

$$\mu^N = \mu^N_0 := \bigotimes_{x \in \mathbb{Z}} Ber(\rho_0(x/N)).$$

For any smooth compactly supported H

$$\frac{1}{N} \sum_{x \in \mathbb{Z}} H(x/N) \eta_x(t^{\mathbf{N}}) \xrightarrow[N \to \infty]{\mathbb{P}} \int_{\mathbb{R}} H(u) \rho(t, u) du$$

where ρ is the **unique entropy solution** to the hyperbolic Stefan problem

$$\begin{cases} \partial_t \rho + (2p-1)\partial_u \left\{ \mathfrak{H}(\rho) \mathbf{1}_{\{\rho \geq 1/2\}} \right\} &, \quad \textit{where} \quad \mathfrak{H}(\rho) = \frac{(1-\rho)(2\rho-1)}{\rho}. \end{cases}$$

Possible strategies of proof

- □ GPV's entropy method for hyperbolic systems? No two-blocks estimate in the asymmetric case.
- ➤ Yau's relative entropy method? Only useful until the first shock, and even so, not at all straightforward for two-phased systems, and no smooth solution a priori even before the shock because of the Stefan problem.
- ▷ Fritz's compensated compactness arguments? Blackbox tools, very technical, and requires adding up some lower-order stirring dynamics.
- > Attractiveness ? A priori not available here.

 \Rightarrow If the exclusion process is driven by the facilitated generator, the corresponding **facilitated zero-range process** (FZRP) *seen from the tagged empty site* is driven by the generator

$$\mathcal{L}^{zr}g(\omega) = \sum_{v \in \mathbb{Z}} \mathbf{1}_{\{\omega_y \geq 2\}} \Big\{ pg(\omega^{y,y+1}) + (1-p)g(\omega^{y,y-1}) - g(\omega) \Big\}.$$

PROPERTIES OF THE FZRP

> "facilitated" ZRP is **attractive**: there is coupling such that

$$\omega(0) \leq \zeta(0) \quad \Rightarrow \quad \omega(t) \leq \zeta(t) \quad \forall t.$$

 \triangleright Stationary states : product geometric measures with no empty sites, density $\alpha > 1$,

$$\nu_{\alpha}(\omega_0=k)=\mathbf{1}_{\{k\geq 1\}}\frac{1}{\alpha}\left(1-\frac{1}{\alpha}\right)^{k-1}$$

 \triangleright coupling arguments tricky : **process is not ergodic**: equilibrium states only exist in the supercritical phase $\alpha > 1$.

STRATEGY OF PROOF, HDL FOR THE FEP

STRATEGY OF PROOF, HDL FOR THE FEP

STRATEGY OF PROOF, HDL FOR THE FEP

HYDRODYNAMICS FOR THE FZRP

Theorem (E', Simon, Zhao 2022)

Given an initial profile α_0 , consider the **asymmetric** $(p \in (1/2, 1])$ FZRP $\omega(t)$. Assuming that for any smooth compactly supported H, under the initial distribution,

$$\frac{1}{N} \sum_{y \in \mathbb{Z}} H(y/N) \omega_y \xrightarrow[N \to \infty]{\mathbb{P}} \int_{\mathbb{R}} H(v) \alpha_0(v) dv$$

then for any t > 0

$$\frac{1}{N} \sum_{y \in \mathbb{Z}} H(y/N) \omega_y(tN) \underset{N \to \infty}{\overset{\mathbb{P}}{\longrightarrow}} \int_{\mathbb{R}} H(v) \alpha(t,v) dv$$

where α is the **unique entropy solution** to the hyperbolic Stefan problem

$$\partial_t \alpha + (2p-1) \partial_v \left\{ \frac{(\alpha-1)}{\alpha} \mathbf{1}_{\{\alpha \geq 1\}} \right\} \qquad \alpha(0,u) = \alpha_0(u).$$

 \mapsto Hydrodynamic limit for attractive particle systems on \mathbb{Z}^d , F. Rezakhanlou.

- $\label{eq:local_point} \begin{array}{l} \triangleright \ \ \text{Denote} \ X_0 = X_0(t) \ \text{the position of the tagged empty site in the FEP, and} \\ \nu_t[\rho] = \lim_{N \to \infty} X_0(t)/N \ \text{its macroscopic position at time} \ t. \end{array}$

$$\nu_t[\alpha] = \nu_0 + \int_0^\infty \alpha_0(v) - \alpha(t, v) dv.$$

Space variable y for ω corresponding to x in η ? Number of empty sites between X_0 and x. At the macroscopic scale u = x/N, v = y/N, we can write

$$y = y(x) = \sum_{x'=X_0}^{x} (1 - \eta_{x'})$$
 \Rightarrow $v = v(\mathbf{u}) = \int_{\nu_t}^{\mathbf{u}} (1 - \rho(u')) du'$

- $\label{eq:local_point} \begin{array}{l} \triangleright \ \ \text{Denote} \ X_0 = X_0(t) \ \text{the position of the tagged empty site in the FEP, and} \\ \nu_t[\rho] = \lim_{N \to \infty} X_0(t)/N \ \text{its macroscopic position at time} \ t. \end{array}$
- \triangleright The macroscopic position of the tagged empty site is formally written as

$$\nu_t[\alpha] = \nu_0 + \int_0^\infty \alpha_0(v) - \alpha(t,v) dv.$$

Space variable y for ω corresponding to x in η ? Number of empty sites between X_0 and x. At the macroscopic scale u = x/N, v = y/N, we can write

$$y=y(x)=\sum_{x'=X_0}^x (1-\eta_{x'}) \quad \Rightarrow \quad v=v(\textbf{\textit{u}})=\int_{\nu_t}^\textbf{\textit{u}} (1-\rho(u'))du'$$

- \triangleright Denote $X_0 = X_0(t)$ the position of the tagged empty site in the FEP, and $\nu_t[\rho] = \lim_{N \to \infty} X_0(t)/N$ its macroscopic position at time t.
- > The macroscopic position of the tagged empty site is formally written as

$$\nu_t[\alpha] = \nu_0 + \int_0^\infty \alpha_0(v) - \alpha(t,v) dv.$$

Space variable y for ω corresponding to x in η ? Number of empty sites between X_0 and x. At the macroscopic scale u = x/N, v = y/N, we can write

$$y=y(x)=\sum_{x'=X_0}^x (1-\eta_{x'}) \quad \Rightarrow \quad v=v(\mathbf{u})=\int_{\nu_t}^{\mathbf{u}} (1-\rho(u'))du'$$

$$\rho(\mathbf{u}) = \frac{\alpha}{1+\alpha}(v)$$

- ightharpoonup Denote $X_0=X_0(t)$ the position of the tagged empty site in the FEP, and $u_t[
 ho]=\lim_{N o\infty}X_0(t)/N$ its macroscopic position at time t.

$$\nu_t[\alpha] = \nu_0 + \int_0^\infty \alpha_0(v) - \alpha(t,v) dv.$$

Space variable y for ω corresponding to x in η ? Number of empty sites between X_0 and x. At the macroscopic scale u = x/N, v = y/N, we can write

$$y=y(x)=\sum_{x'=X_0}^x(1-\eta_{x'}) \quad \Rightarrow \quad v=v({\color{black} u})=\int_{\nu_t}^{\color{black} u}(1-\rho(u'))du'$$

Mapping Hydrodynamics

Now, to prove the HDL for the FEP given that of the FZRP, one can use that

$$\frac{1}{N}\sum_{x\in\mathbb{Z}} \frac{\mathbf{\eta}_x}{(tN^2)} H(x/N) \simeq \frac{1}{N}\sum_{y\in\mathbb{Z}} \omega_y(tN^2) [H\circ \mathbf{u}_t](y/N) + O(1/N),$$

where $u=u_t(v)$ is the inverse mapping of $v=v_t(u)$. Assuming everything is smooth, thanks to the HDL for the FZRP

$$\frac{1}{N} \sum_{v \in \mathbb{Z}} \omega_y(tN^2) [H \circ \mathbf{u_t}](y/N) \simeq \int_{\mathbb{R}} \alpha(t,v) [H \circ \mathbf{u_t}](v) dv,$$

and by a change of variable $v \mapsto u_t(v)$, the right hand side becomes

$$\int_{\mathbb{D}} \rho(t, u) H(u) du,$$

where ρ is given by $\rho(u) = \frac{\alpha}{1+\alpha}(v)$.

 \mapsto *Problem*: everything needs to be smoothed out, because of the hyperbolic equation, and because of the Stefan problem.

MAPPING HYDRODYNAMICS

Now, to prove the HDL for the FEP given that of the FZRP, one can use that

$$\frac{1}{N}\sum_{x\in\mathbb{Z}} \frac{\mathbf{\eta}_x}{\mathbf{\eta}_x}(tN^2)H(x/N) \simeq \frac{1}{N}\sum_{y\in\mathbb{Z}} \omega_y(tN^2)[H\circ \mathbf{u}_t](y/N) + O(1/N),$$

where $u=u_t(v)$ is the inverse mapping of $v=v_t(u)$. Assuming everything is smooth, thanks to the HDL for the FZRP

$$\frac{1}{N} \sum_{v \in \mathbb{Z}} \omega_y(tN^2) [H \circ \mathbf{u_t}](y/N) \simeq \int_{\mathbb{R}} \alpha(t,v) [H \circ \mathbf{u_t}](v) dv,$$

and by a change of variable $v \mapsto u_t(v)$, the right hand side becomes

$$\int_{\mathbb{D}} \rho(t, u) H(u) du,$$

where ρ is given by $\rho(u) = \frac{\alpha}{1+\alpha}(v)$.

 \mapsto *Problem*: everything needs to be smoothed out, because of the hyperbolic equation, and because of the Stefan problem.

CURRENT WORK

Phase transition(s) for the FEP/CLG in higher dimensions, with A. Roget, A. Shapira and M. Simon.

Effect of boundary interactions on the FEP, with M. Simon.

> Large deviations for the FEP, with O. Blondel.

THANKS FOR YOUR ATTENTION!

RELATED WORKS - FEP

- ▷ Blondel, E. and Simon, *Probability and Mathematical Physics* (2021).
- ▷ Blondel, E., Sasada and Simon, *An. de l'IHP Prob. et Stat.* (2020).

ATTRACTIVENESS & STEFAN PROBLEMS

- > Seppäläinen. Translation invariant exclusion processes (2008).
- ⋉ipnis, Landim, Scaling Limits of Interacting Particle Systems (1999).
- Rezakhanlou, Com. in math. phys. (1991).