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Conformal Field Theory

(Euclidean) QFT

I Random fields Ψ(x), x ∈ M, M manifold, e.g. Rd

I Correlation functions 〈
∏N

i=1 Ψ(xi )〉

Gaussian fields: correlations determined by two point functions
Conformal field theory

I 〈
∏N

i=1 Ψ(xi )〉 determined recursively by two and three point
functions by conformal bootstrap.

I In d = 2 Belavin, Polyakov and Zamoldchicov (1984) used
bootstrap to classify CFT’s and find explicit predictions for the
correlation functions in several cases

I In d > 2 bootstrap has led to spectacular numerical predictions
(e.g. 3d Ising model) by Rychkov and others.

I This talk: prove bootstrap for Liouville theory.



Conformal invariance

Scaling fields V∆(x), x ∈ Rd , ∆ ∈ R

Correlation functions invariant under rotations and translations of Rd

and under scaling

〈
∏

i

V∆i (λxi )〉 =
∏

i

λ−2∆i 〈
∏

i

V∆i (xi )〉 (∗)

∆i scaling dimension or conformal weight.

Conformal invariance: (∗) extends to conformal maps x → Λ(x),

In d = 2: R2 ' C

Λ(z) =
az + b
cz + c

det

(
a b
c d

)
= 1

and λ−2∆i → |Λ′(z)|−2∆i .

Natural setup is the Riemann sphere: z ∈ Ĉ = C ∪ {∞}.



Structure Constants

Use conformal map to fix three points to {0,1,∞}.

3-point functions are determined up to constants

〈
3∏

k=1

V∆k (zk )〉 = |z1 − z2|2∆12 |z2 − z3|2∆23 |z1 − z3|2∆13C(∆1,∆2,∆3)

with ∆12 = ∆3 −∆1 −∆2 etc.

C(∆1,∆2,∆3) = 〈V∆1 (0)V∆2 (1)V∆3 (∞)〉

are called the structure constants of the CFT.



Bootstrap hypothesis

Operator Product Expansion Axiom:

〈V∆1 (x1)V∆2 (x2)V∆3 (x3) . . . 〉 =
∑
∆∈S

C∆
∆1∆2

(x1, x2, ∂x2 )〈V∆(x2)V∆3 (x3) . . . 〉

I C∆
∆1∆2

are determined by and linear in the structure constants

I S is called the spectrum of the CFT

Iterating OPE:

I All correlations are determined by C(∆1,∆2,∆3)

Upshot: to “solve a CFT“ need to find its spectrum and structure
constants.



CFT on Riemann surfaces

CFT extends naturally to Riemann surfaces viewed as a surface Σ
with Riemannian metric g

Diffeomorphism covariance axiom: For ψ ∈ Diff (Σ)

〈
∏

i

V∆i (ψ(xi ))〉Σ,g = 〈
∏

i

V∆i (xi )〉Σ,ψ∗g

Weyl covariance axiom: For σ ∈ C∞(Σ)

〈
∏

i

V∆i (xi )〉Σ,eσg = e
c

96π

∫
Σ

(|dσ|2+2Rgσ)dvg
∏

i

e−∆iσ(xi )〈
∏

i

V∆i (xi )〉Σ,g

c central charge of the CFT, Rg scalar curvature, vg volume

Hence correlations defined on moduli space of Riemann surfaces

g ∼ eσψ∗g ψ ∈ Diff (Σ), σ ∈ C∞(Σ)



Bootstrap following G. Segal

I Σ closed oriented Riemann surface with n ≥ 0 marked points
z1, . . . , zn and boundary

∂Σ = ∪iCi

together with analytic parametrisations ζi : T→ Ci .

I Set σi = ±1 depending on whether orientation of ζi (T) agrees
with that of Σ or not. Call them "in" and "out" boundaries.
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Gluing surfaces

Glue "out" circles to "in" circles (Σ,Σ′)→ Σ ◦ Σ′
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Segal’s CFT functor

CFT consists of a Hilbert space H and an assignement

Σ→ AΣ

where

I AΣ : H⊗m → H⊗n is a Hilbert-Schmidt operator

I Σ has m in-circles and n out-circles

Gluing Axiom
AΣ◦Σ′ = AΣAΣ′



Building blocks

Build Σ by gluing simple topological building blocks B:

I Pairs of pants P ∼ Ĉ \ 3 disks

I Annuli with one marked point Ĉ \ {2 disks, 1 point}
I Disks with two marked points Ĉ \ {1 disk, 2 points}
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Bootstrap

Upshot:

Correlation function on Σ is given by composing operators ABa

〈
n∏

i=1

V∆i (xi )〉Σ =
∏

a

ABa

Show:

I Operators ABa are determined by structure constants

I ABAB′ can be factorised by representation theory



Path integrals

Motivation for axioms: let the QFT be given formally as a path
integral, e.g. for a scalar field φ

〈
n∏

i=1

V∆i (zi )〉 =

∫
φ:Σ→R

n∏
i=1

V∆i (φ(zi ))e−SΣ(φ)Dφ

with local action functional SΣ(φ)

Let Σ = Σ1 ◦ Σ2, ∂Σi = C so that SΣ = SΣ1 + SΣ2 .

[a



Path integrals

Let for ϕ : C → R

AΣj (ϕ) =

∫
φ|Σj =ϕ

∏
i:zi∈Σj

V∆i (zi )e
−SΣj (φ)Dφ j = 1,2

Then formally get

〈
n∏

i=1

V∆i (zi )〉 =

∫
ϕ:C→R

AΣ1 (ϕ)AΣ2 (ϕ)Dϕ

View AΣ as an integral kernel AΣ(ϕin, ϕout ) "Amplitude"

Next :

I Probabilistic construction of AΣ for Liouville CFT

I Prove gluing AΣ◦Σ′ = AΣAΣ′

I Use this to prove bootstrap and compute correlations.



Liouville Theory

Action functional

SΣ(φ) =

∫
Σ

(gαβ∂αφ∂βφ+ QRgφ+ µeγφ)dvg

I γ ∈ (0,2]

I Q = 2
γ + γ

2 , µ > 0 .

I Rg scalar curvature of the Riemannian metric g

Classical theory: for Q = γ
2 the minimizer φ0 gives rise to constant

negative curvature metric eγφ0 |dz|2 (Picard, Poincare)

Quantum theory 〈·〉:
I Noncritical string theory (Polyakov 1981)

I 2d gravity: Knizhnik, Polyakov, Zamolodchikov (1988)

I 4d SuSy Yang-Mills: Alday, Gaiotto, Tachikawa (2010)



Probablistic Liouville Theory

We define

〈F 〉Σ,g := Zg

∫
R
E
(
F (φ)e−

∫
Σ

(QRgφ+µ:eγφ:)dvg
)
dc

φ = c + X with X free field:

EX (z)X (z ′) = −∆−1
g (z, z ′)

Liouville theory is superrenormalisable: normal ordering

: eγφ := lim
ε→0

eγceγXε(z)− γ
2

2 EXε(z)2

suffices for renormalisation but it is nonperturbative:

c → c + t =⇒ µ→ etc

No small coupling limit!



Existence

Theorem (David, K, Rhodes, Vargas, CMP 2016) Let

Vα(z) =: eαφg(z) :

The correlation functions 〈
∏

i Vαi (zi )〉Σ,g exist and are nontrivial iff

(1)
n∑

i=1

αi + χ(Σ)Q > 0, and (2) αi < Q ∀i

Vα are primary fields with scaling dimension ∆α = α
2 (Q − α

2 )

I (1): convergence of c-integral using
∫

Σ
Rgdvg = −χ(Σ).

I (2): regularity of Gaussian Multiplicative Chaos measure∫
|z|−γα : eγX(z) : d2z <∞ a.s. iff α < Q



(1): Gauss-Bonnet:
∫

Σ
Rgdvg = −χ(Σ).

〈
n∏

i=1

eαiφ(zi )〉 = E

[∏
i

eαi X(zi )

∫
R

e(
∑

i αi +χ(Σ))c−µeγc ∫ :eγX(z):d2zdc

]
The c-integral converges if

∑
i αi > 2Q:

〈
n∏

i=1

eαiφ(zi )〉 =
Γ(s)

µsγ
E

[∏
i

eαi X(zi )(

∫
: eγX(z) : d2z)−s

]
, s :=

∑
i αi−2Q
γ

(2): Shift in X -integral (Girsanov theorem):

X (z)→ X (z)−
∑

i

∆−1
g (z, zi ) ∼ X (z)−

∑
i

αi log |z − zi |

gives

〈
n∏

i=1

eαiφ(zi )〉 ∼ E
( ∫ ∏

i

1
|z−zi |γαi : eγX(z) : d2z

)−s

Now 1
|z−zi |γαi is : eγX(z) : d2z-integrable (almost surely) if and only if

αi < Q i.e. γαi < 2 + γ2

2 .



Structure constants

For the structure constants we take Σ = Ĉ = C ∪ {∞}. Then

Theorem (K, Rhodes, Vargas, Annals of Mathematics 191, 81)
Let αi satisfy the Seiberg bounds. Then

〈Vα1 (0)Vα2 (1)Vα3 (∞)〉Ĉ = CDOZZ (α1, α2, α3)

CDOZZ (α1, α2, α3) is an explicit formula conjectured by Dorn, Otto,
Zamolodchicov, Zamolodchicov in 1995 involving 16 Barnes
G-functions (!).

Proof involves GMC analysis to derive recursive equations
determining C(α1, α2, α3)



Amplitudes
Let ∂Σ = ∪n

a=1Ca. For φ : Σ→ R set

φ|Ca = ϕa, ϕ := (ϕ1, . . . , ϕn)

How to make sense of

AΣ(ϕ) =

∫
φ|∂Σ=ϕ

∏
i

Vαi (zi )e−SΣ(φ)Dφ ?

( c. , 97#(g , g
'

,
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Free field

Let φ = φ0 + ζ with

I φ0 harmonic extension of ϕ: ∆gφ0 = 0, φ0|∂Σ = ϕ

I ζ|∂Σ = 0

Then the free field action factorises

S0(φ) :=

∫
Σ

gαβ∂αφ∂βφdvg = S0(φ0) + S0(ζ)

S0(φ0) reduces to a boundary term

S0(φ0) =

∫
∂Σ

φ0∂
⊥φ0 = (ϕ,DΣϕ)

where DΣ is the Dirichlet-Neumann operator acting on the boundary
fields

φ|∂Σ = ϕ = (ϕ1, ϕ2, . . . ϕn)



Liouville amplitudes

Let ϕa(θ) =
∑

k∈Z ϕ
a
k eikθ. Then

S0(φ0) =
1
4

n∑
a=1

∑
k∈Z

|k ||ϕ̂a
k |2 + (ϕ, D̃Σϕ)

D̃Σ is smoothing: (ϕ, D̃Σϕ) defined on ϕa ∈ H−s(T) ∀s > 0.

Definition. The Liouville amplitude with primary fields Vαi at zi

AΣ(ϕ) = Z e−(ϕ,D̃Σϕ) E
(∏

Vαi (zi )e−
∫

Σ
QRgφdvg−µ

∫
Σ

:eγφ:dvg

)
with

I φ = φ0 + ζ

I φ0 harmonic extension of ϕ

I E is over the Dirichlet GFF ζ on Σ.



Gluing

Let µ be measure on distributions ϕ =
∑

k∈Z ϕk eikθ ∈ Hs(T), s < 0

dµ(ϕ) = dϕ0

∏
k>0

e−
1
2 |k| |ϕ̂k |2 d2ϕk

π|k|

and define the Liouville Hilbert space

H = L2(Hs(T),dµ).

Proposition (GKRV’22). AΣ are Hilbert-Schmidt operators and

AΣ◦Σ′ = AΣAΣ′
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φ3 graphs
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Express the scalar product
∫

F (ϕ)G(ϕ)dµ(ϕ) using eigenfunctions of
the Hamiltonian of LCFT:

H = H0 + µ

∫ 2π

0
: eγϕ(θ) : dθ

where H0 is the Hamiltonian of the free field.



Spectrum of Liouville theory

Theorem (GKRV, Acta Math. to appear) H has spectral resolution

L2(dµ(ϕ)) =

∫ ⊕
R+

HP ⊗ H̃P dP

HP and H̃P are Verma modules of two commuting Virasoro algebras
with central charge c = 1 + 6Q2 of highest weights (∆Q+iP ,∆Q+iP).
Complete set of generalised eigenfunctions ΨP,ν,ν̃

I P ∈ R+ and ν, ν̃ are Young diagrams

I ΨP,0,0 is amplitude of (D, α), α = Q + iP

I CFT spectrum of LCFT is {∆Q+iP}P∈R

Proof. For the free field µ = 0 this is well known. Deformation to
µ 6= 0 is obtained by scattering theory.



Ward identities

Need to evaluate amplitudes of building blocks at eigenstates:

Proposition (GKRV’22). Let B be a pair of pants. Then

AB(⊗3
j=1ΨPj ,νi ,ν̃i ) = D(ν,P)D(ν̃,P)AB(⊗3

j=1ΨPj ,0,0).

where D(ν,P) is explicit, representation theoretic and

AB(⊗3
j=1ΨPj ,0,0) = CDOZZ (Q + iP1,Q + iP2,Q + iP3)

the LCFT structure constant given by the DOZZ formula.
Similar factorisation holds for other building blocks with some Q + iPi
replaced by αi of vertex insertions.

Proof is based on probabilistic Ward identities.



Integrability of Liouville theory

23
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Theorem (GKRV (2022). Let Σ have genus g. Then

〈
m∏

i=1

Vαi (zi )〉Σ =

∫
R3g+m−3

+

|F(z,P)|2ρ(P)dP

I Conformal block F(z,P) is purely representation theoretic and
holomorphic in the moduli of the surface (Σ, z1, . . . , zm)

I ρ(P) is a product of structure constants C(α, α′, α′′) with
α, α′, α′′ ∈ {αi ,Q ± iPj}



Work in progress

For γ ∈ R, c = 1 + 6(γ2 + 2
γ )2 ≥ 25. How about other c?

For γ = iβ with β ∈ R, c ∈ (−∞,1]. This also has a probabilistic
formulation. Can one recover the minimal models from imaginary
Liouville?

Connection to the AdS3 σ-model

S = k
∫

(∂̄φ∂φ+ e2φ∂̄v∂v̄)d2z

and analytic Langlands correspondence

Integrable perturbations of LCFT: e.g. eγφ → cosh(γφ)



Thank you!
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