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e Background: adiabatic theorems
e Our setting: interacting Fermi particles on a lattice
Dynamics with weak and slowly varying perturbations.

e Main result: convergent expansion for time-evolved local observables,
especially at small temperature. Implications: zero-temperature adia-
batic theorem

e Sketch of the proof: wick rotation, decay of Euclidean correlations

e Conclusion and next steps
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Basic setting: time-ependent Hamiltonian H(s), s € [—1,0] with unique
ground state ¢, (energy FE/(s)); spectral gap for all s,

nt | dist(B(s), o(H(5))\{E(s)}) =9 >0

Let 1 >0 and consider the quantum dynamics, for ¢t € [—1 /7, 0],
10 0(t) = H(nt) p(t), b(=1/n)=p-

[Born&Fock; Kato] Suppose |[H(s)| is finite. Then as 7 — 07 the
dynamics follows the instantaneous ground state:

1) = ((t), en)pmell <Cn forallt e [=1/7,0].

Basic result in quantum dynamics with many applications and exten-
sions.
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e For many-body systems the basic version is unsatisfying; for instance
in a quantum spin system or lattice Fermion model on A =Z¢. Typ-
ical Hamiltonian

H(s)= ) @x(s).

X CAp

with only ®x individually bounded. Typically || (s)|| ~ L%, and pre-
vious bound becomes useless for n L > 1.

e Recent results, especially |[Bachman, De Roeck & Fraas 2017| for spin
systems: norm bounds are too strong, so look at local topology: for
Ox a bounded local operator,

[{9(2), Ox (1)) = (Pnt; Oxne)| < O,

uniformly in L (if the gap is uniform).

e Linear response |BARF17|; extends to Fermions [Monaco & Teufel
2017],...



Positive temperature?

What about 7" > 07 Density matrix starting with pg,L:ﬁe_ﬁﬁ(_l)
and evolved by Schrodinger equation ’

10p(t) = [H(nt), p(t)],  p(=1/n)=ps,L .
Let (:),+ be the Gibbs state of H(nt) (instantaneous Gibbs state).
(When) is
'Tr Ox p(t) — (Ox )| smallasn— 07 7 (%)
Abou Salem-Frohlich 05; Jaksic-Pillet 14: adiabatic theorem for

n— 0T at fixed L, under suitable ergodicity hyp. (based on [Avron-
Elgart 98|)

Jaksi¢-Pillet-Tauber 22: (*) for n— 0" after L — oo at fixed ( implies
that the specific entropy of (-)s is constant in s. No-go theorem?

More modestly, is there an 7n-dependent but L-indep. range of [
where (*) holds? In particular: T'— 0 after L — oo? Today’s talk.
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e We consider interacting Fermions on a discrete d-dimensional torus or
box I} :=7¢. Thermydamic limit (L — oo ) only via uniform esti-
mates.

With a finite numer M of internal degrees of freedom (spin, particle
species, unit cell,...) labeled by Sy, ={1,...., M} this gives configura-
tion space Ay =1}, X Syy.

e Let Fr be the Fermionic Fock space over A; with creation/annihila-
tion operators satisfying

{ai,a;}:{a;,a;}:(), {aiaa;}zéx,y (X7y€AL)

e For each X C Ay let Ax denote complex polynomials made out of
ai: for x € X, and A% those commuting with N = ZXEAL al ay
(almost always consider the latter).
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Real and imaginary time evolutions

e Heisenberg evolution associated with H is
7(Ox) =Mt O e=iMt,
e Later helpful to denote Euclidean evolution
v5(Ox) = eSH=1N) O e=s(H—uN).
clearly, if [Ox n]=0 (i.e. Ox € AY)
Vs(Ox) =7_;5(Ox) forallt € C.

e Including the chemical potential in v, makes the Gibbs state a Kubo-
Martin-Schwinger (KMS) state:

(15(01) 14(O02)) 5, 1,2 = (+5(02) 15(O1)) 5,4, L
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e Connected/truncated correlation function or cumulant defined by

(01;02)8,1,1:=(0102)5, 41,1 — (O1)8,1,0(02) 5,11, L}

more generally n-point version (O, even in ™)

an
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e When do these decay in space/time? Space decay from Lieb-Robinson
bound for finite range bounded interactions:

|| [Tt(OX), OY] || < Cevt—c dist(X,Y)-

e Decay in time is more elusive...
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Time ordered Euclidean correlations

e Define Euclidean time-ordering

T 74,(01) - 7,(On) 1=
> L) = 2 () Ve (Or (1) Ve (Omi)

mell,

e Time ordered cumulants (T v, (Ox,); - 7:,(Ox,))3. ... often decay

in space and (Euclidean/imaginary) time; consequently used for per-
turbation theory of Gibbs states
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e For ¢t <0 we consider the time-dependent Hamiltonian
H(nt)=H+egnt)P,
with >0 and P =) cA, Uy, self-adjoint, finite-ranged, bounded.
Interested in 7 small (slow) and £ small (weak) in different senses.
e More detail on “switch function” g soon, prototype is g(nt)=e"".

e Time-dependent density matrix
10y p(t) =[H(nt), p(t)],  p(=00) = pp,pu,1
and time-dependent state given by expectation values Trr, O p(?).

e Dependence on ¢, 7?7 Comparison with Gibbs state of H(nt)?
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e Duhamel expansion for these dynamics:

Trr,Op(t) = (O)p,ur

with the integral over —oco <s,, < --- <57 < 1.
e Decay of g and ||7:(P)||=||P| < C|AL| let us bound nth term by

C™le|™ 1
n! "

|AL‘n7

which is convergent for 7, L fixed but useless for limits.

e Better bound using multicommutator Lieb-Robinson bounds |Bru-
Pedra| uniform in L but not in 7.



Assumption on the switching function

Assumption S

The switching function can be expressed as

g(t) = / et n(e) de

for he L1([0,00)) satisfying

1OL g, o, /1°o§|h<§>\d§<oo

0 £d+2

or a finite signed measure (e.g. sum of Dirac ds) with |h(&)|d¢ replaced
by the total variation.

Examples: ¢g(t)=¢', g(t)=(t —a) " with n>d+4 and a > 0.
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e ¢ always analytic on LHP; so decay for t — —oco (even Ret — —oo off
R) but unbounded support

e No particular restrictions on ¢(™)(0)

e We will use this to approximate g(7t) by

9p.n(t) =) hp(w) e

with the sum over positive integer multiples of 27/ (3; then as well as
analyticity and decay this is

— periodic gg ,(t +1i ) = gg.,(t), cf. KMS condition, Matsubara
frequencies

— oscillating in imaginary time, with

G
/ 93, n(t+is)ds=0
0



First part of main result 15/25

Under Assumption S, for any Ox € A

(=¢)"

Trr, OX,O(t>:<OX>6,u,L‘|'Z In+Rg ., 0(Ox,e,m,L), where

nl
n=>1
In::/[o 8] d§[Hgﬁ’”(t_isj) (TYs1(P);¥52(P)i- - +3¥5,(P);Ox ), s, L
3 ]:1
and
£
Rov(Ox,2,1. D S K(X, [Ox ) ey

uniformly in L.

Reminder: ~. is the FEuclidean evolution for H = H(—o0), p(t) is evolved
by

H(nt)=H+ecg(nt)P
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Comments on the result 16/25

e Most interesting with absolute convergence of the series (especially for
L — o0), T'll come back to this

e Error terms diverge for n— 0" with [, ¢ fixed, so this applies to the
adiabatic regime only holds at zero temperature

e At zero temperature the imaginary-time expansion gives an exact
expression for this class of time evolutions

e There are special cases
~ 21N
g(nt)= hnexp<—t>

(note 7-dependent) where the imaginary-time series is exact; I don’t
know if this is significant.
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Assumption on connected correlations

Assumption D

For each 3>0 and each O € AV, there exist c=c(3,P) and C=C(O):

/[]d_t(1+|_t\5) Z (T, (Tx,): 372 (Ux, ); O] < C ¢l
0,s|™ "

Ty oo CAj
where [t|lg=3 _minnez [t; —m .

Under assumptions S and D, 3eg=e¢(c) such that for |e| <eo,

1. The series in Theorem 1 is absolutely convergent

2. With (-); denoting the Gibbs state of H(nt),

=
Trr, Ox p(t) — (Ox il < K<|6|77+ = ﬁ)
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Comments on the combined result 1925

e Last point follows by comparison with cumulant expansion for the
instantaneous Gibbs state

<O>nt—<0>ﬁ,u L

t
+Z 8977 /W] ds (T, (P); 76> (P)i- 3760 (P);O )k

which is the series in the technical theorem with gz ,(t —is;) — g(nt);
hence additional error term of order |¢|n

e Absolute convergence survives the limit L — oo; no need for extra
assumptions on long time behavior (clustering)

e When the decay property holds uniformly for [ — oo, we recover a
standard adiabatic theorem in the zero temperature limit
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Structure of the proof of Theorem 1

Changing the switching function g(nt) to gz ,(f) a sum of “Mat-
subara” exponentials gives a correction Rg, , (Ox, e, n, L), which
given Assumption S can be estimated based on a Lieb-Robinson
bound

Taking advantage of the imaginary-time periodicity and analyticity of
gs,n we can deform the integrals in the resulting Duhamel expansion
into imaginary-time integrals of (non-connected) correlation functions
(Wick rotation); using the oscillation of the (now imaginary) exponen-

tials in gz , the non-connected parts of the correlations cancel in the
integration



Approximating the real-time dynamics 1

Lewwpal

Let H, p denote the versions with gg , replacing g; then

Cole
Ter, O [p(t) = 5] < S

Sketch of the proof; for simplicity g(nt) =exp(nt), gz ,(t) =exp(nst)
with g € %WINJF a little bigger than 7, |7 —ng| < %ﬁ

Letting U, U denote the unitary evolutions associated with H, H,

fnﬁomm—ﬁwﬂ

| lim TI’}“L —T;t) OU(t; =T) —Z;{(—T; t) (9?;[(75; _T)}PB,M,L‘

T'— oo

< hmsupHO — Ut =T)U(-T;t) OU(t; =T U(-T, t)H

T'— oo



Approximating the real-time dynamics 2
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Approximating the real-time dynamics 2

o Let Cyy(t) = g(nt) — gs.n(t), so that H(nt) =H(n,t) + (s,,(t); then
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Approximating the real-time dynamics 2

Let Cs.y(t) = g(nt) — gs.y(t), so that H(nt) =H(n,t) + Cg,,(t); then
‘(9 Ut —T)U (=T t) OU(t; — )u(—T,t)H

H/Tas (s =T “<—T;S)05l(s;—T)U(—T,s)]ds

</ le] |Cn, 8( |H77Uts)(91/{3t Hds
—T

Using a Lieb-Robinson bound for non-autonomous dynamics
|Bachman, Michalakis, Nachtergaele, Sims; Bru, Pedra| gives the esti-

t
mate < Co / e]1C.5()] (1+]¢ — 5] ds
—T

The result follows from this and [, s(s)| =[e"* —e"?| < 2g| s|en?



Wick rotation: overview

We now take the Duhamel series for the dynamics of H(7n,t) and rewrite
each term as an imaginary-time integral.

This is based on a step in the proof of stability of KMS states in |Brat-
teli-Robinson vol. 2|, which has a time independent permutation and so
uses a clustering assumption for integrability in time.
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Wick rotation: lowest order

e Using KMS and periodicity of gg , and expanding the commutator,

[ 0o PO 10

— 00

:/t 198.7(8)(7s(P)7:(O)) = 95,5 (5 =18) (Ts —ip(P)7:(O))] ds

— O

B
=i [ 95,0(t=15) (- is(P)7(ON) .1

e then using stationarity of the Gibbs state

B B
/O Gt 15) (rse(P)( @) ds = [ st ~15) ((P)O)ds

0

e and we can replace the correlation with the connected one using

B
/O go.n(t — i 5) (1(P))(O) ds = (P) (O) / g, o(t —i5)ds =0,



Conclusion 25 /25

e We show a sort of adiabatic behaviour (closeness of non-autonomously
evolved system to instantaneous Gibbs state) for low temperature,
T <n*t2 with time scale n—!



Conclusion 25 /25

e We show a sort of adiabatic behaviour (closeness of non-autonomously
evolved system to instantaneous Gibbs state) for low temperature,
T <n*t2 with time scale n—!

e Decay of correlations and convergence of cumulant expansion doesn’t
quite require a gap, are there cases where we can extend our result?



Conclusion 25 /25

e We show a sort of adiabatic behaviour (closeness of non-autonomously
evolved system to instantaneous Gibbs state) for low temperature,
T <n*t2 with time scale n—!

e Decay of correlations and convergence of cumulant expansion doesn’t
quite require a gap, are there cases where we can extend our result?

e Replace with more sophisticated expansions?



Conclusion 25 /25

e We show a sort of adiabatic behaviour (closeness of non-autonomously
evolved system to instantaneous Gibbs state) for low temperature,
T <n*t2 with time scale n—!

e Decay of correlations and convergence of cumulant expansion doesn’t
quite require a gap, are there cases where we can extend our result?

e Replace with more sophisticated expansions?

e Exactness of linear response (where appropriate)?



