Adiabatic evolution of low temperature many-body systems

RAFAEL LEON GREENBLATT

arxiv:2211.16836

with Markus Lange, Giovanna Marcelli, and Marcello Porta Supported by ERC StG MamBoQ (PI: M. Porta)

Rome, 8 February 2023

- Background: adiabatic theorems
- Our setting: interacting Fermi particles on a lattice

 Dynamics with weak and slowly varying perturbations.
- Main result: convergent expansion for time-evolved local observables, especially at *small temperature*. Implications: zero-temperature adiabatic theorem
- Sketch of the proof: wick rotation, decay of Euclidean correlations
- Conclusion and next steps

• Basic setting: time-ependent Hamiltonian H(s), $s \in [-1, 0]$ with unique ground state φ_s (energy E(s)); spectral gap for all s,

$$\inf_{s \in [0,1]} \operatorname{dist}(E(s), \sigma(H(s)) \setminus \{E(s)\}) = \delta > 0$$

• Let $\eta > 0$ and consider the quantum dynamics, for $t \in [-1/\eta, 0]$,

$$i \partial_t \psi(t) = H(\eta t) \psi(t), \qquad \psi(-1/\eta) = \varphi_{-1}$$

• [Born&Fock; Kato] Suppose $||\dot{H}(s)||$ is finite. Then as $\eta \to 0^+$ the dynamics follows the instantaneous ground state:

$$\|\psi(t) - \langle \psi(t), \varphi_{\eta t} \rangle \varphi_{\eta t} \| \leq C \eta$$
 for all $t \in [-1/\eta, 0]$.

Basic result in quantum dynamics with many applications and extensions.

• Basic setting: time-ependent Hamiltonian H(s), $s \in [-1, 0]$ with unique ground state φ_s (energy E(s)); spectral gap for all s,

$$\inf_{s \in [0,1]} \operatorname{dist}(E(s), \sigma(H(s)) \setminus \{E(s)\}) = \delta > 0$$

• Let $\eta > 0$ and consider the quantum dynamics, for $t \in [-1/\eta, 0]$,

$$i \partial_t \psi(t) = H(\eta t) \psi(t), \qquad \psi(-1/\eta) = \varphi_{-1}$$

• [Born&Fock; Kato] Suppose $||\dot{H}(s)||$ is finite. Then as $\eta \to 0^+$ the dynamics follows the instantaneous ground state:

$$\|\psi(t) - \langle \psi(t), \varphi_{\eta t} \rangle \varphi_{\eta t}\| \leq C \eta$$
 for all $t \in [-1/\eta, 0]$.

Basic result in quantum dynamics with many applications and extensions.

• Basic setting: time-ependent Hamiltonian H(s), $s \in [-1, 0]$ with unique ground state φ_s (energy E(s)); spectral gap for all s,

$$\inf_{s \in [0,1]} \operatorname{dist}(E(s), \sigma(H(s)) \setminus \{E(s)\}) = \delta > 0$$

• Let $\eta > 0$ and consider the quantum dynamics, for $t \in [-1/\eta, 0]$,

$$i \partial_t \psi(t) = H(\eta t) \psi(t), \qquad \psi(-1/\eta) = \varphi_{-1}$$

• [Born&Fock; Kato] Suppose $||\dot{H}(s)||$ is finite. Then as $\eta \to 0^+$ the dynamics follows the instantaneous ground state:

$$\|\psi(t) - \langle \psi(t), \varphi_{\eta t} \rangle \varphi_{\eta t} \| \leq C \eta$$
 for all $t \in [-1/\eta, 0]$.

Basic result in quantum dynamics with many applications and extensions.

• Basic setting: time-ependent Hamiltonian H(s), $s \in [-1, 0]$ with unique ground state φ_s (energy E(s)); spectral gap for all s,

$$\inf_{s \in [0,1]} \operatorname{dist}(E(s), \sigma(H(s)) \setminus \{E(s)\}) = \delta > 0$$

• Let $\eta > 0$ and consider the quantum dynamics, for $t \in [-1/\eta, 0]$,

$$i \partial_t \psi(t) = H(\eta t) \psi(t), \qquad \psi(-1/\eta) = \varphi_{-1}$$

• [Born&Fock; Kato] Suppose $||\dot{H}(s)||$ is finite. Then as $\eta \to 0^+$ the dynamics follows the instantaneous ground state:

$$\|\psi(t) - \langle \psi(t), \varphi_{\eta t} \rangle \varphi_{\eta t} \| \leq C \eta$$
 for all $t \in [-1/\eta, 0]$.

• Basic result in quantum dynamics with many applications and extensions.

Many-body adiabatic theorems

• For many-body systems the basic version is unsatisfying; for instance in a quantum spin system or lattice Fermion model on $\Lambda_L = \mathbb{Z}_L^d$. Typical Hamiltonian

$$\mathcal{H}(s) = \sum_{X \subset \Lambda_L} \Phi_X(s),$$

with only Φ_X individually bounded. Typically $\|\dot{\mathcal{H}}(s)\| \sim L^d$, and previous bound becomes useless for $\eta L^d \gtrsim 1$.

• Recent results, especially [Bachman, De Roeck & Fraas 2017] for spin systems: norm bounds are too strong, so look at local topology: for \mathcal{O}_X a bounded local operator,

$$|\langle \psi(t), \mathcal{O}_X \psi(t) \rangle - \langle \varphi_{\eta t}, \mathcal{O}_X \varphi_{\eta t} \rangle| \leq C \eta$$

uniformly in L (if the gap is uniform).

• Linear response [BdRF17]; extends to Fermions [Monaco & Teufel 2017],...

Many-body adiabatic theorems

• For many-body systems the basic version is unsatisfying; for instance in a quantum spin system or lattice Fermion model on $\Lambda_L = \mathbb{Z}_L^d$. Typical Hamiltonian

$$\mathcal{H}(s) = \sum_{X \subset \Lambda_L} \Phi_X(s),$$

with only Φ_X individually bounded. Typically $\|\dot{\mathcal{H}}(s)\| \sim L^d$, and previous bound becomes useless for $\eta L^d \gtrsim 1$.

• Recent results, especially [Bachman, De Roeck & Fraas 2017] for spin systems: norm bounds are too strong, so look at local topology: for \mathcal{O}_X a bounded local operator,

$$|\langle \psi(t), \mathcal{O}_X \psi(t) \rangle - \langle \varphi_{\eta t}, \mathcal{O}_X \varphi_{\eta t} \rangle| \leq C \eta,$$

uniformly in L (if the gap is uniform).

• Linear response [BdRF17]; extends to Fermions [Monaco & Teufel 2017],...

Many-body adiabatic theorems

• For many-body systems the basic version is unsatisfying; for instance in a quantum spin system or lattice Fermion model on $\Lambda_L = \mathbb{Z}_L^d$. Typical Hamiltonian

$$\mathcal{H}(s) = \sum_{X \subset \Lambda_L} \Phi_X(s),$$

with only Φ_X individually bounded. Typically $\|\dot{\mathcal{H}}(s)\| \sim L^d$, and previous bound becomes useless for $\eta L^d \gtrsim 1$.

• Recent results, especially [Bachman, De Roeck & Fraas 2017] for spin systems: norm bounds are too strong, so look at local topology: for \mathcal{O}_X a bounded local operator,

$$|\langle \psi(t), \mathcal{O}_X \psi(t) \rangle - \langle \varphi_{\eta t}, \mathcal{O}_X \varphi_{\eta t} \rangle| \leqslant C \eta,$$

uniformly in L (if the gap is uniform).

• Linear response [BdRF17]; extends to Fermions [Monaco & Teufel 2017],...

Positive temperature?

• What about T > 0? Density matrix starting with $\rho_{\beta,L} = \frac{1}{Z_{\beta,L}} e^{-\beta \mathcal{H}(-1)}$ and evolved by Schrödinger equation

$$i \partial_t \rho(t) = [\mathcal{H}(\eta t), \rho(t)], \qquad \rho(-1/\eta) = \rho_{\beta, L}.$$

• Let $\langle \cdot \rangle_{\eta t}$ be the Gibbs state of $\mathcal{H}(\eta t)$ (instantaneous Gibbs state). (When) is

$$|\operatorname{Tr} \mathcal{O}_X \rho(t) - \langle \mathcal{O}_X \rangle_{\eta t}| \quad \text{small as } \eta \to 0^+ ?$$
 (*)

- Abou Salem-Fröhlich 05; Jaksic-Pillet 14: adiabatic theorem for $\eta \to 0^+$ at fixed L, under suitable ergodicity hyp. (based on [Avron-Elgart 98])
- Jakšić-Pillet-Tauber 22: (*) for $\eta \to 0^+$ after $L \to \infty$ at fixed β implies that the specific entropy of $\langle \cdot \rangle_s$ is constant in s. No-go theorem?
- More modestly, is there an η -dependent but L-indep. range of β where (*) holds? In particular: $T \to 0$ after $L \to \infty$? Today's talk.

With a finite numer M of internal degrees of freedom (spin, particle species, unit cell,...) labeled by $S_M = \{1, \ldots, M\}$ this gives configuration space $\Lambda_L := \Gamma_L \times S_M$.

• Let \mathcal{F}_L be the Fermionic Fock space over Λ_L with creation/annihilation operators satisfying

$$\{a_{\mathbf{x}}^+, a_{\mathbf{y}}^+\} = \{a_{\mathbf{x}}^-, a_{\mathbf{y}}^-\} = 0, \quad \{a_{\mathbf{x}}^+, a_{\mathbf{y}}^-\} = \delta_{\mathbf{x}, \mathbf{y}} \quad (\mathbf{x}, \mathbf{y} \in \Lambda_L)$$

With a finite numer M of internal degrees of freedom (spin, particle species, unit cell,...) labeled by $S_M = \{1, \ldots, M\}$ this gives configuration space $\Lambda_L := \Gamma_L \times S_M$.

• Let \mathcal{F}_L be the Fermionic Fock space over Λ_L with creation/annihilation operators satisfying

$$\{a_{\mathbf{x}}^+, a_{\mathbf{y}}^+\} = \{a_{\mathbf{x}}^-, a_{\mathbf{y}}^-\} = 0, \quad \{a_{\mathbf{x}}^+, a_{\mathbf{y}}^-\} = \delta_{\mathbf{x}, \mathbf{y}} \quad (\mathbf{x}, \mathbf{y} \in \Lambda_L)$$

With a finite numer M of internal degrees of freedom (spin, particle species, unit cell,...) labeled by $S_M = \{1, \ldots, M\}$ this gives configuration space $\Lambda_L := \Gamma_L \times S_M$.

• Let \mathcal{F}_L be the Fermionic Fock space over Λ_L with creation/annihilation operators satisfying

$$\{a_{\mathbf{x}}^+, a_{\mathbf{y}}^+\} = \{a_{\mathbf{x}}^-, a_{\mathbf{y}}^-\} = 0, \quad \{a_{\mathbf{x}}^+, a_{\mathbf{y}}^-\} = \delta_{\mathbf{x}, \mathbf{y}} \quad (\mathbf{x}, \mathbf{y} \in \Lambda_L)$$

With a finite numer M of internal degrees of freedom (spin, particle species, unit cell,...) labeled by $S_M = \{1, \ldots, M\}$ this gives configuration space $\Lambda_L := \Gamma_L \times S_M$.

• Let \mathcal{F}_L be the Fermionic Fock space over Λ_L with creation/annihilation operators satisfying

$$\{a_{\mathbf{x}}^+, a_{\mathbf{y}}^+\} = \{a_{\mathbf{x}}^-, a_{\mathbf{y}}^-\} = 0, \quad \{a_{\mathbf{x}}^+, a_{\mathbf{y}}^-\} = \delta_{\mathbf{x}, \mathbf{y}} \quad (\mathbf{x}, \mathbf{y} \in \Lambda_L)$$

• Finite range, particle conserving interactions associated with Hamiltonians over Λ_L :

$$\mathcal{H} = \sum_{X \subset \Lambda_L} \Phi_X \quad \text{with } \Phi_X = \Phi_X^*,$$

also $[\Phi_X, \mathcal{N}] = 0$ (particles conserved); also assume $\|\Phi_X\|$ bounded and finite range uniformly in L. Typical example:

$$\mathcal{H} = \sum_{\mathbf{x}, \mathbf{y} \in \Lambda_L} a_{\mathbf{x}}^+ h(\mathbf{x}, \mathbf{y}) a_{\mathbf{y}}^- + \sum_{\mathbf{x}, \mathbf{y} \in \Lambda_L} a_{\mathbf{x}}^+ a_{\mathbf{y}}^+ v(\mathbf{x}; \mathbf{y}) a_{\mathbf{y}}^- a_{\mathbf{x}}^-$$

- Other properties not too important so e.g. standard boundary conditions allowed
- Grand-canonical Gibbs state: for $\mathcal{O}_X \in \mathcal{A}_X$.

$$\langle \mathcal{O}_X \rangle_{\beta,\mu,L} = \operatorname{Tr}_{\mathcal{F}_L} \mathcal{O}_X \rho_{\beta,\mu,L} \quad \text{with} \quad \rho_{\beta,\mu,L} = \frac{e^{-\beta(\mathcal{H} - \mu \mathcal{N})}}{\operatorname{Tr}_{\mathcal{F}_T} e^{-\beta(\mathcal{H} - \mu \mathcal{N})}}$$

• Finite range, particle conserving interactions associated with Hamiltonians over Λ_L :

$$\mathcal{H} = \sum_{X \subset \Lambda_L} \Phi_X \quad \text{with } \Phi_X = \Phi_X^*,$$

also $[\Phi_X, \mathcal{N}] = 0$ (particles conserved); also assume $\|\Phi_X\|$ bounded and finite range uniformly in L. Typical example:

$$\mathcal{H} = \sum_{\mathbf{x}, \mathbf{y} \in \Lambda_L} a_{\mathbf{x}}^+ h(\mathbf{x}, \mathbf{y}) a_{\mathbf{y}}^- + \sum_{\mathbf{x}, \mathbf{y} \in \Lambda_L} a_{\mathbf{x}}^+ a_{\mathbf{y}}^+ v(\mathbf{x}; \mathbf{y}) a_{\mathbf{y}}^- a_{\mathbf{x}}^-$$

- Other properties not too important so e.g. standard boundary conditions allowed
- Grand-canonical Gibbs state: for $\mathcal{O}_X \in \mathcal{A}_X$.

$$\langle \mathcal{O}_X \rangle_{\beta,\mu,L} = \operatorname{Tr}_{\mathcal{F}_L} \mathcal{O}_X \rho_{\beta,\mu,L} \quad \text{with} \quad \rho_{\beta,\mu,L} = \frac{e^{-\beta(\mathcal{H} - \mu \mathcal{N})}}{\operatorname{Tr}_{\mathcal{F}_T} e^{-\beta(\mathcal{H} - \mu \mathcal{N})}}$$

• Finite range, particle conserving interactions associated with Hamiltonians over Λ_L :

$$\mathcal{H} = \sum_{X \subset \Lambda_I} \Phi_X \quad \text{with } \Phi_X = \Phi_X^*,$$

also $[\Phi_X, \mathcal{N}] = 0$ (particles conserved); also assume $\|\Phi_X\|$ bounded and finite range uniformly in L. Typical example:

$$\mathcal{H} = \sum_{\mathbf{x}, \mathbf{y} \in \Lambda_L} a_{\mathbf{x}}^+ h(\mathbf{x}, \mathbf{y}) a_{\mathbf{y}}^- + \sum_{\mathbf{x}, \mathbf{y} \in \Lambda_L} a_{\mathbf{x}}^+ a_{\mathbf{y}}^+ v(\mathbf{x}; \mathbf{y}) a_{\mathbf{y}}^- a_{\mathbf{x}}^-$$

- Other properties not too important so e.g. standard boundary conditions allowed
- Grand-canonical Gibbs state: for $\mathcal{O}_X \in \mathcal{A}_X$,

$$\langle \mathcal{O}_X \rangle_{\beta,\mu,L} = \operatorname{Tr}_{\mathcal{F}_L} \mathcal{O}_X \rho_{\beta,\mu,L} \quad \text{with} \quad \rho_{\beta,\mu,L} = \frac{e^{-\beta(\mathcal{H} - \mu \mathcal{N})}}{\operatorname{Tr}_{\mathcal{F}_L} e^{-\beta(\mathcal{H} - \mu \mathcal{N})}}$$

• Finite range, particle conserving interactions associated with Hamiltonians over Λ_L :

$$\mathcal{H} = \sum_{X \subset \Lambda_I} \Phi_X \quad \text{with } \Phi_X = \Phi_X^*,$$

also $[\Phi_X, \mathcal{N}] = 0$ (particles conserved); also assume $\|\Phi_X\|$ bounded and finite range uniformly in L. Typical example:

$$\mathcal{H} = \sum_{\mathbf{x}, \mathbf{y} \in \Lambda_L} a_{\mathbf{x}}^+ h(\mathbf{x}, \mathbf{y}) a_{\mathbf{y}}^- + \sum_{\mathbf{x}, \mathbf{y} \in \Lambda_L} a_{\mathbf{x}}^+ a_{\mathbf{y}}^+ v(\mathbf{x}; \mathbf{y}) a_{\mathbf{y}}^- a_{\mathbf{x}}^-$$

- Other properties not too important so e.g. standard boundary conditions allowed
- Grand-canonical Gibbs state: for $\mathcal{O}_X \in \mathcal{A}_X$,

$$\langle \mathcal{O}_X \rangle_{\beta,\mu,L} = \operatorname{Tr}_{\mathcal{F}_L} \mathcal{O}_X \rho_{\beta,\mu,L} \quad \text{with} \quad \rho_{\beta,\mu,L} = \frac{e^{-\beta(\mathcal{H} - \mu \mathcal{N})}}{\operatorname{Tr}_{\mathcal{F}_L} e^{-\beta(\mathcal{H} - \mu \mathcal{N})}}$$

Real and imaginary time evolutions

• Heisenberg evolution associated with \mathcal{H} is

$$\tau_t(\mathcal{O}_X) = e^{i\mathcal{H}t} \mathcal{O} e^{-i\mathcal{H}t}.$$

Later helpful to denote Euclidean evolution

$$\gamma_s(\mathcal{O}_X) = e^{s(\mathcal{H} - \mu \mathcal{N})} \mathcal{O}_X e^{-s(\mathcal{H} - \mu \mathcal{N})};$$

clearly, if
$$[\mathcal{O}_{X,\mathcal{N}}] = 0$$
 (i.e. $\mathcal{O}_X \in \mathcal{A}_X^{\mathcal{N}}$)

$$\gamma_s(\mathcal{O}_X) = au_{-is}(\mathcal{O}_X) \qquad ext{ for all } t \in \mathbb{C}$$
 .

• Including the chemical potential in γ_s makes the Gibbs state a Kubo-Martin-Schwinger (KMS) state:

$$\langle \gamma_s(\mathcal{O}_1) \gamma_t(\mathcal{O}_2) \rangle_{\beta,\mu,L} = \langle \gamma_{t+\beta}(\mathcal{O}_2) \gamma_s(\mathcal{O}_1) \rangle_{\beta,\mu,L}$$

Real and imaginary time evolutions

• Heisenberg evolution associated with \mathcal{H} is

$$\tau_t(\mathcal{O}_X) = e^{i\mathcal{H}t} \mathcal{O} e^{-i\mathcal{H}t}.$$

• Later helpful to denote Euclidean evolution

$$\gamma_s(\mathcal{O}_X) = e^{s(\mathcal{H} - \mu \mathcal{N})} \mathcal{O}_X e^{-s(\mathcal{H} - \mu \mathcal{N})};$$

clearly, if
$$[\mathcal{O}_{X,\mathcal{N}}] = 0$$
 (i.e. $\mathcal{O}_X \in \mathcal{A}_X^{\mathcal{N}}$)

$$\gamma_s(\mathcal{O}_X) = \tau_{-is}(\mathcal{O}_X)$$
 for all $t \in \mathbb{C}$.

• Including the chemical potential in γ_s makes the Gibbs state a Kubo-Martin-Schwinger (KMS) state:

$$\langle \gamma_s(\mathcal{O}_1) \gamma_t(\mathcal{O}_2) \rangle_{\beta,\mu,L} = \langle \gamma_{t+\beta}(\mathcal{O}_2) \gamma_s(\mathcal{O}_1) \rangle_{\beta,\mu,L}$$

Real and imaginary time evolutions

• Heisenberg evolution associated with \mathcal{H} is

$$\tau_t(\mathcal{O}_X) = e^{i\mathcal{H}t} \mathcal{O} e^{-i\mathcal{H}t}.$$

• Later helpful to denote Euclidean evolution

$$\gamma_s(\mathcal{O}_X) = e^{s(\mathcal{H} - \mu \mathcal{N})} \mathcal{O}_X e^{-s(\mathcal{H} - \mu \mathcal{N})};$$

clearly, if $[\mathcal{O}_{X,\mathcal{N}}] = 0$ (i.e. $\mathcal{O}_X \in \mathcal{A}_X^{\mathcal{N}}$)

$$\gamma_s(\mathcal{O}_X) = \tau_{-is}(\mathcal{O}_X)$$
 for all $t \in \mathbb{C}$.

• Including the chemical potential in γ_s makes the Gibbs state a Kubo-Martin-Schwinger (KMS) state:

$$\langle \gamma_s(\mathcal{O}_1) \gamma_t(\mathcal{O}_2) \rangle_{\beta,\mu,L} = \langle \gamma_{t+\beta}(\mathcal{O}_2) \gamma_s(\mathcal{O}_1) \rangle_{\beta,\mu,L}$$

Correlation functions

• Connected/truncated correlation function or cumulant defined by

$$\langle \mathcal{O}_1; \mathcal{O}_2 \rangle_{\beta,\mu,L} := \langle \mathcal{O}_1 \mathcal{O}_2 \rangle_{\beta,\mu,L} - \langle \mathcal{O}_1 \rangle_{\beta,\mu,L} \langle \mathcal{O}_2 \rangle_{\beta,\mu,L};$$

more generally *n*-point version (\mathcal{O}_j even in a^{\pm})

$$\langle \mathcal{O}_1; \mathcal{O}_2; \dots; \mathcal{O}_n \rangle := \frac{\partial^n}{\partial \lambda_1 \dots \partial \lambda_n} \log \langle \exp (\lambda_1 \mathcal{O}_1 + \dots + \lambda_n \mathcal{O}_n) \rangle \Big|_{\lambda_1 = \dots = 0}$$

• When do these decay in space/time? Space decay from Lieb-Robinson bound for finite range bounded interactions:

$$\|[\tau_t(\mathcal{O}_X), \mathcal{O}_Y]\| \leqslant C e^{vt-c \operatorname{dist}(X,Y)}$$

Decay in time is more elusive...

Correlation functions

• Connected/truncated correlation function or cumulant defined by

$$\langle \mathcal{O}_1; \mathcal{O}_2 \rangle_{\beta,\mu,L} := \langle \mathcal{O}_1 \mathcal{O}_2 \rangle_{\beta,\mu,L} - \langle \mathcal{O}_1 \rangle_{\beta,\mu,L} \langle \mathcal{O}_2 \rangle_{\beta,\mu,L};$$

more generally *n*-point version (\mathcal{O}_i even in a^{\pm})

$$\langle \mathcal{O}_1; \mathcal{O}_2; \dots; \mathcal{O}_n \rangle := \frac{\partial^n}{\partial \lambda_1 \dots \partial \lambda_n} \log \langle \exp (\lambda_1 \mathcal{O}_1 + \dots + \lambda_n \mathcal{O}_n) \rangle \Big|_{\lambda_1 = \dots = 0}$$

• When do these decay in space/time? Space decay from Lieb-Robinson bound for finite range bounded interactions:

$$\|[\tau_t(\mathcal{O}_X), \mathcal{O}_Y]\| \leqslant C e^{vt-c \operatorname{dist}(X,Y)}.$$

Decay in time is more elusive...

Correlation functions

• Connected/truncated correlation function or cumulant defined by

$$\langle \mathcal{O}_1; \mathcal{O}_2 \rangle_{\beta,\mu,L} := \langle \mathcal{O}_1 \mathcal{O}_2 \rangle_{\beta,\mu,L} - \langle \mathcal{O}_1 \rangle_{\beta,\mu,L} \langle \mathcal{O}_2 \rangle_{\beta,\mu,L};$$

more generally *n*-point version $(\mathcal{O}_j \text{ even in } a^{\pm})$

$$\langle \mathcal{O}_1; \mathcal{O}_2; \dots; \mathcal{O}_n \rangle := \frac{\partial^n}{\partial \lambda_1 \dots \partial \lambda_n} \log \langle \exp (\lambda_1 \mathcal{O}_1 + \dots + \lambda_n \mathcal{O}_n) \rangle \Big|_{\lambda_1 = \dots = 0}$$

• When do these decay in space/time? Space decay from Lieb-Robinson bound for finite range bounded interactions:

$$\|[\tau_t(\mathcal{O}_X), \mathcal{O}_Y]\| \leqslant C e^{vt-c \operatorname{dist}(X,Y)}.$$

• Decay in time is more elusive...

Time ordered Euclidean correlations

• Define Euclidean time-ordering

$$\mathbf{T} \gamma_{t_1}(\mathcal{O}_1) \cdots \gamma_{t_n}(\mathcal{O}_n) := \sum_{\pi \in \Pi_n} \mathbb{1}(t_{\pi(1)} \geqslant \cdots \geqslant t_{\pi(n)}) \gamma_{t_{\pi(1)}}(\mathcal{O}_{\pi(1)}) \cdots \gamma_{t_{\pi(n)}}(\mathcal{O}_{\pi(n)})$$

• Time ordered cumulants $\langle \mathbf{T} \gamma_{t_1}(\mathcal{O}_{X_1}); \dots; \gamma_{t_n}(\mathcal{O}_{X_n}) \rangle_{\beta,\mu,L}$ often decay in space and (Euclidean/imaginary) time; consequently used for perturbation theory of Gibbs states

Time ordered Euclidean correlations

• Define Euclidean time-ordering

$$\mathbf{T} \gamma_{t_1}(\mathcal{O}_1) \cdots \gamma_{t_n}(\mathcal{O}_n) := \sum_{\pi \in \Pi_n} \mathbb{1}(t_{\pi(1)} \geqslant \cdots \geqslant t_{\pi(n)}) \gamma_{t_{\pi(1)}}(\mathcal{O}_{\pi(1)}) \cdots \gamma_{t_{\pi(n)}}(\mathcal{O}_{\pi(n)})$$

• Time ordered cumulants $\langle \mathbf{T} \gamma_{t_1}(\mathcal{O}_{X_1}); \dots; \gamma_{t_n}(\mathcal{O}_{X_n}) \rangle_{\beta,\mu,L}$ often decay in space and (Euclidean/imaginary) time; consequently used for perturbation theory of Gibbs states

• For $t \leq 0$ we consider the time-dependent Hamiltonian

$$\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon g(\eta t)\mathcal{P},$$

with $\eta > 0$ and $\mathcal{P} = \sum_{X \subset \Lambda_L} \Psi_X$, self-adjoint, finite-ranged, bounded. Interested in η small (slow) and ε small (weak) in different senses.

- More detail on "switch function" g soon, prototype is $g(\eta t) = e^{\eta t}$.
- Time-dependent density matrix

$$i \partial_t \rho(t) = [\mathcal{H}(\eta t), \rho(t)], \qquad \rho(-\infty) = \rho_{\beta, \mu, L}$$

and time-dependent state given by expectation values $\operatorname{Tr}_{\mathcal{F}_L}\mathcal{O}\,\rho(t)$.

• For $t \leq 0$ we consider the time-dependent Hamiltonian

$$\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon g(\eta t)\mathcal{P},$$

with $\eta > 0$ and $\mathcal{P} = \sum_{X \subset \Lambda_L} \Psi_X$, self-adjoint, finite-ranged, bounded. Interested in η small (slow) and ε small (weak) in different senses.

- More detail on "switch function" g soon, prototype is $g(\eta t) = e^{\eta t}$.
- Time-dependent density matrix

$$i \, \partial_t \, \rho(t) = [\mathcal{H}(\eta \, t), \, \rho(t)], \qquad \rho(-\infty) = \rho_{\beta, \, \mu, \, I}$$

and time-dependent state given by expectation values $\operatorname{Tr}_{\mathcal{F}_L}\mathcal{O}\,\rho(t)$

• For $t \leq 0$ we consider the time-dependent Hamiltonian

$$\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon g(\eta t)\mathcal{P},$$

with $\eta > 0$ and $\mathcal{P} = \sum_{X \subset \Lambda_L} \Psi_X$, self-adjoint, finite-ranged, bounded. Interested in η small (slow) and ε small (weak) in different senses.

- More detail on "switch function" g soon, prototype is $g(\eta t) = e^{\eta t}$.
- Time-dependent density matrix

$$i \partial_t \rho(t) = [\mathcal{H}(\eta t), \rho(t)], \qquad \rho(-\infty) = \rho_{\beta,\mu,L}$$

and time-dependent state given by expectation values $\operatorname{Tr}_{\mathcal{F}_L}\mathcal{O}\,\rho(t)$.

• For $t \leq 0$ we consider the time-dependent Hamiltonian

$$\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon g(\eta t) \mathcal{P},$$

with $\eta > 0$ and $\mathcal{P} = \sum_{X \subset \Lambda_L} \Psi_X$, self-adjoint, finite-ranged, bounded. Interested in η small (slow) and ε small (weak) in different senses.

- More detail on "switch function" g soon, prototype is $g(\eta t) = e^{\eta t}$.
- Time-dependent density matrix

$$i \partial_t \rho(t) = [\mathcal{H}(\eta t), \rho(t)], \qquad \rho(-\infty) = \rho_{\beta,\mu,L}$$

and time-dependent state given by expectation values $\operatorname{Tr}_{\mathcal{F}_L}\mathcal{O}\,\rho(t)$.

Perturbation theory for quantum dynamics

• Duhamel expansion for these dynamics:

$$\operatorname{Tr}_{\mathcal{F}_{L}}\mathcal{O}\,\rho(t) = \langle \mathcal{O} \rangle_{\beta,\mu,L}$$

$$+ \sum_{n=1}^{\infty} (-i\,\varepsilon)^{n} \int_{*}^{1} \mathrm{d}\underline{s} \left[\prod_{j=1}^{n} g(\eta\,s_{j}) \right]$$

$$\times \langle [\cdots [\tau_{t}(\mathcal{O}), \tau_{s_{1}}(\mathcal{P})] \cdots, \tau_{s_{n}}(\mathcal{P})] \rangle_{\beta,\mu,L}$$

with the integral over $-\infty \leqslant s_n \leqslant \cdots \leqslant s_1 \leqslant t$.

• Decay of g and $\|\tau_s(\mathcal{P})\| = \|\mathcal{P}\| \leqslant C|\Lambda_L|$ let us bound nth term by $\frac{C^n|\varepsilon|^n}{n!} \frac{1}{n^n} |\Lambda_L|^n,$

which is convergent for η , L fixed but useless for limits.

• Better bound using multicommutator Lieb-Robinson bounds [Bru-Pedra] uniform in L but not in η .

Perturbation theory for quantum dynamics

• Duhamel expansion for these dynamics:

$$\operatorname{Tr}_{\mathcal{F}_{L}}\mathcal{O}\,\rho(t) = \langle \mathcal{O}\rangle_{\beta,\mu,L} \\ + \sum_{n=1}^{\infty} (-i\,\varepsilon)^{n} \int_{*} d\underline{s} \left[\prod_{j=1}^{n} g(\eta\,s_{j}) \right] \\ \times \langle [\cdots [\tau_{t}(\mathcal{O}), \tau_{s_{1}}(\mathcal{P})] \cdots, \tau_{s_{n}}(\mathcal{P})] \rangle_{\beta,\mu,L}$$

with the integral over $-\infty \leqslant s_n \leqslant \cdots \leqslant s_1 \leqslant t$.

• Decay of g and $\|\tau_s(\mathcal{P})\| = \|\mathcal{P}\| \leqslant C|\Lambda_L|$ let us bound nth term by

$$\frac{C^n|\varepsilon|^n}{n!}\frac{1}{\eta^n}|\Lambda_L|^n,$$

which is convergent for η , L fixed but useless for limits.

• Better bound using multicommutator Lieb-Robinson bounds [Bru-Pedra] uniform in L but not in η .

Perturbation theory for quantum dynamics

• Duhamel expansion for these dynamics:

$$\operatorname{Tr}_{\mathcal{F}_{L}}\mathcal{O}\,\rho(t) = \langle \mathcal{O}\rangle_{\beta,\mu,L} \\ + \sum_{n=1}^{\infty} (-i\,\varepsilon)^{n} \int_{*} d\underline{s} \left[\prod_{j=1}^{n} g(\eta\,s_{j}) \right] \\ \times \langle [\cdots [\tau_{t}(\mathcal{O}), \tau_{s_{1}}(\mathcal{P})] \cdots, \tau_{s_{n}}(\mathcal{P})] \rangle_{\beta,\mu,L}$$

with the integral over $-\infty \leqslant s_n \leqslant \cdots \leqslant s_1 \leqslant t$.

• Decay of g and $\|\tau_s(\mathcal{P})\| = \|\mathcal{P}\| \leqslant C|\Lambda_L|$ let us bound nth term by

$$\frac{C^n|\varepsilon|^n}{n!}\frac{1}{\eta^n}|\Lambda_L|^n,$$

which is convergent for η , L fixed but useless for limits.

• Better bound using multicommutator Lieb-Robinson bounds [Bru-Pedra] uniform in L but not in η .

Assumption S

The switching function can be expressed as

$$g(t) = \int_0^\infty e^{\xi t} h(\xi) \,\mathrm{d}\xi$$

for $h \in L^1([0,\infty))$ satisfying

$$\int_0^1 \frac{|h(\xi)|}{\xi^{d+2}} \, \mathrm{d}\xi < \infty, \qquad \int_1^\infty \xi |h(\xi)| \, \mathrm{d}\xi < \infty$$

or a finite signed measure (e.g. sum of Dirac δs) with $|h(\xi)|d\xi$ replaced by the total variation.

Examples: $g(t) = e^t$, $g(t) = (t - a)^{-n}$ with $n \ge d + 4$ and a > 0.

Commentary on Assumption S

- g always analytic on LHP; so decay for $t \to -\infty$ (even $\text{Re } t \to -\infty$ off \mathbb{R}) but unbounded support
- No particular restrictions on $g^{(n)}(0)$
- We will use this to approximate $g(\eta t)$ by

$$g_{\beta,\eta}(t) = \sum_{\omega} \tilde{h}_{\beta}(\omega) e^{\omega t}$$

with the sum over *positive* integer multiples of $2\pi/\beta$; then as well as analyticity and decay this is

- periodic $g_{\beta,\eta}(t+i\beta) = g_{\beta,\eta}(t)$, cf. KMS condition, Matsubara frequencies
- oscillating in imaginary time, with

$$\int_0^\beta g_{\beta,\eta}(t+is)\,\mathrm{d}s = 0$$

Commentary on Assumption S

- g always analytic on LHP; so decay for $t \to -\infty$ (even $\text{Re } t \to -\infty$ off \mathbb{R}) but unbounded support
- No particular restrictions on $g^{(n)}(0)$
- We will use this to approximate $g(\eta t)$ by

$$g_{\beta,\eta}(t) = \sum_{\omega} \tilde{h}_{\beta}(\omega) e^{\omega t}$$

with the sum over *positive* integer multiples of $2\pi/\beta$; then as well as analyticity and decay this is

- periodic $g_{\beta,\eta}(t+i\beta) = g_{\beta,\eta}(t)$, cf. KMS condition, Matsubara frequencies
- oscillating in imaginary time, with

$$\int_0^\beta g_{\beta,\eta}(t+is)\,\mathrm{d}s = 0$$

Commentary on Assumption S

- g always analytic on LHP; so decay for $t \to -\infty$ (even $\text{Re } t \to -\infty$ off \mathbb{R}) but unbounded support
- No particular restrictions on $g^{(n)}(0)$
- We will use this to approximate $g(\eta t)$ by

$$g_{\beta,\eta}(t) = \sum_{\omega} \tilde{h}_{\beta}(\omega) e^{\omega t}$$

with the sum over *positive* integer multiples of $2\pi/\beta$; then as well as analyticity and decay this is

- periodic $g_{\beta,\eta}(t+i\beta) = g_{\beta,\eta}(t)$, cf. KMS condition, Matsubara frequencies
- oscillating in imaginary time, with

$$\int_0^\beta g_{\beta,\eta}(t+is)\,\mathrm{d}s = 0$$

Commentary on Assumption S

- g always analytic on LHP; so decay for $t \to -\infty$ (even Re $t \to -\infty$ off \mathbb{R}) but unbounded support
- No particular restrictions on $g^{(n)}(0)$
- We will use this to approximate $g(\eta t)$ by

$$g_{\beta,\eta}(t) = \sum_{\omega} \tilde{h}_{\beta}(\omega) e^{\omega t}$$

with the sum over *positive* integer multiples of $2\pi/\beta$; then as well as analyticity and decay this is

- periodic $g_{\beta,\eta}(t+i\beta) = g_{\beta,\eta}(t)$, cf. KMS condition, Matsubara frequencies
- oscillating in imaginary time, with

$$\int_0^\beta g_{\beta,\eta}(t+is)\,\mathrm{d}s = 0$$

First part of main result

Theorem 1

Under Assumption S, for any $\mathcal{O}_X \in \mathcal{A}_X^{\mathcal{N}}$

$$\operatorname{Tr}_{\mathcal{F}_L} \mathcal{O}_X \rho(t) = \langle \mathcal{O}_X \rangle_{\beta,\mu,L} + \sum_{n \geq 1} \frac{(-\varepsilon)^n}{n!} I_n + R_{\beta,\mu,L}(\mathcal{O}_X, \varepsilon, \eta, L), \text{ where }$$

$$I_n := \int_{[0,\beta]^n} d\underline{s} \left[\prod_{j=1}^n g_{\beta,\eta}(t-is_j) \right] \langle \mathbf{T} \gamma_{s_1}(\mathcal{P}); \gamma_{s_2}(\mathcal{P}); \dots; \gamma_{s_n}(\mathcal{P}); \mathcal{O}_X \rangle_{\beta,\mu,L}$$

and

$$|R_{\beta,\mu,L}(\mathcal{O}_X,\varepsilon,\eta,L)| \leqslant K(X,\|\mathcal{O}_X\|) \frac{|\varepsilon|}{\eta^{d+2}\beta}$$

uniformly in L.

Reminder: γ is the *Euclidean* evolution for $\mathcal{H} = \mathcal{H}(-\infty)$, $\rho(t)$ is evolved by

$$\mathcal{H}(\eta t) = \mathcal{H} + \varepsilon g(\eta t) \mathcal{P}$$

- Most interesting with absolute convergence of the series (especially for $L \to \infty$), I'll come back to this
- Error terms diverge for $\eta \to 0^+$ with β , ε fixed, so this applies to the adiabatic regime only holds at zero temperature
- At zero temperature the imaginary-time expansion gives an exact expression for this class of time evolutions
- There are special cases

$$g(\eta t) = \sum_{n=1}^{\infty} \tilde{h}_n \exp\left(\frac{2\pi n}{\beta}t\right)$$

- Most interesting with absolute convergence of the series (especially for $L \to \infty$), I'll come back to this
- Error terms diverge for $\eta \to 0^+$ with β , ε fixed, so this applies to the adiabatic regime only holds at zero temperature
- At zero temperature the imaginary-time expansion gives an exact expression for this class of time evolutions
- There are special cases

$$g(\eta t) = \sum_{n=1}^{\infty} \tilde{h}_n \exp\left(\frac{2\pi n}{\beta}t\right)$$

- Most interesting with absolute convergence of the series (especially for $L \to \infty$), I'll come back to this
- Error terms diverge for $\eta \to 0^+$ with β , ε fixed, so this applies to the adiabatic regime only holds at zero temperature
- At zero temperature the imaginary-time expansion gives an exact expression for this class of time evolutions
- There are special cases

$$g(\eta t) = \sum_{n=1}^{\infty} \tilde{h}_n \exp\left(\frac{2\pi n}{\beta}t\right)$$

- Most interesting with absolute convergence of the series (especially for $L \to \infty$), I'll come back to this
- Error terms diverge for $\eta \to 0^+$ with β , ε fixed, so this applies to the adiabatic regime only holds at zero temperature
- At zero temperature the imaginary-time expansion gives an exact expression for this class of time evolutions
- There are special cases

$$g(\eta t) = \sum_{n=1}^{\infty} \tilde{h}_n \exp\left(\frac{2\pi n}{\beta}t\right)$$

Assumption D

For each $\beta > 0$ and each $\mathcal{O} \in \mathcal{A}^{\mathcal{N}}$, there exist $\mathfrak{c} = \mathfrak{c}(\beta, \mathcal{P})$ and $C = C(\mathcal{O})$:

$$\int_{[0,\beta]^n} d\underline{t} \left(1 + |\underline{t}|_{\beta}\right) \sum_{X_1, \dots \subset \Lambda_L} |\langle \mathbf{T} \gamma_{t_1}(\Psi_{X_1}); \dots; \gamma_{t_n}(\Psi_{X_n}); \mathcal{O} \rangle| \leqslant C \mathfrak{c}^n n!$$

where $|\underline{t}|_{\beta} = \sum_{j=1}^{n} \min_{m \in \mathbb{Z}} |t_j - m\beta|$.

'Theorem 2

Under assumptions S and D, $\exists \varepsilon_0 \equiv \varepsilon_0(\mathfrak{c})$ such that for $|\varepsilon| < \varepsilon_0$,

- 1. The series in Theorem 1 is absolutely convergent
- 2. With $\langle \cdot \rangle_t$ denoting the Gibbs state of $\mathcal{H}(\eta t)$,

$$|\operatorname{Tr}_{\mathcal{F}_L} \mathcal{O}_X \rho(t) - \langle \mathcal{O}_X \rangle_t| \leqslant K \left(|\varepsilon| \eta + \frac{|\varepsilon|}{\eta^{d+2} \beta} \right)$$

Assumption D

For each $\beta > 0$ and each $\mathcal{O} \in \mathcal{A}^{\mathcal{N}}$, there exist $\mathfrak{c} = \mathfrak{c}(\beta, \mathcal{P})$ and $C = C(\mathcal{O})$:

$$\int_{[0,\beta]^n} d\underline{t} \left(1 + |\underline{t}|_{\beta}\right) \sum_{X_1, \dots \subset \Lambda_L} |\langle \mathbf{T} \gamma_{t_1}(\Psi_{X_1}); \dots; \gamma_{t_n}(\Psi_{X_n}); \mathcal{O} \rangle| \leqslant C \mathfrak{c}^n n!$$

where
$$|\underline{t}|_{\beta} = \sum_{j=1}^{n} \min_{m \in \mathbb{Z}} |t_j - m\beta|$$
.

Theorem 3

Under assumptions S and D, $\exists \varepsilon_0 \equiv \varepsilon_0(\mathfrak{c})$ such that for $|\varepsilon| < \varepsilon_0$,

- 1. The series in Theorem 1 is absolutely convergent
- 2. With $\langle \cdot \rangle_t$ denoting the Gibbs state of $\mathcal{H}(\eta t)$,

$$|\operatorname{Tr}_{\mathcal{F}_L} \mathcal{O}_X \rho(t) - \langle \mathcal{O}_X \rangle_t| \leqslant K \left(|\varepsilon| \eta + \frac{|\varepsilon|}{\eta^{d+2} \beta} \right)$$

- Also implies a convergent perturbative expansion for the instantaneous Gibbs state (see next slide)
- If \mathcal{H} and \mathcal{P} are both quadratic in a^{\pm} , the bound follows from Wick's rule and the relation to the one-particle correlations. In particular if 1-particle H is gapped (uniformly in L) and μ is in the gap, \mathfrak{c} is independent of β .
- If $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$ with \mathcal{H}_0 as above and \mathcal{V} , \mathcal{P} finite range this extends to λ not too large via cluster expansion (Battle-Brydges-Federbush-Kennedy formula) this is the main reason for considering Fermions rather than lattice spin systems.
- Related to spectral properties (e.g. de Roeck-Salmhofer proof of stability of gap) but not as strong as (uniform) gap

- Also implies a convergent perturbative expansion for the instantaneous Gibbs state (see next slide)
- If \mathcal{H} and \mathcal{P} are both quadratic in a^{\pm} , the bound follows from Wick's rule and the relation to the one-particle correlations. In particular if 1-particle H is gapped (uniformly in L) and μ is in the gap, \mathfrak{c} is independent of β .
- If $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$ with \mathcal{H}_0 as above and \mathcal{V} , \mathcal{P} finite range this extends to λ not too large via cluster expansion (Battle-Brydges-Federbush-Kennedy formula) this is the main reason for considering Fermions rather than lattice spin systems.
- Related to spectral properties (e.g. de Roeck-Salmhofer proof of stability of gap) but not as strong as (uniform) gap

- Also implies a convergent perturbative expansion for the instantaneous Gibbs state (see next slide)
- If \mathcal{H} and \mathcal{P} are both quadratic in a^{\pm} , the bound follows from Wick's rule and the relation to the one-particle correlations. In particular if 1-particle H is gapped (uniformly in L) and μ is in the gap, \mathfrak{c} is independent of β .
- If $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$ with \mathcal{H}_0 as above and \mathcal{V} , \mathcal{P} finite range this extends to λ not too large via cluster expansion (Battle-Brydges-Federbush-Kennedy formula) this is the main reason for considering Fermions rather than lattice spin systems.
- Related to spectral properties (e.g. de Roeck-Salmhofer proof of stability of gap) but not as strong as (uniform) gap

- Also implies a convergent perturbative expansion for the instantaneous Gibbs state (see next slide)
- If \mathcal{H} and \mathcal{P} are both quadratic in a^{\pm} , the bound follows from Wick's rule and the relation to the one-particle correlations. In particular if 1-particle H is gapped (uniformly in L) and μ is in the gap, \mathfrak{c} is independent of β .
- If $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$ with \mathcal{H}_0 as above and \mathcal{V} , \mathcal{P} finite range this extends to λ not too large via cluster expansion (Battle-Brydges-Federbush-Kennedy formula) this is the main reason for considering Fermions rather than lattice spin systems.
- Related to spectral properties (e.g. de Roeck-Salmhofer proof of stability of gap) but not as strong as (uniform) gap

- Also implies a convergent perturbative expansion for the instantaneous Gibbs state (see next slide)
- If \mathcal{H} and \mathcal{P} are both quadratic in a^{\pm} , the bound follows from Wick's rule and the relation to the one-particle correlations. In particular if 1-particle H is gapped (uniformly in L) and μ is in the gap, \mathfrak{c} is independent of β .
- If $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$ with \mathcal{H}_0 as above and \mathcal{V} , \mathcal{P} finite range this extends to λ not too large via cluster expansion (Battle-Brydges-Federbush-Kennedy formula) this is the main reason for considering Fermions rather than lattice spin systems.
- Related to spectral properties (e.g. de Roeck-Salmhofer proof of stability of gap) but not as strong as (uniform) gap

- Also implies a convergent perturbative expansion for the instantaneous Gibbs state (see next slide)
- If \mathcal{H} and \mathcal{P} are both quadratic in a^{\pm} , the bound follows from Wick's rule and the relation to the one-particle correlations. In particular if 1-particle H is gapped (uniformly in L) and μ is in the gap, \mathfrak{c} is independent of β .
- If $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$ with \mathcal{H}_0 as above and \mathcal{V} , \mathcal{P} finite range this extends to λ not too large via cluster expansion (Battle-Brydges-Federbush-Kennedy formula) this is the main reason for considering Fermions rather than lattice spin systems.
- Related to spectral properties (e.g. de Roeck-Salmhofer proof of stability of gap) but not as strong as (uniform) gap

- Also implies a convergent perturbative expansion for the instantaneous Gibbs state (see next slide)
- If \mathcal{H} and \mathcal{P} are both quadratic in a^{\pm} , the bound follows from Wick's rule and the relation to the one-particle correlations. In particular if 1-particle H is gapped (uniformly in L) and μ is in the gap, \mathfrak{c} is independent of β .
- If $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$ with \mathcal{H}_0 as above and \mathcal{V} , \mathcal{P} finite range this extends to λ not too large via cluster expansion (Battle-Brydges-Federbush-Kennedy formula) this is the main reason for considering Fermions rather than lattice spin systems.
- Related to spectral properties (e.g. de Roeck-Salmhofer proof of stability of gap) but not as strong as (uniform) gap

Comments on the combined result

• Last point follows by comparison with cumulant expansion for the instantaneous Gibbs state

$$\langle \mathcal{O} \rangle_{\eta t} = \langle \mathcal{O} \rangle_{\beta,\mu,L} + \sum_{n=1}^{\infty} \frac{(-\varepsilon g(\eta t))^n}{n!} \int_{[0,\beta]^n} d\underline{s} \langle \mathbf{T} \gamma_{s_1}(\mathcal{P}); \gamma_{s_2}(\mathcal{P}); \cdots; \gamma_{s_n}(\mathcal{P}); \mathcal{O} \rangle_{\beta,\mu,L}$$

which is the series in the technical theorem with $g_{\beta,\eta}(t-i\,s_j) \to g(\eta\,t)$; hence additional error term of order $|\varepsilon|\eta$

Comments on the combined result

• Last point follows by comparison with cumulant expansion for the instantaneous Gibbs state

$$\langle \mathcal{O} \rangle_{\eta t} = \langle \mathcal{O} \rangle_{\beta, \mu, L} + \sum_{n=1}^{\infty} \frac{(-\varepsilon g(\eta t))^n}{n!} \int_{[0, \beta]^n} d\underline{s} \langle \mathbf{T} \gamma_{s_1}(\mathcal{P}); \gamma_{s_2}(\mathcal{P}); \cdots; \gamma_{s_n}(\mathcal{P}); \mathcal{O} \rangle_{\beta, \mu, L}$$

which is the series in the technical theorem with $g_{\beta,\eta}(t-i\,s_j) \to g(\eta\,t)$; hence additional error term of order $|\varepsilon|\eta$

• Absolute convergence survives the limit $L \to \infty$; no need for extra assumptions on long time behavior (clustering)

Comments on the combined result

• Last point follows by comparison with cumulant expansion for the instantaneous Gibbs state

$$\langle \mathcal{O} \rangle_{\eta t} = \langle \mathcal{O} \rangle_{\beta, \mu, L} + \sum_{n=1}^{\infty} \frac{(-\varepsilon g(\eta t))^n}{n!} \int_{[0, \beta]^n} d\underline{s} \langle \mathbf{T} \gamma_{s_1}(\mathcal{P}); \gamma_{s_2}(\mathcal{P}); \cdots; \gamma_{s_n}(\mathcal{P}); \mathcal{O} \rangle_{\beta, \mu, L}$$

which is the series in the technical theorem with $g_{\beta,\eta}(t-i\,s_j) \to g(\eta\,t)$; hence additional error term of order $|\varepsilon|\eta$

- Absolute convergence survives the limit $L \to \infty$; no need for extra assumptions on long time behavior (clustering)
- When the decay property holds uniformly for $\beta \to \infty$, we recover a standard adiabatic theorem in the zero temperature limit

Structure of the proof of Theorem 1

- I. Changing the switching function $g(\eta t)$ to $g_{\beta,\eta}(t)$ a sum of "Matsubara" exponentials gives a correction $R_{\beta,\mu,L}(\mathcal{O}_X,\varepsilon,\eta,L)$, which given Assumption S can be estimated based on a Lieb-Robinson bound
- II. Taking advantage of the imaginary-time periodicity and analyticity of $g_{\beta,\eta}$ we can deform the integrals in the resulting Duhamel expansion into imaginary-time integrals of (non-connected) correlation functions (Wick rotation); using the oscillation of the (now imaginary) exponentials in $g_{\beta,\eta}$ the non-connected parts of the correlations cancel in the integration

Structure of the proof of Theorem 1

- I. Changing the switching function $g(\eta t)$ to $g_{\beta,\eta}(t)$ a sum of "Matsubara" exponentials gives a correction $R_{\beta,\mu,L}(\mathcal{O}_X,\varepsilon,\eta,L)$, which given Assumption S can be estimated based on a Lieb-Robinson bound
- II. Taking advantage of the imaginary-time periodicity and analyticity of $g_{\beta,\eta}$ we can deform the integrals in the resulting Duhamel expansion into imaginary-time integrals of (non-connected) correlation functions (Wick rotation); using the oscillation of the (now imaginary) exponentials in $g_{\beta,\eta}$ the non-connected parts of the correlations cancel in the integration

Lemma 1

Let $\tilde{\mathcal{H}}$, $\tilde{\rho}$ denote the versions with $g_{\beta,\eta}$ replacing g; then

$$\left| \operatorname{Tr}_{\mathcal{F}_L} \mathcal{O} \left[\rho(t) - \tilde{\rho}(t) \right] \right| \leqslant \frac{C_{\mathcal{O}} |\varepsilon|}{\eta^{d+2\beta}}$$

Sketch of the proof; for simplicity $g(\eta t) = \exp(\eta t)$, $g_{\beta,\eta}(t) = \exp(\eta_{\beta} t)$ with $\eta_{\beta} \in \frac{2\pi}{\beta} \mathbb{N}_{+}$ a little bigger than η , $|\eta - \eta_{\beta}| \leqslant \frac{2\pi}{\beta}$.

Letting \mathcal{U} , $\tilde{\mathcal{U}}$ denote the unitary evolutions associated with \mathcal{H} , $\tilde{\mathcal{H}}$,

$$\begin{split} & \left| \operatorname{Tr}_{\mathcal{F}_{L}} \mathcal{O} \left[\rho(t) - \tilde{\rho}(t) \right] \right| \\ = & \left| \lim_{T \to \infty} \operatorname{Tr}_{\mathcal{F}_{L}} \left[\mathcal{U}(-T;t) \, \mathcal{O} \, \mathcal{U}(t;-T) - \tilde{\mathcal{U}}(-T;t) \, \mathcal{O} \, \tilde{\mathcal{U}}(t;-T) \right] \rho_{\beta,\mu,L} \right| \\ \leqslant & \lim \sup_{T \to \infty} \left\| \mathcal{O} - \mathcal{U}(t;-T) \, \tilde{\mathcal{U}}(-T;t) \, \mathcal{O} \, \tilde{\mathcal{U}}(t;-T) \, \mathcal{U}(-T,t) \right\| \end{split}$$

- Let $\zeta_{\beta,\eta}(t) = g(\eta t) g_{\beta,\eta}(t)$, so that $\mathcal{H}(\eta t) = \tilde{\mathcal{H}}(\eta,t) + \zeta_{\beta,\eta}(t)$; then $\left\| \mathcal{O} \mathcal{U}(t;-T)\tilde{\mathcal{U}}(-T;t)\mathcal{O}\tilde{\mathcal{U}}(t;-T)\mathcal{U}(-T,t) \right\|$ $= \left\| \int_{-T}^{t} \frac{\partial}{\partial s} \left[\mathcal{U}(s;-T)\tilde{\mathcal{U}}(-T;s)\mathcal{O}\tilde{\mathcal{U}}(s;-T)\mathcal{U}(-T,s) \right] ds \right\|$ $\leq \int_{-T}^{t} |\varepsilon| |\zeta_{\eta,\beta}(s)| \left\| \left[\mathcal{P}, \tilde{\mathcal{U}}(t;s)\mathcal{O}\tilde{\mathcal{U}}(s;t) \right] \right\| ds$
- Using a Lieb-Robinson bound for non-autonomous dynamics [Bachman, Michalakis, Nachtergaele, Sims; Bru, Pedra] gives the estimate $\leq C_{\mathcal{O}} \int_{-T}^{t} |\varepsilon| |\zeta_{\eta,\beta}(s)| (1+|t-s|^{d}) ds$
- The result follows from this and $|\zeta_{\eta,\beta}(s)| = |e^{\eta s} e^{\eta_{\beta} s}| \le \frac{2\pi}{\beta} |s| e^{\eta s}$

- Let $\zeta_{\beta,\eta}(t) = g(\eta t) g_{\beta,\eta}(t)$, so that $\mathcal{H}(\eta t) = \tilde{\mathcal{H}}(\eta,t) + \zeta_{\beta,\eta}(t)$; then $\left\| \mathcal{O} \mathcal{U}(t;-T)\tilde{\mathcal{U}}(-T;t)\mathcal{O}\tilde{\mathcal{U}}(t;-T)\mathcal{U}(-T,t) \right\|$ $= \left\| \int_{-T}^{t} \frac{\partial}{\partial s} \left[\mathcal{U}(s;-T)\tilde{\mathcal{U}}(-T;s)\mathcal{O}\tilde{\mathcal{U}}(s;-T)\mathcal{U}(-T,s) \right] ds \right\|$ $\leq \int_{-T}^{t} |\varepsilon| |\zeta_{\eta,\beta}(s)| \left\| \left[\mathcal{P}, \tilde{\mathcal{U}}(t;s)\mathcal{O}\tilde{\mathcal{U}}(s;t) \right] \right\| ds$
- Using a Lieb-Robinson bound for non-autonomous dynamics [Bachman, Michalakis, Nachtergaele, Sims; Bru, Pedra] gives the estimate $\leq C_{\mathcal{O}} \int_{-T}^{t} |\varepsilon| |\zeta_{\eta,\beta}(s)| (1+|t-s|^d) ds$
- The result follows from this and $|\zeta_{\eta,\beta}(s)| = |e^{\eta s} e^{\eta_{\beta} s}| \leq \frac{2\pi}{\beta} |s| e^{\eta s}$

- Let $\zeta_{\beta,\eta}(t) = g(\eta t) g_{\beta,\eta}(t)$, so that $\mathcal{H}(\eta t) = \tilde{\mathcal{H}}(\eta,t) + \zeta_{\beta,\eta}(t)$; then $\left\| \mathcal{O} \mathcal{U}(t;-T)\tilde{\mathcal{U}}(-T;t)\mathcal{O}\tilde{\mathcal{U}}(t;-T)\mathcal{U}(-T,t) \right\|$ $= \left\| \int_{-T}^{t} \frac{\partial}{\partial s} \left[\mathcal{U}(s;-T)\tilde{\mathcal{U}}(-T;s)\mathcal{O}\tilde{\mathcal{U}}(s;-T)\mathcal{U}(-T,s) \right] ds \right\|$ $\leq \int_{-T}^{t} |\varepsilon| |\zeta_{\eta,\beta}(s)| \left\| \left[\mathcal{P}, \tilde{\mathcal{U}}(t;s)\mathcal{O}\tilde{\mathcal{U}}(s;t) \right] \right\| ds$
- Using a Lieb-Robinson bound for non-autonomous dynamics [Bachman, Michalakis, Nachtergaele, Sims; Bru, Pedra] gives the estimate $\leq C_{\mathcal{O}} \int_{-T}^{t} |\varepsilon| |\zeta_{\eta,\beta}(s)| (1+|t-s|^{d}) ds$
- The result follows from this and $|\zeta_{\eta,\beta}(s)| = |e^{\eta s} e^{\eta_{\beta} s}| \leqslant \frac{2\pi}{\beta} |s| e^{\eta s}$

Wick rotation: overview

We now take the Duhamel series for the dynamics of $\mathcal{H}(\eta, t)$ and rewrite each term as an imaginary-time integral.

Lemma 2

$$\int_{s_n \leqslant \cdots \leqslant s_1 \leqslant t} d\underline{s} \left[\prod_{j=1}^n g_{\eta,\beta}(s_j) \right] \langle [\cdots [\tau_t(\mathcal{O}), \tau_{s_1}(\mathcal{P})] \cdots, \tau_{s_n}(\mathcal{P})] \rangle_{\beta,\mu,L}
= \frac{(-i)^n}{n!} \int_{[0,\beta]^n} \left[\prod_{j=1}^n g_{\eta,\beta}(t-is_j) \right] \langle \mathbf{T} \gamma_{s_1}(\mathcal{P}); \cdots; \gamma_{s_n}(\mathcal{P}); \mathcal{O} \rangle_{\beta,\mu,L}$$

This is based on a step in the proof of stability of KMS states in [Bratteli-Robinson vol. 2], which has a time independent permutation and so uses a clustering assumption for integrability in time.

Wick rotation: lowest order

• Using KMS and periodicity of $g_{\beta,\eta}$ and expanding the commutator,

$$\int_{-\infty}^{t} g_{\beta,\eta}(s) \langle [\tau_{s}(\mathcal{P}), \tau_{t}(\mathcal{O})] \rangle_{\beta,\mu,L} ds$$

$$= \int_{-\infty}^{t} [g_{\beta,\eta}(s) \langle \tau_{s}(\mathcal{P}) \tau_{t}(\mathcal{O}) \rangle - g_{\beta,\eta}(s - i\beta) \langle \tau_{s-i\beta}(\mathcal{P}) \tau_{t}(\mathcal{O}) \rangle] ds$$

$$= i \int_{0}^{\beta} g_{\beta,\eta}(t - is) \langle \tau_{t-is}(\mathcal{P}) \tau_{t}(\mathcal{O}) \rangle_{\beta,\mu,L} ds$$

then using stationarity of the Gibbs state

$$\int_0^\beta g_{\beta,\eta}(t-is) \langle \tau_{t-is}(\mathcal{P})\tau_t(\mathcal{O}) \rangle ds = \int_0^\beta g_{\beta,\eta}(t-is) \langle \gamma_s(\mathcal{P})\mathcal{O} \rangle ds$$

and we can replace the correlation with the connected one using

$$\int_{0}^{\beta} g_{\beta,\eta}(t-is) \langle \gamma_{s}(\mathcal{P}) \rangle \langle \mathcal{O} \rangle ds = \langle \mathcal{P} \rangle \langle \mathcal{O} \rangle \int_{0}^{\beta} g_{\beta,\eta}(t-is) ds = 0$$

Wick rotation: lowest order

• Using KMS and periodicity of $g_{\beta,\eta}$ and expanding the commutator,

$$\int_{-\infty}^{t} g_{\beta,\eta}(s) \langle [\tau_{s}(\mathcal{P}), \tau_{t}(\mathcal{O})] \rangle_{\beta,\mu,L} ds$$

$$= \int_{-\infty}^{t} [g_{\beta,\eta}(s) \langle \tau_{s}(\mathcal{P}) \tau_{t}(\mathcal{O}) \rangle - g_{\beta,\eta}(s - i\beta) \langle \tau_{s-i\beta}(\mathcal{P}) \tau_{t}(\mathcal{O}) \rangle] ds$$

$$= i \int_{0}^{\beta} g_{\beta,\eta}(t - is) \langle \tau_{t-is}(\mathcal{P}) \tau_{t}(\mathcal{O}) \rangle_{\beta,\mu,L} ds$$

• then using stationarity of the Gibbs state

$$\int_0^\beta g_{\beta,\eta}(t-is) \langle \tau_{t-is}(\mathcal{P})\tau_t(\mathcal{O}) \rangle ds = \int_0^\beta g_{\beta,\eta}(t-is) \langle \gamma_s(\mathcal{P})\mathcal{O} \rangle ds$$

and we can replace the correlation with the connected one using

$$\int_{0}^{\beta} g_{\beta,\eta}(t-is) \langle \gamma_{s}(\mathcal{P}) \rangle \langle \mathcal{O} \rangle ds = \langle \mathcal{P} \rangle \langle \mathcal{O} \rangle \int_{0}^{\beta} g_{\beta,\eta}(t-is) ds = 0$$

Wick rotation: lowest order

• Using KMS and periodicity of $g_{\beta,\eta}$ and expanding the commutator,

$$\int_{-\infty}^{t} g_{\beta,\eta}(s) \langle [\tau_{s}(\mathcal{P}), \tau_{t}(\mathcal{O})] \rangle_{\beta,\mu,L} ds$$

$$= \int_{-\infty}^{t} [g_{\beta,\eta}(s) \langle \tau_{s}(\mathcal{P}) \tau_{t}(\mathcal{O}) \rangle - g_{\beta,\eta}(s - i\beta) \langle \tau_{s-i\beta}(\mathcal{P}) \tau_{t}(\mathcal{O}) \rangle] ds$$

$$= i \int_{0}^{\beta} g_{\beta,\eta}(t - is) \langle \tau_{t-is}(\mathcal{P}) \tau_{t}(\mathcal{O}) \rangle_{\beta,\mu,L} ds$$

• then using stationarity of the Gibbs state

$$\int_0^\beta g_{\beta,\eta}(t-is) \langle \tau_{t-is}(\mathcal{P})\tau_t(\mathcal{O}) \rangle ds = \int_0^\beta g_{\beta,\eta}(t-is) \langle \gamma_s(\mathcal{P})\mathcal{O} \rangle ds$$

• and we can replace the correlation with the connected one using

$$\int_0^\beta g_{\beta,\eta}(t-is) \langle \gamma_s(\mathcal{P}) \rangle \langle \mathcal{O} \rangle ds = \langle \mathcal{P} \rangle \langle \mathcal{O} \rangle \int_0^\beta g_{\beta,\eta}(t-is) ds = 0.$$

- We show a sort of adiabatic behaviour (closeness of non-autonomously evolved system to instantaneous Gibbs state) for low temperature, $T \lesssim \eta^{d+2}$ with time scale η^{-1}
- Decay of correlations and convergence of cumulant expansion doesn't quite require a gap, are there cases where we can extend our result?
- Replace with more sophisticated expansions?
- Exactness of linear response (where appropriate)?

- We show a sort of adiabatic behaviour (closeness of non-autonomously evolved system to instantaneous Gibbs state) for low temperature, $T \lesssim \eta^{d+2}$ with time scale η^{-1}
- Decay of correlations and convergence of cumulant expansion doesn't quite require a gap, are there cases where we can extend our result?
- Replace with more sophisticated expansions?
- Exactness of linear response (where appropriate)?

- We show a sort of adiabatic behaviour (closeness of non-autonomously evolved system to instantaneous Gibbs state) for low temperature, $T \lesssim \eta^{d+2}$ with time scale η^{-1}
- Decay of correlations and convergence of cumulant expansion doesn't quite require a gap, are there cases where we can extend our result?
- Replace with more sophisticated expansions?
- Exactness of linear response (where appropriate)?

- We show a sort of adiabatic behaviour (closeness of non-autonomously evolved system to instantaneous Gibbs state) for low temperature, $T \lesssim \eta^{d+2}$ with time scale η^{-1}
- Decay of correlations and convergence of cumulant expansion doesn't quite require a gap, are there cases where we can extend our result?
- Replace with more sophisticated expansions?
- Exactness of linear response (where appropriate)?