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Modulated phases
▶ A large number of physical, chemical and biological systems exhibit the

spontaneous formation of regular patterns, such as compact droplet-like
domains and striped periodic structures of uniform phase.

This kind of behavior appears in:
� crystals;
� nuclear matter (Gamow liquid-drop model);
� polymer suspensions (Ohta-Kawasaki model);
� micromagnets and magnetic films;
� ferrofluids and liquid crystals;
� superconductors;
� anysotropic electron gases and QHE systems;
� ...

▶The similarity of patterns suggests a common
underlying mechanism,namely the competition
between short-range and long-range forces.

A fundamental understanding is still missing:
main difficulties related to symmetry breaking.

magnetic garnet | Langmuir films
[Seul - Andelman, Science 1995]
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Stripes in 2D ferromagnetic layers

(YGdTm)3(FeGa)6O12 at H =0
[Seul-Wolfe, Phys.Rev.A ‘92]

Fe78Si9B13 at H =0
[Coïsson et al., J.Magn.Magn.Mat.‘09]

Fe3O4 at H =0
[Liu et al., App.Phys.Lett. ‘17]

▶ Main focus of this talk: low temperature physics of thin magnetic films.

Present physical understanding : the formation of periodic arrays of stripes is
driven by the competition of short-range exchange ferromagnetic interactions,
favoring a homogeneous ordered state, and long-range dipole-dipole forces,
opposing the ordering on the sample scale.
Large experimental evidence and several numerical results, nevertheless only
few rigorous theoretical results are available.
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Frustrated ferromagnets
▶ One of the simplest way to describe the formation of periodic phases is to

consider an Ising-type energy functional on the Zd – lattice of the form

H(σ) = − J
∑

⟨x,y⟩
(σxσy − 1) +

∑
{x,y}

σxσy − 1
|x−y|p

.

� σ ≡ (σx)x∈Zd ∈ {±1}Zd

is a generic spin configuration.
� J >0 is the FM coupling constant.
� ⟨x,y⟩ is a nearest-neighbor pair; {x,y} is any pair of distinct sites.
� p>0, power-law AF potential: p=1, electrostatic Coulomb interaction;

p=3, dipole-dipole interaction.

H normalized so that FM homogeneous phases have zero energy.

▶ Frustation induced by competition between:
◦ exchange interaction, favoring homogeneous FM states (σx =+1 or σx =−1 ∀x);
◦ dipolar interaction, favoring Néel AF state (σx =(−1)∥x∥1 or σx =(−1)∥x∥1+1).

Conjecture: periodic striped states of optimal width are exact infinite volume
ground states (depending on J , breaking translation symmetry).
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GS characterization
▶ Key element: Reflection Positivity (RP) of AF interaction∑

x1⩾1, y1⩽0
x∥, y∥∈Zd−1

sx1,x∥ s−y1+1,y∥

|x − y|p > 0 ,
for all p>0, d⩾1 .

and any s : Zd →C .

▶ Limiting regimes
J ≳0: GS = AF state for 1⩽d⩽3, p>0 [Fröhlich-Israel-Lieb-Simon 1978, by RP];
J =+∞: GS = homogeneous FM state;
J ≲+∞: GS = homogeneous FM state for p>d+1

[Ginibre-Grossmann-Ruelle 1966, Giuliani-Lebowitz-Lieb 2006].

▶ For p>d+1 there is a transition line at

J = Jc(p) :=
∑

x∈Zd, x1⩾1

|x1|
|x|p < ∞

For J =Jc(p) the surface energy of an isolated
infinite straight domain wall vanishes.
J >Jc(p): GS = homogeneous FM state

(via Peierls’ droplet argument);
J <Jc(p): expected GS = periodic pattern

(energy lowered by antiphase boundaries). [Giuliani-Lebowitz-Lieb 2011]
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▶ Numerical evidence and variational computations in specific classes suggest
GS = periodic striped states.

Minimizing energy-per-site in thermodynamic limit ⇒ stripes of optimal width
h∗(J) ∼ (Jc−J)− 1

p−d−1 , for p>d+1, J ≲Jc(p).

▶ d=1, p>1: GS = identical segments of optimal length, with alternating spin signs
⇒ for d⩾ 2, p>d striped GS are periodic.

[Giuliani-Lebowitz-Lieb 2006]
d⩾2, p>d: upper & lower bounds for the GS energy-per-site,

coinciding at dominant order.
[Giuliani-Lebowitz-Lieb 2006, 2007, 2011]

d⩾2, p>2d: upper & lower bounds for the GS energy-per-site,
coinciding at next-to-leading order.

[Giuliani-Lieb-Seiringer 2013]

d⩾2, p>2d, J ≲Jc(p): unique infinite-vol. GS = optimal periodic striped states.
[Giuliani-Seiringer 2016]

Methods: RP, Peierls’ argument, corners as excitations, localization estimates.

▶ Results on analogous continuous versions: periodicity of 1D minimizers,
computation of GS energy at leading-order, minimizers in variational classes
of periodic configurations, ...
[Acerbi, Conti, Daneri, Fusco, Giuliani, Kerschbaum, Morini, Müller,

Muratov, Otto, Runa, Serfaty, ... ]

Davide Fermi (Politecnico Milano) Periodic striped states in Ising models with dipolar interactions 7



▶ Numerical evidence and variational computations in specific classes suggest
GS = periodic striped states.

Minimizing energy-per-site in thermodynamic limit ⇒ stripes of optimal width
h∗(J) ∼ (Jc−J)− 1

p−d−1 , for p>d+1, J ≲Jc(p).

▶ d=1, p>1: GS = identical segments of optimal length, with alternating spin signs
⇒ for d⩾ 2, p>d striped GS are periodic.

[Giuliani-Lebowitz-Lieb 2006]
d⩾2, p>d: upper & lower bounds for the GS energy-per-site,

coinciding at dominant order.
[Giuliani-Lebowitz-Lieb 2006, 2007, 2011]

d⩾2, p>2d: upper & lower bounds for the GS energy-per-site,
coinciding at next-to-leading order.

[Giuliani-Lieb-Seiringer 2013]

d⩾2, p>2d, J ≲Jc(p): unique infinite-vol. GS = optimal periodic striped states.
[Giuliani-Seiringer 2016]

Methods: RP, Peierls’ argument, corners as excitations, localization estimates.

▶ Results on analogous continuous versions: periodicity of 1D minimizers,
computation of GS energy at leading-order, minimizers in variational classes
of periodic configurations, ...
[Acerbi, Conti, Daneri, Fusco, Giuliani, Kerschbaum, Morini, Müller,

Muratov, Otto, Runa, Serfaty, ... ]

Davide Fermi (Politecnico Milano) Periodic striped states in Ising models with dipolar interactions 7



▶ Numerical evidence and variational computations in specific classes suggest
GS = periodic striped states.

Minimizing energy-per-site in thermodynamic limit ⇒ stripes of optimal width
h∗(J) ∼ (Jc−J)− 1

p−d−1 , for p>d+1, J ≲Jc(p).

▶ d=1, p>1: GS = identical segments of optimal length, with alternating spin signs
⇒ for d⩾ 2, p>d striped GS are periodic.

[Giuliani-Lebowitz-Lieb 2006]
d⩾2, p>d: upper & lower bounds for the GS energy-per-site,

coinciding at dominant order.
[Giuliani-Lebowitz-Lieb 2006, 2007, 2011]

d⩾2, p>2d: upper & lower bounds for the GS energy-per-site,
coinciding at next-to-leading order.

[Giuliani-Lieb-Seiringer 2013]

d⩾2, p>2d, J ≲Jc(p): unique infinite-vol. GS = optimal periodic striped states.
[Giuliani-Seiringer 2016]

Methods: RP, Peierls’ argument, corners as excitations, localization estimates.

▶ Results on analogous continuous versions: periodicity of 1D minimizers,
computation of GS energy at leading-order, minimizers in variational classes
of periodic configurations, ...
[Acerbi, Conti, Daneri, Fusco, Giuliani, Kerschbaum, Morini, Müller,

Muratov, Otto, Runa, Serfaty, ... ]

Davide Fermi (Politecnico Milano) Periodic striped states in Ising models with dipolar interactions 7



Dipolar ferromagnets: d=2, p=3
▶ Relevant setting for the physics of thin magnetic films.

Conjecture: periodic striped GS for J ≫1.
Issue: slow decay of the long-range potential.

▶ Partial analysis in [MacIsaac-Whitehead-Robinson-De’Bell, Phys.Rev.B 1995]
Periodic stripes

σx = (−1)⌊x2/h⌋;

Es(h)= 2
h

[
J −as logh−bs+O(h−1)

]
,

as =2 , bs =2.276 ... .

Square checkerboards

σx = (−1)⌊x1/2h⌋+⌊x2/2h⌋;

Ec(h)= 2
h

[
J −ac logh−bc+O(h−1)

]
,

ac =2 , bc =0.352 ... .

� as =ac and bs >bc ⇒ Es(h)<Ec(h) for h large.
� Optimal stripes width = h∗ ∼(e1− as

2 ) eJ/2, with J ≫1.
� Results derived by sheer numerical computations (no conceptual insight).
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2. Main results
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Preliminaries
▶ Consider the 2D torus ΛL ≡ Z2/LZ2 of side L≫1 and the Hamiltonian

HL(σ) = − J

2
∑

x,y∈ ΛL
|x−y| = 1

(σxσy − 1) + 1
2

∑
x,y∈ΛL

∑
m∈Z2

σxσy − 1
|x−y+Lm|3

,

σ∈{±1}|ΛL| ∼ (L - periodic spin configurations on Z2).

▶ Consider the variational class ΩL of L - periodic spin configurations on Z2

s.t. the union of Peierls’ contours consist solely of horizontal and/or vertical
straight lines.

Remark: σ∈ΩL = modulated, generally aperiodic, configurations with
spin signs alternating in checkerboard-like pattern.
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Theorem (F. - Giuliani 2022)
There exists J0 >0 such that, for any J ⩾J0 and any L integer multiple
of 2h∗, the only minimizers of HL within the variational class ΩL are
periodic striped configurations of optimal width h∗.

The optimal length h∗ ≡h∗(J) is derived minimizing w.r.t. h the energy per site
of periodic striped configurations σs(h) of generic half-period h⩾1:

Es(h) ≡ E(σs(h)) := 1
(nL)2 HnL

(
σs(h)

)
(independent of n∈N) .

Caveat : for a.e. J >0 the minimizer h∗ ≡h∗(J) of Es(h) over N is unique;
for exceptional values of J , two contiguous minimizers h∗(J) and h∗(J)+1.

[Giuliani-Lebowitz-Lieb 2006]
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Key ideas

▶ Analytic expression for the energy per site Es(h) of periodic striped states,
identifying the optimal stripes width.

▶ Using Block Reflection Positivity to prove that minimizers of HL within ΩL

are periodic checkerboard states σc(h1, h2), consisting of h1×h2 tiles with
alternating spin signs.

⇒ Restrictions on the variational class.

▶ Proving that E
(
σc(h1, h2)

)
>E

(
σs(h∗)

)
, by exhibiting different “spin flips ”

which strictly decrease the energy per site.
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3. Sketch of the proof
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Energy per site of periodic striped states

Lemma. For periodic striped states σs(h), the energy per site fulfills

E
(
σs(h)

)
= 2

h

[
J − 2 log h − αs + O

(
h−1)]

, for h→+∞ ,

αs := 2
(

1+γEM−log(π/2) + 4π
∑∞

ℓ,n=1 ℓ K1(2πℓn)
)

= 2.276 ...(
γEM = 0.577 ... = Euler-Mascheroni const., K1 = mod. Bessel funct.

)
.

� Stripes of minimum energy have optimal width (J →+∞)

h∗(J) = c∗ eJ/2(
1 + O(e−J/4)

)
, c∗ := e1− αs

2 = 0.871 ... .

� Derived by explicit computations, Poisson summation, Riemann sum approx.

� Compatible with [MacIsaac et al. 1995] + analytic expression for αs.
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Block Reflection Positivity
Recall that the long range potential 1/|x−y|3 is reflection positive.

Use RP in the form of chessboard estimate with open boundary conditions
[Giuliani-Lebowitz-Lieb 2007], once in the horizontal and once in the vertical
direction, to infer that

HL(σ) ⩾
∑

T

|T | E
(
σc(h1(T ), h2(T ))

)
,

(sum over tiles T forming the state σ∈ΩL)

σ ∈ ΩL

→

σc(h1, h2)

⇒ Sufficient to prove E(σc(h1, h2))>E(σs(h∗)) for h1⩾h2, (h1, h2) ̸=(∞, h∗).

⊚⊚⊚ To apply BRP it is crucial that Peierls’ boundaries are only straight lines.
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[Giuliani-Lebowitz-Lieb 2007], once in the horizontal and once in the vertical
direction, to infer that

HL(σ) ⩾
∑

T

|T | E
(
σc(h1(T ), h2(T ))

)
,

(sum over tiles T forming the state σ∈ΩL)

σ ∈ ΩL

→

σc(h1, h2)

⇒ Sufficient to prove E(σc(h1, h2))>E(σs(h∗)) for h1⩾h2, (h1, h2) ̸=(∞, h∗).
⊚⊚⊚ To apply BRP it is crucial that Peierls’ boundaries are only straight lines.

Davide Fermi (Politecnico Milano) Periodic striped states in Ising models with dipolar interactions 15



I - Excluding thin tiles
For h2 too small, energy is lowered by removing 2 adjacent horizontal walls.

σc(h1, h2)

−

σI

> 4

E
(
σc(h1, h2)

)
−

1
L2 HL(σI) >

4
L

(
J −

1
h1

∑
x∈T

∑
y∈Π

1
|x−y|3

)
>

4
L

(
J − 2 log h2 − αs − 1 − 2 log(π/2)

) !
> 0 .

Using again BRP and Riemann sum approx., it follows

Lemma I. For all J >0,
h1⩾h2 , 1⩽h2⩽cIeJ/2,

cI := 2
π e−(αs+1)/2 = 0.123 ...

(recall h∗ ∼c∗eJ/2, c∗ = 0.871 ... )
⇒ E

(
σc(h1, h2)

)
> E

(
σc(h1, 3h2)

)
.
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II - Excluding thick tiles
For h2 too large, energy is lowered by adding 2 adjacent horizontal walls.

σc(h1, h2)

−

σII

>

E
(
σc(h1, h2)

)
−

1
L2 HL(σII) >

4
L

[
− J +

1
h1

∑
x∈T

( ∑
y∈S1

− 2
∑
y∈S4

− 4
∑
y∈Ξ

) 1
|x−y|3

]
>

4
L

[
−J + 2 log h2 + αs − 2 log

(128
9π

)
−

8h2

h1
+ O

(
h−1

2
)] !

> 0 .

Using again BRP and Riemann sum approx., it follows

Lemma II. There exists JII ≫1 s.t. for any 0<δ⩽1, J >JII ,
cII(δ)eJ/2⩽ h2 ⩽ δ h1 ,

cII(δ) := 129
9π e−(αs/2)+4δ =(1.461 ... ) e4δ

(recall h∗ ∼c∗eJ/2, c∗ = 0.871 ... )
⇒ E

(
σc(h1, h2)

)
>E

(
σc(h1, h2/2)

)
.
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III - Excluding long tiles of almost-optimal width
If h2 ∼h∗ and h1 ≫1, energy is lowered by removing 2 adjacent vertical walls.

σc(h1, h2)

−

σIII

>

E
(
σc(h1, h2)

)
− 1

L2 HL(σIII)

>
4
L

[
J − 1

h2

( ∑
x∈Ta

∑
y∈Π

+
∑
x∈Tb

∑
y∈Ξ

− 4
∑
x∈Ta

∑
y∈P

− 2
∑
x∈Ta

∑
y∈Q

) 1
|x−y|3

]

>
4
L

[
J − 2 log h2 − αs − 2 log(π/2) + 4 − 1

2
h2

h1
− 2

(
h2

h1

)2
]

!
> 0 .

Using again BRP and Riemann sum approx., it follows

Lemma III. There exists JIII ≫1 s.t. for any 0<δ⩽1, J >JIII ,
cIeJ/2 ⩽ h2 ⩽ min

{
δ h1, cIII(δ)eJ/2}

,

cIII(δ) := 2
π e2−(αs/2)−δ/4−δ2= (1.507 ...)e−δ/4−δ2

(recall h∗ ∼c∗eJ/2, c∗ = 0.871 ... )
⇒ E

(
σc(h1, h2)

)
>E

(
σc(3h1, h2)

)
.
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Remaining GS candidates

For J ≫1, σc(h1, h2) is not a minimizer if (h1, h2) belongs to a colored region.
The only GS candidates remaining are (h1, h2)=(+∞, h) [stripes] and

(h1, h2) =
(

h

λ
,

h

1−λ

)
, for h∈ [cmin, cmax] eJ/2, λ∈ [λmin, 1/2] .
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Excluding tiles of bounded aspect ratio
For h1/h2 finite, compare checkerboard σc(h1, h2) with stripes σs(h1),σs(h2).

σc(h1, h2)

−

σs(h1) + σs(h2)

> 4

E
(
σc(h1, h2)

)
−E

(
σs(h1)

)
−E

(
σs(h2)

)
>

4
h1h2

(
2

∑
x∈T

∑
y∈P

+
∑
x∈T

∑
y∈Ξ

)
1

|x−y|3 .

Fixing h1 =h/λ, h2 =h/(1−λ), by Riemann sum approx. (with h∼c eJ/2, J ≫1)
and by explicit estimate w.r.t. λ∈ [λmin, 1/2] it follows

E
(
σc(h1, h2)

)
− E

(
σs(h1)

)
− E

(
σs(h2)

)
>

4λ(1−λ)
h

[
2λ

3 − log λ + 2 − log
(27

16

)
+ O

(
h−1log h

)]
.
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On the other side, using the explicit asymptotic expansion for E
(
σs(h)

)
,

for h1 =h/λ, h2 =h/(1−λ) and h ∼ c eJ/2 → +∞ we get
E

(
σs(h)

)
− E

(
σs(h1)

)
− E

(
σs(h2)

)
= − 4

h

[
λ log λ + (1−λ) log(1−λ) + O

(
h−1 log h

)]
.

Summing up

E
(
σc(h1, h2)

)
− E

(
σs(h)

)
>

4λ(1−λ)
h

[
F (λ) + O

(
h−1log h

)]
> 0 .

Lemma. There exists Jmin ≫1 s.t. for J >Jmin, h1 =h/λ and h2 =h/(1−λ),
cmin eJ/2 ⩽ h ⩽ cmax eJ/2,

λmin ⩽ λ ⩽ 1/2
⇒ E

(
σc(h1, h2)

)
> E

(
σs(h)

)
.

So, periodic stripes corresp. to (h1, h2)=(+∞, h) are the only minimizers in ΩL.
Conclude by optimization w.r.t. h. ■
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Summary and outlook

▶ Periodic striped states (of optimal width) are the only energy minimizer
in the class of aperiodic configurations with Peierls’ boundaries consisting
of straight domain walls.

▶ Proof derived by combination of chessboard estimates with quantitative
a priori estimates, relying on suitable “spin flips”.

▶ Future developments:
� larger variational class (non-straight boundaries) for d=2, p=3;
� different values of d, p (especially d<p⩽2d);
� continuum limit.
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Thanks a lot for your attention!
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