Periodic striped states in Ising models with dipolar interactions

Davide Fermi

joint work with

A. Giuliani (Università Roma Tre)

Universality in Condensed Matter and Statistical Mechanics Roma, 6 February 2023

Outline of the talk

1. Motivations and background

- Emergence of periodic patterns and striped configurations.
- Ising models with competing interactions.

2. Main results

- The variational class with straight domain walls.
- Characterization of the GS.
- 3. Sketch of the proof

Reference

[1] D.F., A. Giuliani, in "The Physics and Mathematics of Elliott Lieb. The 90th Anniversary Volume I" (2022). 1. Motivations and background

Modulated phases

► A large number of physical, chemical and biological systems exhibit the spontaneous formation of regular patterns, such as compact droplet-like domains and striped periodic structures of uniform phase.

Modulated phases

▶ A large number of physical, chemical and biological systems exhibit the spontaneous formation of regular patterns, such as compact droplet-like domains and striped periodic structures of uniform phase.

This kind of behavior appears in:

- crystals;
- nuclear matter (Gamow liquid-drop model);
- polymer suspensions (Ohta-Kawasaki model);
- micromagnets and magnetic films;
- ferrofluids and liquid crystals;
- superconductors;
- anysotropic electron gases and QHE systems;

• ...

magnetic garnet | Langmuir films [Seul - Andelman, Science 1995]

Modulated phases

▶ A large number of physical, chemical and biological systems exhibit the spontaneous formation of regular patterns, such as compact droplet-like domains and striped periodic structures of uniform phase.

This kind of behavior appears in:

- crystals;
- nuclear matter (Gamow liquid-drop model);
- polymer suspensions (Ohta-Kawasaki model);
- micromagnets and magnetic films;
- ferrofluids and liquid crystals;
- superconductors;
- anysotropic electron gases and QHE systems;
-
- ► The similarity of patterns suggests a common underlying mechanism, namely the competition between short-range and long-range forces.

A fundamental understanding is still missing: main difficulties related to symmetry breaking.

magnetic garnet | Langmuir films [Seul - Andelman, Science 1995]

Stripes in 2D ferromagnetic layers

 $(\mathsf{YGdTm})_3(\mathsf{FeGa})_6\mathsf{O}_{12}$ at $H\!=\!0$ [Seul-Wolfe, Phys.Rev.A '92]

 $\mathsf{Fe}_{78}\mathsf{Si}_9\mathsf{B}_{13}$ at $H\!=\!0$ [Coïsson et al., J.Magn.Magn.Mat.'09]

Fe $_3$ O $_4$ at H = 0 [Liu et al., App.Phys.Lett.'17]

▶ Main focus of this talk: low temperature physics of thin magnetic films.

Stripes in 2D ferromagnetic layers

 $(YGdTm)_3(FeGa)_6O_{12}$ at H=0 [Seul-Wolfe, Phys.Rev.A '92]

 $\mathsf{Fe}_{78}\mathsf{Si}_9\mathsf{B}_{13}$ at $H\!=\!0$ [Coïsson et al., J.Magn.Magn.Mat.'09]

Fe₃O₄ at H = 0[Liu et al., App.Phys.Lett. '17]

▶ Main focus of this talk: low temperature physics of thin magnetic films.

Present physical understanding: the formation of periodic arrays of stripes is driven by the competition of short-range exchange ferromagnetic interactions, favoring a homogeneous ordered state, and long-range dipole-dipole forces, opposing the ordering on the sample scale.

Large experimental evidence and several numerical results, nevertheless only few rigorous theoretical results are available.

Frustrated ferromagnets

▶ One of the simplest way to describe the formation of periodic phases is to consider an Ising-type energy functional on the \mathbb{Z}^d – lattice of the form

$$\mathcal{H}(\boldsymbol{\sigma}) = -J \sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} (\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}} - 1) + \sum_{\{\boldsymbol{x}, \boldsymbol{y}\}} \frac{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}} - 1}{|\boldsymbol{x} - \boldsymbol{y}|^p}.$$

- $\sigma \equiv (\sigma_x)_{x \in \mathbb{Z}^d} \in \{\pm 1\}^{\mathbb{Z}^d}$ is a generic spin configuration.
- J > 0 is the FM coupling constant.
- $\langle {m x}, {m y} \rangle$ is a nearest-neighbor pair; $\{ {m x}, {m y} \}$ is any pair of distinct sites.
- p>0, power-law AF potential: p=1, electrostatic Coulomb interaction; p=3, dipole-dipole interaction.

 ${\cal H}$ normalized so that FM homogeneous phases have zero energy.

Frustrated ferromagnets

▶ One of the simplest way to describe the formation of periodic phases is to consider an Ising-type energy functional on the \mathbb{Z}^d – lattice of the form

$$\mathcal{H}(\boldsymbol{\sigma}) = -J \sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} (\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}} - 1) + \sum_{\{\boldsymbol{x}, \boldsymbol{y}\}} \frac{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}} - 1}{|\boldsymbol{x} - \boldsymbol{y}|^p}.$$

- $\sigma \equiv (\sigma_x)_{x \in \mathbb{Z}^d} \in \{\pm 1\}^{\mathbb{Z}^d}$ is a generic spin configuration.
- J > 0 is the FM coupling constant.
- $\langle m{x}, m{y}
 angle$ is a nearest-neighbor pair; $\{m{x}, m{y}\}$ is any pair of distinct sites.
- p>0, power-law AF potential: p=1, electrostatic Coulomb interaction; p=3, dipole-dipole interaction.

 ${\cal H}$ normalized so that FM homogeneous phases have zero energy.

► Frustation induced by competition between:

o exchange interaction, favoring homogeneous FM states $(\sigma_x = +1 \text{ or } \sigma_x = -1 \forall x)$; o dipolar interaction, favoring Néel AF state $(\sigma_x = (-1)^{\|x\|_1} \text{ or } \sigma_x = (-1)^{\|x\|_1+1})$.

Frustrated ferromagnets

▶ One of the simplest way to describe the formation of periodic phases is to consider an Ising-type energy functional on the \mathbb{Z}^d – lattice of the form

$$\mathcal{H}(\boldsymbol{\sigma}) = -J \sum_{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} (\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}} - 1) + \sum_{\{\boldsymbol{x}, \boldsymbol{y}\}} \frac{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}} - 1}{|\boldsymbol{x} - \boldsymbol{y}|^p}.$$

- $\sigma \equiv (\sigma_x)_{x \in \mathbb{Z}^d} \in \{\pm 1\}^{\mathbb{Z}^d}$ is a generic spin configuration.
- J > 0 is the FM coupling constant.
- $\langle {m x}, {m y} \rangle$ is a nearest-neighbor pair; $\{ {m x}, {m y} \}$ is any pair of distinct sites.
- p>0, power-law AF potential: p=1, electrostatic Coulomb interaction; p=3, dipole-dipole interaction.

 ${\cal H}$ normalized so that FM homogeneous phases have zero energy.

► Frustation induced by competition between:

o exchange interaction, favoring homogeneous FM states $(\sigma_x = +1 \text{ or } \sigma_x = -1 \ \forall x)$; o dipolar interaction, favoring Néel AF state $(\sigma_x = (-1)^{\|x\|_1} \text{ or } \sigma_x = (-1)^{\|x\|_1 + 1})$.

Conjecture: periodic striped states of optimal width are exact infinite volume ground states (depending on J, breaking translation symmetry).

GS characterization

▶ Key element: Reflection Positivity (RP) of AF interaction

$$\sum_{\substack{x_1\geqslant 1,\,y_1\leqslant 0\\ \boldsymbol{x}_\parallel,\,\boldsymbol{y}_\parallel\in\mathbb{Z}^{d-1}}} \frac{\overline{s_{x_1,\boldsymbol{x}_\parallel}}\,s_{-y_1+1,\boldsymbol{y}_\parallel}}{|\boldsymbol{x}-\boldsymbol{y}|^p}>0\,,\qquad \qquad \text{for all }p>0,\;d\geqslant 1\,.$$

GS characterization

▶ Key element: Reflection Positivity (RP) of AF interaction

$$\sum_{\substack{x_1\geqslant 1,\,y_1\leqslant 0\\ \boldsymbol{x}_\parallel,\,\boldsymbol{y}_\parallel\in\mathbb{Z}^{d-1}}} \frac{\overline{s_{x_1,\boldsymbol{x}_\parallel}}\,s_{-y_1+1,\boldsymbol{y}_\parallel}}{|\boldsymbol{x}-\boldsymbol{y}|^p}>0\,,\qquad \qquad \text{for all }p\!>\!0,\,d\geqslant\!1\,.$$

► Limiting regimes

 $J \gtrsim 0$: GS = AF state for $1 \le d \le 3$, p > 0 [Fröhlich-Israel-Lieb-Simon 1978, by RP];

 $J = +\infty$: GS = homogeneous FM state;

 $J \lesssim +\infty$: GS = homogeneous FM state for p > d+1

[Ginibre-Grossmann-Ruelle 1966, Giuliani-Lebowitz-Lieb 2006].

GS characterization

▶ Key element: Reflection Positivity (RP) of AF interaction

$$\sum_{\substack{x_1\geqslant 1,\,y_1\leqslant 0\\ \boldsymbol{x}_\parallel,\,\boldsymbol{y}_\parallel\in\mathbb{Z}^{d-1}}}\frac{\overline{s_{x_1,\boldsymbol{x}_\parallel}}\,s_{-y_1+1,\boldsymbol{y}_\parallel}}{|\boldsymbol{x}-\boldsymbol{y}|^p}>0\,,\qquad \qquad \text{for all }p>0,\,d\geqslant 1\,.$$

► Limiting regimes

$$J \gtrsim 0$$
: GS = AF state for $1 \le d \le 3$, $p > 0$ [Fröhlich-Israel-Lieb-Simon 1978, by RP];

 $J = +\infty$: GS = homogeneous FM state;

$$J \lesssim +\infty$$
: GS = homogeneous FM state for $p > d+1$

[Ginibre-Grossmann-Ruelle 1966, Giuliani-Lebowitz-Lieb 2006].

▶ For p>d+1 there is a transition line at

$$J = J_c(p) := \sum_{\boldsymbol{x} \in \mathbb{Z}^d, |x_1| \ge 1} \frac{|x_1|}{|\boldsymbol{x}|^p} < \infty$$

For $J = J_c(p)$ the surface energy of an isolated infinite straight domain wall vanishes.

$$J > J_c(p)$$
: GS = homogeneous FM state (via Peierls' droplet argument);

$$J < J_c(p)$$
: expected GS = periodic pattern (energy lowered by antiphase boundaries).

[Giuliani-Lebowitz-Lieb 2011]

► Numerical evidence and variational computations in specific classes suggest GS = periodic striped states.

Minimizing energy-per-site in thermodynamic limit \Rightarrow stripes of optimal width $h_*(J) \sim (J_c - J)^{-\frac{1}{p-d-1}},$ for $p > d+1, \ J \leq J_c(p).$

► Numerical evidence and variational computations in specific classes suggest GS = periodic striped states.

Minimizing energy-per-site in thermodynamic limit \Rightarrow stripes of optimal width

$$h_*(J) \sim (J_c - J)^{-\frac{1}{p-d-1}}, \quad \text{for } p > d+1, J \lesssim J_c(p).$$

- ▶ d=1, p>1: GS = identical segments of optimal length, with alternating spin signs ⇒ for $d \ge 2$, p>d striped GS are periodic.

 [Giuliani-Lebowitz-Lieb 2006]
 - $d \geqslant 2$, p > d: upper & lower bounds for the GS energy-per-site, coinciding at dominant order. [Giuliani-Lebowitz-Lieb 2006, 2007, 2011]
 - $d \geqslant 2$, p > 2d: upper & lower bounds for the GS energy-per-site, coinciding at next-to-leading order.

 [Giuliani-Lieb-Seiringer 2013]
 - $d\!\geqslant\! 2,\,p\!>\! 2d,\,J\!\lesssim\! J_c(p)$: unique infinite-vol. GS = optimal periodic striped states. [Giuliani-Seiringer 2016]

Methods: RP, Peierls' argument, corners as excitations, localization estimates.

Numerical evidence and variational computations in specific classes suggest GS = periodic striped states.

Minimizing energy-per-site in thermodynamic limit \Rightarrow stripes of optimal width

$$h_*(J) \sim (J_c - J)^{-\frac{1}{p-d-1}}, \quad \text{for } p > d+1, \ J \lesssim J_c(p).$$

- ▶ d=1, p>1: GS = identical segments of optimal length, with alternating spin signs ⇒ for $d \ge 2$, p>d striped GS are periodic.

 [Giuliani-Lebowitz-Lieb 2006]
 - $d \geqslant 2$, p > d: upper & lower bounds for the GS energy-per-site, coinciding at dominant order.

 [Giuliani-Lebowitz-Lieb 2006, 2007, 2011]
 - $d \geqslant 2$, p > 2d: upper & lower bounds for the GS energy-per-site, coinciding at next-to-leading order.

 [Giuliani-Lieb-Seiringer 2013]
 - $d\!\geqslant\!2,\,p\!>\!2d,\,J\!\lesssim\!J_c(p)\!:$ unique infinite-vol. GS = optimal periodic striped states. [Giuliani-Seiringer 2016]

Methods: RP, Peierls' argument, corners as excitations, localization estimates.

Results on analogous continuous versions: periodicity of 1D minimizers, computation of GS energy at leading-order, minimizers in variational classes of periodic configurations, ...
[Acerbi, Conti, Daneri, Fusco, Giuliani, Kerschbaum, Morini, Müller, Muratov, Otto, Runa, Serfaty, ...]

Dipolar ferromagnets: d=2, p=3

▶ Relevant setting for the physics of thin magnetic films. Conjecture: periodic striped GS for $J\gg 1$. Issue: slow decay of the long-range potential.

Dipolar ferromagnets: d=2, p=3

- ▶ Relevant setting for the physics of thin magnetic films. Conjecture: periodic striped GS for $J \gg 1$. Issue: slow decay of the long-range potential.
- Partial analysis in [MacIsaac-Whitehead-Robinson-De'Bell, Phys.Rev.B 1995]

Periodic stripes

$$\sigma_{\mathbf{x}} = (-1)^{\lfloor x_2/h \rfloor}; \qquad \sigma_{\mathbf{x}} = (-1)^{\lfloor x_1/2h \rfloor + \lfloor x_2/2h \rfloor};$$

$$\mathcal{E}_s(h) = \frac{2}{h} \left[J - a_s \log h - b_s + \mathcal{O}(h^{-1}) \right], \qquad \mathcal{E}_c(h) = \frac{2}{h} \left[J - a_c \log h - b_c + \mathcal{O}(h^{-1}) \right],$$

$$a_s = 2, \qquad b_s = 2.276 \dots$$

$$a_c = 2, \qquad b_c = 0.352 \dots$$

$\bullet a_s = a_c$ and $b_s > b_c \Rightarrow \mathcal{E}_s(h) < \mathcal{E}_c(h)$ for h large.

- Optimal stripes width $= h_* \sim (e^{1-\frac{a_s}{2}}) e^{J/2}$, with $J \gg 1$.
- Results derived by sheer numerical computations (no conceptual insight).

Square checkerboards

$$\sigma_{\mathbf{x}} = (-1)^{\lfloor x_1/2h \rfloor + \lfloor x_2/2h \rfloor};$$

$$(h) = \frac{2}{h} \left[J - a_c \log h - b_c + \mathcal{O}(h^{-1}) \right],$$

$$a_c = 2, \qquad b_c = 0.352 \dots.$$

2. Main results

Preliminaries

▶ Consider the 2D torus $\Lambda_L \equiv \mathbb{Z}^2/L\mathbb{Z}^2$ of side $L\gg 1$ and the Hamiltonian

$$\begin{split} \mathcal{H}_L(\pmb{\sigma}) &= -\frac{J}{2} \sum_{\substack{\pmb{x}, \pmb{y} \in \Lambda_L \\ |\pmb{x} - \pmb{y}| = 1}} (\sigma_{\pmb{x}} \sigma_{\pmb{y}} - 1) \, + \frac{1}{2} \sum_{\pmb{x}, \pmb{y} \in \Lambda_L} \sum_{\pmb{m} \in \mathbb{Z}^2} \frac{\sigma_{\pmb{x}} \sigma_{\pmb{y}} - 1}{|\pmb{x} - \pmb{y} + \pmb{L} \pmb{m}|^3} \,, \\ \pmb{\sigma} &\in \{\pm 1\}^{|\Lambda_L|} \; \sim \; (L \text{- periodic spin configurations on } \mathbb{Z}^2). \end{split}$$

Preliminaries

► Consider the 2D torus $\Lambda_L \equiv \mathbb{Z}^2/L\mathbb{Z}^2$ of side $L\gg 1$ and the Hamiltonian

$$\mathcal{H}_L(\boldsymbol{\sigma}) = -\frac{J}{2} \sum_{\substack{\boldsymbol{x}, \boldsymbol{y} \in \Lambda_L \\ |\boldsymbol{x} - \boldsymbol{y}| = 1}} (\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}} - 1) + \frac{1}{2} \sum_{\boldsymbol{x}, \boldsymbol{y} \in \Lambda_L} \sum_{\boldsymbol{m} \in \mathbb{Z}^2} \frac{\sigma_{\boldsymbol{x}} \sigma_{\boldsymbol{y}} - 1}{|\boldsymbol{x} - \boldsymbol{y} + L\boldsymbol{m}|^3},$$

 $oldsymbol{\sigma}\!\in\!\{\pm 1\}^{|\Lambda_L|}~\sim~(L ext{- periodic spin configurations on }\mathbb{Z}^2).$

▶ Consider the variational class Ω_L of L-periodic spin configurations on \mathbb{Z}^2 s.t. the union of Peierls' contours consist solely of horizontal and/or vertical straight lines.

Remark: $\sigma \in \Omega_L$ = modulated, generally aperiodic, configurations with spin signs alternating in checkerboard-like pattern.

Theorem (F. - Giuliani 2022)

There exists $J_0>0$ such that, for any $J\geqslant J_0$ and any L integer multiple of $2h_*$, the only minimizers of \mathcal{H}_L within the variational class Ω_L are periodic striped configurations of optimal width h_* .

Theorem (F. - Giuliani 2022)

There exists $J_0>0$ such that, for any $J\geqslant J_0$ and any L integer multiple of $2h_*$, the only minimizers of \mathcal{H}_L within the variational class Ω_L are periodic striped configurations of optimal width h_* .

The optimal length $h_* \equiv h_*(J)$ is derived minimizing w.r.t. h the energy per site of periodic striped configurations $\sigma_s(h)$ of generic half-period $h \geqslant 1$:

$$\mathcal{E}_s(h) \equiv \mathcal{E}(oldsymbol{\sigma}_s(h)) := rac{1}{(nL)^2}\,\mathcal{H}_{nL}ig(oldsymbol{\sigma}_s(h)ig) \qquad ext{(independent of } n\!\in\!\mathbb{N})\,.$$

Key ideas

▶ Analytic expression for the energy per site $\mathcal{E}_s(h)$ of periodic striped states, identifying the optimal stripes width.

Key ideas

- ▶ Analytic expression for the energy per site $\mathcal{E}_s(h)$ of periodic striped states, identifying the optimal stripes width.
- ▶ Using *Block Reflection Positivity* to prove that minimizers of \mathcal{H}_L within Ω_L are periodic checkerboard states $\sigma_c(h_1,h_2)$, consisting of $h_1 \times h_2$ tiles with alternating spin signs.
 - ⇒ Restrictions on the variational class.

Key ideas

- ▶ Analytic expression for the energy per site $\mathcal{E}_s(h)$ of periodic striped states, identifying the optimal stripes width.
- ▶ Using *Block Reflection Positivity* to prove that minimizers of \mathcal{H}_L within Ω_L are periodic checkerboard states $\sigma_c(h_1,h_2)$, consisting of $h_1 \times h_2$ tiles with alternating spin signs.
 - \Rightarrow Restrictions on the variational class.
- ▶ Proving that $\mathcal{E}(\sigma_c(h_1,h_2)) > \mathcal{E}(\sigma_s(h_*))$, by exhibiting different "spin flips" which strictly decrease the energy per site.

3. Sketch of the proof

Energy per site of periodic striped states

Lemma. For periodic striped states $\sigma_s(h)$, the energy per site fulfills

$$\begin{split} \mathcal{E} \big(\pmb{\sigma}_s(h) \big) &= \frac{2}{h} \left[J - 2 \log h - \alpha_s + \mathcal{O} \big(h^{-1} \big) \right], \qquad \text{for } h \to +\infty \,, \\ \alpha_s &:= 2 \left(1 + \gamma_{\text{EM}} - \log(\pi/2) + 4\pi \sum_{\ell,n=1}^\infty \ell \, K_1(2\pi\ell n) \right) = 2.276 \, \dots \\ \big(\gamma_{\text{EM}} = 0.577 \, \dots = \text{Euler-Mascheroni const.}, \qquad K_1 = \text{mod. Bessel funct.} \big) \,. \end{split}$$

• Stripes of minimum energy have optimal width $(J \rightarrow +\infty)$

$$h_*(J) = c_* e^{J/2} (1 + \mathcal{O}(e^{-J/4})), \qquad c_* := e^{1 - \frac{\alpha_s}{2}} = 0.871 \dots$$

- Derived by explicit computations, Poisson summation, Riemann sum approx.
- ${\bf L}$ Compatible with [MacIsaac et al. 1995] + analytic expression for $\alpha_s.$

Block Reflection Positivity

Recall that the long range potential $1/|\boldsymbol{x}-\boldsymbol{y}|^3$ is reflection positive.

Block Reflection Positivity

Recall that the long range potential $1/|x-y|^3$ is reflection positive.

Use RP in the form of chessboard estimate with open boundary conditions [Giuliani-Lebowitz-Lieb 2007], once in the horizontal and once in the vertical direction, to infer that

$$\mathcal{H}_L(\boldsymbol{\sigma}) \geqslant \sum_T |T| \mathcal{E}(\boldsymbol{\sigma}_c(h_1(T), h_2(T))),$$

(sum over tiles T forming the state $\sigma \in \Omega_L$)

 $\sigma_c(h_1,h_2)$

Block Reflection Positivity

Recall that the long range potential $1/|x-y|^3$ is reflection positive.

Use RP in the form of chessboard estimate with open boundary conditions [Giuliani-Lebowitz-Lieb 2007], once in the horizontal and once in the vertical direction, to infer that

$$\mathcal{H}_L(\boldsymbol{\sigma}) \geqslant \sum_T |T| \mathcal{E}(\boldsymbol{\sigma}_c(h_1(T), h_2(T))),$$

(sum over tiles T forming the state $\sigma \in \Omega_L$)

 \rightarrow

- $\sigma_c(h_1,h_2)$
- \Rightarrow Sufficient to prove $\mathcal{E}(\sigma_c(h_1,h_2)) > \mathcal{E}(\sigma_s(h_*))$ for $h_1 \geqslant h_2$, $(h_1,h_2) \neq (\infty,h_*)$.
- To apply BRP it is crucial that Peierls' boundaries are only straight lines.

I - Excluding thin tiles

For h_2 too small, energy is lowered by removing 2 adjacent horizontal walls.

I - Excluding thin tiles

For h_2 too small, energy is lowered by removing 2 adjacent horizontal walls.

$$\mathcal{E}\left(\boldsymbol{\sigma}_{c}(h_{1}, h_{2})\right) - \frac{1}{L^{2}} \mathcal{H}_{L}(\boldsymbol{\sigma}_{I}) > \frac{4}{L} \left(J - \frac{1}{h_{1}} \sum_{\boldsymbol{x} \in T} \sum_{\boldsymbol{y} \in \Pi} \frac{1}{|\boldsymbol{x} - \boldsymbol{y}|^{3}}\right)$$
$$> \frac{4}{L} \left(J - 2\log h_{2} - \alpha_{s} - 1 - 2\log(\pi/2)\right) \stackrel{!}{>} 0.$$

Using again BRP and Riemann sum approx., it follows

Lemma I. For all J > 0,

$$\begin{array}{ll} h_1 \geqslant h_2 \,, & 1 \leqslant h_2 \leqslant c_I e^{J/2} \,, \\ c_I := \frac{2}{\pi} \, e^{-(\alpha_s + 1)/2} = 0.123 \,\dots & \Rightarrow & \mathcal{E} \big(\pmb{\sigma}_c(h_1, h_2) \big) > \mathcal{E} \big(\pmb{\sigma}_c(h_1, 3h_2) \big). \\ \text{(recall } h_* \sim c_* e^{J/2}, \; c_* = 0.871 \,\dots) \end{array}$$

II - Excluding thick tiles

For h_2 too large, energy is lowered by adding 2 adjacent horizontal walls.

II - Excluding thick tiles

For h_2 too large, energy is lowered by adding 2 adjacent horizontal walls.

Using again BRP and Riemann sum approx., it follows

Lemma II. There exists $J_{II} \gg 1$ s.t. for any $0 < \delta \leqslant 1$, $J > J_{II}$,

$$\begin{split} c_{II}(\delta)e^{J/2} &\leqslant h_2 \leqslant \delta \, h_1 \, , \\ c_{II}(\delta) &:= \frac{129}{9\pi} e^{-(\alpha_s/2) + 4\delta} = \left(1.461 \dots \right) e^{4\delta} \;\; \Rightarrow \;\; \mathcal{E} \left(\sigma_c(h_1, h_2) \right) > \mathcal{E} \left(\sigma_c(h_1, h_2/2) \right). \\ \text{(recall $h_* \sim c_* e^{J/2}$, $c_* = 0.871 \dots$)} \end{split}$$

III - Excluding long tiles of almost-optimal width

If $h_2 \sim h_*$ and $h_1 \gg 1$, energy is lowered by removing 2 adjacent vertical walls.

$$\mathcal{E}ig(m{\sigma}_c(h_1,h_2)ig) - rac{1}{L^2}\,\mathcal{H}_L(m{\sigma}_{III})$$

$$> \frac{4}{L} \left[J - \frac{1}{h_2} \left(\sum_{\boldsymbol{x} \in T_a} \sum_{\boldsymbol{y} \in \Pi} + \sum_{\boldsymbol{x} \in T_b} \sum_{\boldsymbol{y} \in \Xi} - 4 \sum_{\boldsymbol{x} \in T_a} \sum_{\boldsymbol{y} \in P} - 2 \sum_{\boldsymbol{x} \in T_a} \sum_{\boldsymbol{y} \in Q} \right) \frac{1}{|\boldsymbol{x} - \boldsymbol{y}|^3} \right]$$

III - Excluding long tiles of almost-optimal width

If $h_2 \sim h_*$ and $h_1 \gg 1$, energy is lowered by removing 2 adjacent vertical walls.

$$> \frac{4}{L} \left[J - 2 \log h_2 - \alpha_s - 2 \log(\pi/2) + 4 - \frac{1}{2} \frac{h_2}{h_1} - 2 \left(\frac{h_2}{h_1} \right)^2 \right] \stackrel{!}{>} 0.$$

III - Excluding long tiles of almost-optimal width

If $h_2 \sim h_*$ and $h_1 \gg 1$, energy is lowered by removing 2 adjacent vertical walls.

Using again BRP and Riemann sum approx., it follows

Lemma III. There exists $J_{III} \gg 1$ s.t. for any $0 < \delta \leqslant 1$, $J > J_{III}$,

$$\begin{split} c_{I}e^{J/2} &\leqslant h_{2} \leqslant \min\left\{\delta\,h_{1},\,c_{I\!I\!I}(\delta)e^{J/2}\right\},\\ c_{I\!I\!I}(\delta) &:= \frac{2}{\pi}e^{2-(\alpha_{s}/2)-\delta/4-\delta^{2}} = (1.507\ldots)e^{-\delta/4-\delta^{2}} \ \Rightarrow \ \mathcal{E}\!\left(\pmb{\sigma}_{c}(h_{1},h_{2})\right) \!>\! \mathcal{E}\!\left(\pmb{\sigma}_{c}(3h_{1},h_{2})\right).\\ &\left(\text{recall }h_{*}\!\sim\!c_{*}e^{J/2},\,\,c_{*}\!=\!0.871\ldots\right) \end{split}$$

Remaining GS candidates

For $J\gg 1$, $\sigma_c(h_1,h_2)$ is **not** a minimizer if (h_1,h_2) belongs to a colored region.

The only GS candidates remaining are $(h_1, h_2) = (+\infty, h)$ [stripes] and

$$(h_1,h_2) = \left(\frac{h}{\lambda}\,,\frac{h}{1-\lambda}
ight), \quad \text{ for } \quad h \in [c_{\min},c_{\max}]\,e^{J/2}, \ \lambda \in [\lambda_{\min},1/2]\,.$$

Excluding tiles of bounded aspect ratio

For h_1/h_2 finite, compare checkerboard $\sigma_c(h_1,h_2)$ with stripes $\sigma_s(h_1)$, $\sigma_s(h_2)$.

$$\mathcal{E}\big(\boldsymbol{\sigma}_c(h_1,h_2)\big) - \mathcal{E}\big(\boldsymbol{\sigma}_s(h_1)\big) - \mathcal{E}\big(\boldsymbol{\sigma}_s(h_2)\big) > \frac{4}{h_1h_2} \left(2\sum_{\boldsymbol{x}\in T}\sum_{\boldsymbol{y}\in P} + \sum_{\boldsymbol{x}\in T}\sum_{\boldsymbol{y}\in\Xi}\right) \frac{1}{|\boldsymbol{x}-\boldsymbol{y}|^3} \ .$$

Excluding tiles of bounded aspect ratio

For h_1/h_2 finite, compare checkerboard $\sigma_c(h_1,h_2)$ with stripes $\sigma_s(h_1)$, $\sigma_s(h_2)$.

$$\mathcal{E}\left(\boldsymbol{\sigma}_c(h_1, h_2)\right) - \mathcal{E}\left(\boldsymbol{\sigma}_s(h_1)\right) - \mathcal{E}\left(\boldsymbol{\sigma}_s(h_2)\right) > \frac{4}{h_1 h_2} \left(2\sum_{\boldsymbol{x} \in T} \sum_{\boldsymbol{y} \in P} + \sum_{\boldsymbol{x} \in T} \sum_{\boldsymbol{y} \in \Xi}\right) \frac{1}{|\boldsymbol{x} - \boldsymbol{y}|^3}.$$

Fixing $h_1 = h/\lambda$, $h_2 = h/(1-\lambda)$, by Riemann sum approx. (with $h \sim c \, e^{J/2}$, $J \gg 1$) and by explicit estimate w.r.t. $\lambda \in [\lambda_{min}, 1/2]$ it follows

$$\mathcal{E}(\boldsymbol{\sigma}_c(h_1, h_2)) - \mathcal{E}(\boldsymbol{\sigma}_s(h_1)) - \mathcal{E}(\boldsymbol{\sigma}_s(h_2))$$

$$> \frac{4\lambda(1-\lambda)}{h} \left[\frac{2\lambda}{3} - \log \lambda + 2 - \log\left(\frac{27}{16}\right) + \mathcal{O}(h^{-1}\log h) \right].$$

$$\begin{split} \mathcal{E} \big(\boldsymbol{\sigma}_s(h) \big) - \mathcal{E} \big(\boldsymbol{\sigma}_s(h_1) \big) - \mathcal{E} \big(\boldsymbol{\sigma}_s(h_2) \big) \\ &= -\frac{4}{h} \bigg[\lambda \, \log \lambda + (1 - \lambda) \log(1 - \lambda) + \mathcal{O} \big(h^{-1} \log h \big) \bigg] \,. \end{split}$$

$$\begin{split} \mathcal{E}\big(\boldsymbol{\sigma}_s(h)\big) - \mathcal{E}\big(\boldsymbol{\sigma}_s(h_1)\big) - \mathcal{E}\big(\boldsymbol{\sigma}_s(h_2)\big) \\ &= -\frac{4}{h} \bigg[\lambda \log \lambda + (1-\lambda)\log(1-\lambda) + \mathcal{O}\big(h^{-1}\log h\big)\bigg] \;. \end{split}$$

Summing up

$$\mathcal{E}\left(\boldsymbol{\sigma}_{c}(h_{1}, h_{2})\right) - \mathcal{E}\left(\boldsymbol{\sigma}_{s}(h)\right)$$

$$> \frac{4\lambda(1-\lambda)}{h} \left[F(\lambda) + \mathcal{O}\left(h^{-1}\log h\right)\right] > 0.$$

$$\mathcal{E}(\boldsymbol{\sigma}_s(h)) - \mathcal{E}(\boldsymbol{\sigma}_s(h_1)) - \mathcal{E}(\boldsymbol{\sigma}_s(h_2))$$

$$= -\frac{4}{h} \left[\lambda \log \lambda + (1 - \lambda) \log(1 - \lambda) + \mathcal{O}(h^{-1} \log h) \right].$$

Summing up

$$\mathcal{E}(\boldsymbol{\sigma}_c(h_1, h_2)) - \mathcal{E}(\boldsymbol{\sigma}_s(h))$$

$$> \frac{4\lambda(1-\lambda)}{h} \left[F(\lambda) + \mathcal{O}(h^{-1}\log h) \right] > 0.$$

Lemma. There exists $J_{\min} \gg 1$ s.t. for $J > J_{\min}$, $h_1 = h/\lambda$ and $h_2 = h/(1-\lambda)$,

$$c_{\min} e^{J/2} \leqslant h \leqslant c_{\max} e^{J/2},$$
 $\lambda_{\min} \leqslant \lambda \leqslant 1/2$
 $\Rightarrow \mathcal{E}(\sigma_c(h_1, h_2)) > \mathcal{E}(\sigma_s(h)).$

$$\mathcal{E}(\boldsymbol{\sigma}_s(h)) - \mathcal{E}(\boldsymbol{\sigma}_s(h_1)) - \mathcal{E}(\boldsymbol{\sigma}_s(h_2))$$

$$= -\frac{4}{h} \left[\lambda \log \lambda + (1-\lambda) \log(1-\lambda) + \mathcal{O}(h^{-1} \log h) \right].$$

Summing up

$$\mathcal{E}(\sigma_c(h_1, h_2)) - \mathcal{E}(\sigma_s(h))$$

$$> \frac{4\lambda(1-\lambda)}{h} \left[F(\lambda) + \mathcal{O}(h^{-1}\log h) \right] > 0.$$

Lemma. There exists $J_{\min}\!\gg\!1$ s.t. for $J\!>\!J_{\min}$, $h_1\!=\!h/\lambda$ and $h_2\!=\!h/(1\!-\!\lambda)$,

$$c_{\min} e^{J/2} \leqslant h \leqslant c_{\max} e^{J/2},$$

 $\lambda_{\min} \leqslant \lambda \leqslant 1/2$ $\Rightarrow \mathcal{E}(\sigma_c(h_1, h_2)) > \mathcal{E}(\sigma_s(h)).$

So, periodic stripes corresp. to $(h_1,h_2)\!=\!(+\infty,h)$ are the only minimizers in Ω_L . Conclude by optimization w.r.t. h.

Summary and outlook

- Periodic striped states (of optimal width) are the only energy minimizer in the class of aperiodic configurations with Peierls' boundaries consisting of straight domain walls.
- ▶ Proof derived by combination of chessboard estimates with quantitative a priori estimates, relying on suitable "spin flips".

Summary and outlook

- Periodic striped states (of optimal width) are the only energy minimizer in the class of aperiodic configurations with Peierls' boundaries consisting of straight domain walls.
- ▶ Proof derived by combination of chessboard estimates with quantitative a priori estimates, relying on suitable "spin flips".
- ► Future developments:
 - larger variational class (non-straight boundaries) for d=2, p=3;
 - different values of d, p (especially d);
 - continuum limit.

Thanks a lot for your attention!