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Outline 2/25

� Background: adiabatic theorems

� Our setting: interacting Fermi particles on a lattice

Dynamics with weak and slowly varying perturbations.

� Main result: convergent expansion for time-evolved local observables,
especially at small temperature. Implications: zero-temperature adia-
batic theorem

� Sketch of the proof: wick rotation, decay of Euclidean correlations

� Conclusion and next steps



The adiabatic theorem 3/25

� Basic setting: time-ependent Hamiltonian H(s), s2 [¡1; 0] with unique
ground state 's (energy E(s)); spectral gap for all s,

inf
s2[0;1]

dist(E(s); �(H(s))nfE(s)g)= � > 0

� Let � > 0 and consider the quantum dynamics, for t2 [¡1/�; 0],

i @t (t)=H(� t)  (t);  (¡1/�)= '¡1

� [Born&Fock; Kato] Suppose kH_ (s)k is finite. Then as �! 0+ the
dynamics follows the instantaneous ground state:

k (t)¡h (t); '�ti'�tk6C� for all t2 [¡1/�; 0]:

� Basic result in quantum dynamics with many applications and exten-
sions.
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Many-body adiabatic theorems 4/25

� For many-body systems the basic version is unsatisfying; for instance
in a quantum spin system or lattice Fermion model on �L=ZL

d. Typ-
ical Hamiltonian

H(s)=
X
X��L

�X(s);

with only �X individually bounded. Typically kH_ (s)k � Ld, and pre-
vious bound becomes useless for �Ld& 1.

� Recent results, especially [Bachman, De Roeck & Fraas 2017] for spin
systems: norm bounds are too strong, so look at local topology: for
OX a bounded local operator,

jh (t);OX (t)i¡ h'�t;OX'�tij6C�;

uniformly in L (if the gap is uniform).

� Linear response [BdRF17]; extends to Fermions [Monaco & Teufel
2017], . . .
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Positive temperature? 5/25

� What about T > 0? Density matrix starting with ��;L=
1

Z�;L
e¡�H(¡1)

and evolved by Schrödinger equation

i @t�(t)= [H(� t); �(t)]; �(¡1/�)= ��;L :

� Let h�i�t be the Gibbs state of H(� t) (instantaneous Gibbs state).
(When) is

jTrOX �(t)¡hOX i�tj small as �! 0+ ? (�)

� Abou Salem-Fröhlich 05; Jaksic-Pillet 14: adiabatic theorem for
�! 0+ at fixed L, under suitable ergodicity hyp. (based on [Avron-
Elgart 98])

� Jak²i¢-Pillet-Tauber 22: (*) for �! 0+ after L!1 at fixed � implies
that the specific entropy of h�is is constant in s. No-go theorem?

� More modestly, is there an �-dependent but L-indep. range of �
where (*) holds? In particular: T! 0 after L!1? Today's talk.



Lattice Fermions 6/25

� We consider interacting Fermions on a discrete d-dimensional torus or
box ¡L :=ZL

d. Thermydamic limit (L!1 ) only via uniform esti-
mates.

With a finite numer M of internal degrees of freedom (spin, particle
species, unit cell, . . . ) labeled by SM = f1; : : : :;M g this gives configura-
tion space �L :=¡L�SM:

� Let FL be the Fermionic Fock space over �L with creation/annihila-
tion operators satisfying

fax+; ay+g= fax¡; ay¡g=0; fax+; ay¡g= �x,y (x,y2�L)

� For each X � �L let AX denote complex polynomials made out of
ax
� for x 2X, and AXN those commuting with N =

P
x2�L ax

+ ax
¡

(almost always consider the latter).
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Interaction, Hamiltonian, Gibbs state 7/25

� Finite range, particle conserving interactions associated with Hamilto-
nians over �L:

H=
X
X��L

�X with�X=�X� ;

also [�X ;N ] = 0 (particles conserved); also assume k�Xk bounded and
finite range uniformly in L. Typical example:

H=
X

x,y2�L

ax
+h(x; y)ay

¡+
X

x,y2�L

ax
+ ay

+v(x; y)ay
¡ax
¡

with h, v bounded and finite-range.

� Other properties not too important so e.g. standard boundary condi-
tions allowed

� Grand-canonical Gibbs state: for OX 2AX ;

hOX i�;�;L=TrFLOX��;�;L with ��;�;L=
e¡�(H¡�N )

TrFLe
¡�(H¡�N )
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Real and imaginary time evolutions 8/25

� Heisenberg evolution associated with H is

�t(OX)= eiHtO e¡iHt:

� Later helpful to denote Euclidean evolution


s(OX)= es(H¡�N )OX e¡s(H¡�N );

clearly, if [OX;N ] = 0 (i.e. OX 2AXN)


s(OX)= �¡is(OX) for all t2C:

� Including the chemical potential in 
s makes the Gibbs state a Kubo-
Martin-Schwinger (KMS) state:

h
s(O1) 
t(O2)i�;�;L= h
t+�(O2) 
s(O1)i�;�;L
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Correlation functions 9/25

� Connected/truncated correlation function or cumulant defined by

hO1;O2i�;�;L := hO1O2i�;�;L¡hO1i�;�;LhO2i�;�;L;

more generally n-point version (Oj even in a�)

hO1;O2; � � �;Oni :=
@n

@�1� � �@�n
log hexp (�1O1+ � � �+�nOn)i

��������
�1= � � �=0

� When do these decay in space/time? Space decay from Lieb-Robinson
bound for finite range bounded interactions:

k[�t(OX);OY ]k6Cevt¡c dist(X;Y ):

� Decay in time is more elusive. . .
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Time ordered Euclidean correlations 10/25

� Define Euclidean time-ordering

T 
t1(O1)� � �
tn(On) :=X
�2�n

1(t�(1)> � � �> t�(n)) 
t�(1)(O�(1))� � �
t�(n)(O�(n))

� Time ordered cumulants hT 
t1(OX1); � � �; 
tn(OXn)i�;�;L often decay
in space and (Euclidean/imaginary) time; consequently used for per-
turbation theory of Gibbs states
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Driving the system 11/25

� For t6 0 we consider the time-dependent Hamiltonian

H(� t)=H+ " g(� t)P ;

with � > 0 and P =
P

X��L	X, self-adjoint, finite-ranged, bounded.
Interested in � small (slow) and " small (weak) in different senses.

� More detail on �switch function� g soon, prototype is g(� t)= e�t:

� Time-dependent density matrix

i @t �(t)= [H(� t); �(t)]; �(¡1)= ��;�;L

and time-dependent state given by expectation values TrFLO �(t).

� Dependence on "; �? Comparison with Gibbs state of H(� t)?



Driving the system 11/25

� For t6 0 we consider the time-dependent Hamiltonian

H(� t)=H+ " g(� t)P ;

with � > 0 and P =
P

X��L	X, self-adjoint, finite-ranged, bounded.
Interested in � small (slow) and " small (weak) in different senses.

� More detail on �switch function� g soon, prototype is g(� t)= e�t:

� Time-dependent density matrix

i @t �(t)= [H(� t); �(t)]; �(¡1)= ��;�;L

and time-dependent state given by expectation values TrFLO �(t).

� Dependence on "; �? Comparison with Gibbs state of H(� t)?



Driving the system 11/25

� For t6 0 we consider the time-dependent Hamiltonian

H(� t)=H+ " g(� t)P ;

with � > 0 and P =
P

X��L	X, self-adjoint, finite-ranged, bounded.
Interested in � small (slow) and " small (weak) in different senses.

� More detail on �switch function� g soon, prototype is g(� t)= e�t:

� Time-dependent density matrix

i @t �(t)= [H(� t); �(t)]; �(¡1)= ��;�;L

and time-dependent state given by expectation values TrFLO �(t).

� Dependence on "; �? Comparison with Gibbs state of H(� t)?



Driving the system 11/25

� For t6 0 we consider the time-dependent Hamiltonian

H(� t)=H+ " g(� t)P ;

with � > 0 and P =
P

X��L	X, self-adjoint, finite-ranged, bounded.
Interested in � small (slow) and " small (weak) in different senses.

� More detail on �switch function� g soon, prototype is g(� t)= e�t:

� Time-dependent density matrix

i @t �(t)= [H(� t); �(t)]; �(¡1)= ��;�;L

and time-dependent state given by expectation values TrFLO �(t).

� Dependence on "; �? Comparison with Gibbs state of H(� t)?



Perturbation theory for quantum dynamics 12/25

� Duhamel expansion for these dynamics:

TrFLO �(t) = hOi�;�;L

+
X
n=1

1

(¡i ")n
Z
�
ds

24Y
j=1

n

g(� sj)

35
�h[� � �[�t(O); �s1(P)]� � �; �sn(P)]i�;�;L

with the integral over ¡16 sn6 � � �6 s16 t.
� Decay of g and k�s(P)k= kPk6C j�Lj let us bound nth term by

Cnj"jn
n!

1
�n
j�Ljn;

which is convergent for �, L fixed but useless for limits.

� Better bound using multicommutator Lieb-Robinson bounds [Bru-
Pedra] uniform in L but not in �.
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Assumption on the switching function 13/25

The switching function can be expressed as

g(t)=
Z
0

1
e�th(�) d�

for h2L1([0;1 )) satisfyingZ
0

1 jh(�)j
�d+2

d� <1;
Z
1

1
� jh(�)jd� <1

or a finite signed measure (e.g. sum of Dirac �s) with jh(�)jd� replaced
by the total variation.

Assumption S

Examples: g(t)= et, g(t)= (t¡ a)¡n with n> d+4 and a> 0.



Commentary on Assumption S 14/25

� g always analytic on LHP; so decay for t!¡1 (even Re t!¡1 off
R) but unbounded support

� No particular restrictions on g(n)(0)

� We will use this to approximate g(� t) by

g�;�(t)=
X
!

h~�(!) e!t

with the sum over positive integer multiples of 2�/�; then as well as
analyticity and decay this is

¡ periodic g�;�(t + i �) = g�;�(t), cf. KMS condition, Matsubara
frequencies

¡ oscillating in imaginary time, withZ
0

�

g�;�(t+ i s) ds=0
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First part of main result 15/25

Under Assumption S, for any OX 2AXN

TrFLOX�(t)=hOX i�;�;L+
X
n>1

(¡")n
n!

In+R�;�;L(OX ;";�;L) ; where

In:=
Z
[0;�]n

ds

"Y
j=1

n

g�;�(t¡isj)
#
hT
s1(P);
s2(P); � � �;
sn(P);OX i�;�;L

and

jR�;�;L(OX ; "; �; L)j6K(X; kOXk)
j"j

�d+2 �

uniformly in L.

Theorem 1

Reminder: 
. is the Euclidean evolution for H=H(¡1), �(t) is evolved
by

H(� t)=H+ " g(� t)P



Comments on the result 16/25

� Most interesting with absolute convergence of the series (especially for
L!1), I'll come back to this

� Error terms diverge for �! 0+ with �, " fixed, so this applies to the
adiabatic regime only holds at zero temperature

� At zero temperature the imaginary-time expansion gives an exact
expression for this class of time evolutions

� There are special cases

g(� t)=
X
n=1

1

h~n exp
�
2�n
�

t

�
(note �-dependent) where the imaginary-time series is exact; I don't
know if this is significant.
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Assumption on connected correlations 17/25

For each � > 0 and each O2AN, there exist c= c(�;P) and C =C(O):Z
[0;�]n

d t (1+ j tj�)
X

X1; : : :��L

jhT
t1(	X1); � � �; 
tn(	Xn);Oij6C cnn!

where j tj�=
P

j=1
n minm2Z jtj¡m� j.

Assumption D

Under assumptions S and D, 9"0� "0(c) such that for j"j<"0,

1. The series in Theorem 1 is absolutely convergent

2. With h�it denoting the Gibbs state of H(� t),

jTrFLOX �(t)¡hOX itj6K
�
j"j�+ j"j

�d+2 �

�

Theorem 2
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Comments on Assumption D 18/25

� Also implies a convergent perturbative expansion for the instanta-
neous Gibbs state (see next slide)

� If H and P are both quadratic in a�, the bound follows from Wick's
rule and the relation to the one-particle correlations. In particular if
1-particle H is gapped (uniformly in L) and � is in the gap, c is inde-
pendent of �.

� If H=H0+�V with H0 as above and V, P finite range this extends to
� not too large via cluster expansion (Battle-Brydges-Federbush-
Kennedy formula) this is the main reason for considering Fermions
rather than lattice spin systems.

� Related to spectral properties (e.g. de Roeck-Salmhofer proof of sta-
bility of gap) but not as strong as (uniform) gap
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Comments on the combined result 19/25

� Last point follows by comparison with cumulant expansion for the
instantaneous Gibbs state

hOi�t=hOi�;�;L

+
X
n=1

1
(¡"g(�t))n

n!

Z
[0;�]n

ds hT
s1(P);
s2(P); � � �;
sn(P);Oi�;�;L

which is the series in the technical theorem with g�;�(t¡ i sj)! g(� t);
hence additional error term of order j"j�
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hOi�t=hOi�;�;L

+
X
n=1

1
(¡"g(�t))n

n!

Z
[0;�]n

ds hT
s1(P);
s2(P); � � �;
sn(P);Oi�;�;L

which is the series in the technical theorem with g�;�(t¡ i sj)! g(� t);
hence additional error term of order j"j�

� Absolute convergence survives the limit L!1; no need for extra
assumptions on long time behavior (clustering)

� When the decay property holds uniformly for �!1, we recover a
standard adiabatic theorem in the zero temperature limit



Structure of the proof of Theorem 1 20/25

I. Changing the switching function g(� t) to g�;�(t) a sum of �Mat-
subara� exponentials gives a correction R�;�;L(OX ; "; �; L), which
given Assumption S can be estimated based on a Lieb-Robinson
bound

II. Taking advantage of the imaginary-time periodicity and analyticity of
g�;� we can deform the integrals in the resulting Duhamel expansion
into imaginary-time integrals of (non-connected) correlation functions
(Wick rotation); using the oscillation of the (now imaginary) exponen-
tials in g�;� the non-connected parts of the correlations cancel in the
integration
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Approximating the real-time dynamics 1 21/25

Let H~, �~ denote the versions with g�;� replacing g; then������TrFLO [�(t)¡ �~(t)]
������6 CO j"j

�d+2�

Lemma 1

Sketch of the proof; for simplicity g(� t) = exp(� t), g�;�(t) = exp(�� t)
with �� 2 2�

�
N+ a little bigger than �, j�¡ �� j6 2�

�
.

Letting U , U~ denote the unitary evolutions associated with H;H~,������TrFLO [�(t)¡ �~(t)]
������

=
������ lim
T!1

TrFL
�
U(¡T ; t)OU(t;¡T )¡U~(¡T ; t)OU~(t;¡T )

�
��;�;L

������
6 lim sup

T!1







O¡U(t;¡T )U~(¡T ; t)OU~(t;¡T )U(¡T ; t)









Approximating the real-time dynamics 2 22/25

� Let ��;�(t) = g(� t) ¡ g�;�(t), so that H(� t) =H~(�; t) + ��;�(t); then





O¡U(t;¡T )U~(¡T ; t)OU~(t;¡T )U(¡T ; t)






=








Z
¡T

t @
@s

h
U(s;¡T )U~(¡T ; s)OU~(s;¡T )U(¡T ; s)

i
ds










6
Z
¡T

t

j"j j��;�(s)j






�P ;U~(t; s)OU~(s; t)�





 ds

� Using a Lieb-Robinson bound for non-autonomous dynamics
[Bachman, Michalakis, Nachtergaele, Sims; Bru, Pedra] gives the esti-

mate 6CO
Z
¡T

t

j"j j��;�(s)j (1+ jt¡ sjd) ds

� The result follows from this and j��;�(s)j= je�s¡ e��sj6
2�
�
jsje�s
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Wick rotation: overview 23/25

We now take the Duhamel series for the dynamics of H~(�; t) and rewrite
each term as an imaginary-time integral.

Z
sn6� � �6s16t

ds

"Y
j=1

n

g�;�(sj)

#
h[� � �[�t(O); �s1(P)]� � �; �sn(P)]i�;�;L

=(¡i)
n

n!

Z
[0;�]n

"Y
j=1

n

g�;�(t¡ i sj)
#
hT
s1(P); � � �; 
sn(P);Oi�;�;L

Lemma 2

This is based on a step in the proof of stability of KMS states in [Brat-
teli-Robinson vol. 2], which has a time independent permutation and so
uses a clustering assumption for integrability in time.



Wick rotation: lowest order 24/25

� Using KMS and periodicity of g�;� and expanding the commutator,Z
¡1

t

g�;�(s)h[�s(P);�t(O)]i�;�;Lds

=
Z
¡1

t

[g�;�(s)h�s(P)�t(O)i¡g�;�(s¡i�)h�s¡i�(P)�t(O)i]ds

=i
Z
0

�

g�;�(t¡is)h�t¡is(P)�t(O)i�;�;Lds

� then using stationarity of the Gibbs stateZ
0

�

g�;�(t¡ i s) h�t¡is(P)�t(O)i ds=
Z
0

�

g�;�(t¡ i s) h
s(P)Oids

� and we can replace the correlation with the connected one usingZ
0

�

g�;�(t¡ i s) h
s(P)ihOi ds= hP i hOi
Z
0

�

g�;�(t¡ i s) ds=0:
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Conclusion 25/25

� We show a sort of adiabatic behaviour (closeness of non-autonomously
evolved system to instantaneous Gibbs state) for low temperature,
T . �d+2 with time scale �¡1

� Decay of correlations and convergence of cumulant expansion doesn't
quite require a gap, are there cases where we can extend our result?

� Replace with more sophisticated expansions?

� Exactness of linear response (where appropriate)?
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