Bootstrapping Liouville Theory

Antti Kupiainen

joint work with C. Guillarmou, R. Rhodes, V. Vargas

Rome 6.2. 2023

Conformal Field Theory

(Euclidean) QFT

- ► Random fields $\Psi(x)$, $x \in M$, M manifold, e.g. \mathbb{R}^d
- ► Correlation functions $\langle \prod_{i=1}^{N} \Psi(x_i) \rangle$

Gaussian fields: correlations determined by two point functions Conformal field theory

- ▶ $\langle \prod_{i=1}^{N} \Psi(x_i) \rangle$ determined recursively by two and three point functions by conformal bootstrap.
- In d = 2 Belavin, Polyakov and Zamoldchicov (1984) used bootstrap to classify CFT's and find explicit predictions for the correlation functions in several cases
- ► In *d* > 2 bootstrap has led to spectacular numerical predictions (e.g. 3d Ising model) by Rychkov and others.
- ► This talk: prove bootstrap for Liouville theory.

Conformal invariance

Scaling fields $V_{\Delta}(x), x \in \mathbb{R}^d, \Delta \in \mathbb{R}$

Correlation functions invariant under rotations and translations of \mathbb{R}^d and under scaling

$$\langle \prod_{i} V_{\Delta_{i}}(\lambda x_{i}) \rangle = \prod_{i} \lambda^{-2\Delta_{i}} \langle \prod_{i} V_{\Delta_{i}}(x_{i}) \rangle$$
 (*)

 Δ_i scaling dimension or **conformal weight**.

Conformal invariance: (*) extends to conformal maps $x \to \Lambda(x)$,

In d = 2: $\mathbb{R}^2 \simeq \mathbb{C}$

$$\Lambda(z) = \frac{az+b}{cz+c} \quad \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 1$$

and $\lambda^{-2\Delta_i} \to |\Lambda'(z)|^{-2\Delta_i}$.

Natural setup is the **Riemann sphere**: $z \in \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.

Structure Constants

Use conformal map to fix three points to $\{0, 1, \infty\}$.

3-point functions are determined up to constants

$$\langle \prod_{k=1}^{3} V_{\Delta_k}(z_k) \rangle = |z_1 - z_2|^{2\Delta_{12}} |z_2 - z_3|^{2\Delta_{23}} |z_1 - z_3|^{2\Delta_{13}} C(\Delta_1, \Delta_2, \Delta_3)$$

with $\Delta_{12}=\Delta_3-\Delta_1-\Delta_2$ etc.

$$C(\Delta_1, \Delta_2, \Delta_3) = \langle V_{\Delta_1}(0) V_{\Delta_2}(1) V_{\Delta_3}(\infty) \rangle$$

are called the **structure constants** of the CFT.

Bootstrap hypothesis

Operator Product Expansion Axiom:

$$\langle V_{\Delta_1}(x_1)V_{\Delta_2}(x_2)V_{\Delta_3}(x_3)\dots\rangle = \sum_{\Delta\in\mathcal{S}} C^{\Delta}_{\Delta_1\Delta_2}(x_1,x_2,\partial_{x_2})\langle V_{\Delta}(x_2)V_{\Delta_3}(x_3)\dots\rangle$$

- $ightharpoonup C^{\Delta}_{\Delta_1 \Delta_2}$ are **determined** by and **linear** in the structure constants
- \triangleright S is called the **spectrum** of the CFT

Iterating OPE:

▶ All correlations are determined by $C(\Delta_1, \Delta_2, \Delta_3)$

Upshot: to "solve a CFT" need to find its spectrum and structure constants.

CFT on Riemann surfaces

CFT extends naturally to Riemann surfaces viewed as a surface Σ with Riemannian metric g

Diffeomorphism covariance axiom: For $\psi \in \textit{Diff}(\Sigma)$

$$\langle \prod_{i} V_{\Delta_{i}}(\psi(x_{i})) \rangle_{\Sigma,g} = \langle \prod_{i} V_{\Delta_{i}}(x_{i}) \rangle_{\Sigma,\psi^{*}g}$$

Weyl covariance axiom: For $\sigma \in C^{\infty}(\Sigma)$

$$\langle \prod_{i} V_{\Delta_{i}}(x_{i}) \rangle_{\Sigma,e^{\sigma}g} = e^{\frac{c}{96\pi} \int_{\Sigma} (|d\sigma|^{2} + 2R_{g}\sigma)dv_{g}} \prod_{i} e^{-\Delta_{i}\sigma(x_{i})} \langle \prod_{i} V_{\Delta_{i}}(x_{i}) \rangle_{\Sigma,g}$$

c central charge of the CFT, R_g scalar curvature, v_g volume Hence correlations defined on **moduli space** of Riemann surfaces

$$g \sim e^{\sigma} \psi^* g \quad \psi \in \textit{Diff}(\Sigma), \ \ \sigma \in \textit{C}^{\infty}(\Sigma)$$

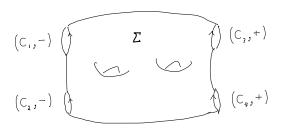
Bootstrap following G. Segal

▶ Σ closed oriented Riemann surface with $n \ge 0$ marked points z_1, \ldots, z_n and boundary

$$\partial \Sigma = \cup_i C_i$$

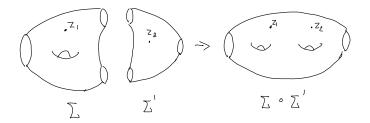
together with analytic parametrisations $\zeta_i : \mathbb{T} \to C_i$.

▶ Set $\sigma_i = \pm 1$ depending on whether orientation of $\zeta_i(\mathbb{T})$ agrees with that of Σ or not. Call them "in" and "out" boundaries.



Gluing surfaces

Glue "out" circles to "in" circles $(\Sigma, \Sigma') \to \Sigma \circ \Sigma'$



Segal's CFT functor

CFT consists of a **Hilbert space** \mathcal{H} and an assignement

$$\Sigma \to \mathcal{A}_\Sigma$$

where

- $\mathcal{A}_{\Sigma}: \mathcal{H}^{\otimes m} \to \mathcal{H}^{\otimes n}$ is a Hilbert-Schmidt operator
- Σ has m in-circles and n out-circles

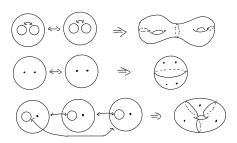
Gluing Axiom

$$\mathcal{A}_{\Sigma \circ \Sigma'} = \mathcal{A}_{\Sigma} \mathcal{A}_{\Sigma'}$$

Building blocks

Build Σ by gluing simple topological building blocks \mathcal{B} :

- ▶ Pairs of pants $\mathcal{P} \sim \hat{\mathbb{C}} \setminus 3$ disks
- ► Annuli with one marked point $\hat{\mathbb{C}} \setminus \{2 \text{ disks}, 1 \text{ point}\}$
- ▶ Disks with two marked points $\hat{\mathbb{C}} \setminus \{1 \text{ disk}, 2 \text{ points}\}$



Bootstrap

Upshot:

Correlation function on Σ is given by composing operators $\mathcal{A}_{\mathcal{B}_a}$

$$\langle \prod_{i=1}^n V_{\Delta_i}(x_i) \rangle_{\Sigma} = \prod_a \mathcal{A}_{\mathcal{B}_a}$$

Show:

- ▶ Operators $A_{\mathcal{B}_a}$ are determined by structure constants
- $A_BA_{B'}$ can be factorised by representation theory

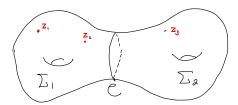
Path integrals

Motivation for axioms: let the QFT be given formally as a path integral, e.g. for a scalar field ϕ

$$\langle \prod_{i=1}^n V_{\Delta_i}(z_i) \rangle = \int_{\phi: \Sigma \to \mathbb{R}} \prod_{i=1}^n V_{\Delta_i}(\phi(z_i)) e^{-S_{\Sigma}(\phi)} D\phi$$

with local action functional $S_{\Sigma}(\phi)$

Let
$$\Sigma = \Sigma_1 \circ \Sigma_2$$
, $\partial \Sigma_i = \mathcal{C}$ so that $\mathcal{S}_{\Sigma} = \mathcal{S}_{\Sigma_1} + \mathcal{S}_{\Sigma_2}$.



Path integrals

Let for $\varphi:\mathcal{C}\to\mathbb{R}$

$$\mathcal{A}_{\Sigma_{j}}(\varphi) = \int_{\phi|_{\Sigma_{j}=\varphi}} \prod_{i:z_{i}\in\Sigma_{j}} V_{\Delta_{i}}(z_{i}) e^{-S_{\Sigma_{j}}(\phi)} D\phi \quad j=1,2$$

Then formally get

$$\langle \prod_{i=1}^n V_{\Delta_i}(z_i) \rangle = \int_{\varphi: \mathcal{C} \to \mathbb{R}} \mathcal{A}_{\Sigma_1}(\varphi) \mathcal{A}_{\Sigma_2}(\varphi) D\varphi$$

View A_{Σ} as an integral kernel $A_{\Sigma}(\varphi_{\mathit{in}}, \varphi_{\mathit{out}})$ "Amplitude"

Next:

- ▶ Probabilistic construction of A_{Σ} for Liouville CFT
- Prove gluing $A_{\Sigma \circ \Sigma'} = A_{\Sigma} A_{\Sigma'}$
- Use this to prove bootstrap and compute correlations.

Liouville Theory

Action functional

$$\mathcal{S}_{\Sigma}(\phi) = \int_{\Sigma} (g^{lphaeta}\partial_{lpha}\phi\partial_{eta}\phi + Q\mathcal{R}_{g}\phi + \mu e^{\gamma\phi})d extsf{v}_{g}$$

- γ ∈ (0,2]
- $ightharpoonup Q = \frac{2}{\gamma} + \frac{\gamma}{2}, \, \mu > 0.$
- $ightharpoonup R_g$ scalar curvature of the Riemannian metric g

Classical theory: for $Q = \frac{\gamma}{2}$ the minimizer ϕ_0 gives rise to constant negative curvature metric $e^{\gamma\phi_0}|dz|^2$ (Picard, Poincare)

Quantum theory $\langle \cdot \rangle$:

- Noncritical string theory (Polyakov 1981)
- 2d gravity: Knizhnik, Polyakov, Zamolodchikov (1988)
- 4d SuSy Yang-Mills: Alday, Gaiotto, Tachikawa (2010)

Probablistic Liouville Theory

We define

$$\langle F
angle_{\Sigma,g} := Z_g \int_{\mathbb{R}} \mathbb{E} ig(F(\phi) e^{-\int_{\Sigma} (QR_g \phi + \mu : e^{\gamma \phi} :) dv_g} ig) dc$$

 $\phi = c + X$ with X free field:

$$\mathbb{E}X(z)X(z') = -\Delta_g^{-1}(z,z')$$

Liouville theory is **superrenormalisable**: normal ordering

$$: e^{\gamma \phi} := \lim_{\epsilon \to 0} e^{\gamma c} e^{\gamma X_{\epsilon}(z) - \frac{\gamma^2}{2} \mathbb{E} X_{\epsilon}(z)^2}$$

suffices for renormalisation but it is **nonperturbative**:

$$c \rightarrow c + t \implies \mu \rightarrow e^t c$$

No small coupling limit!

Existence

Theorem (David, K, Rhodes, Vargas, CMP 2016) Let

$$V_{\alpha}(z) =: e^{\alpha \phi_g(z)}:$$

The correlation functions $\langle \prod_i V_{\alpha_i}(z_i) \rangle_{\Sigma,g}$ exist and are nontrivial **iff**

(1)
$$\sum_{i=1}^{n} \alpha_i + \chi(\Sigma)Q > 0, \text{ and } (2) \alpha_i < Q \ \forall i$$

 V_{α} are **primary fields** with scaling dimension $\Delta_{\alpha} = \frac{\alpha}{2}(Q - \frac{\alpha}{2})$

- ▶ (1): convergence of *c*-integral using $\int_{\Sigma} R_g dv_g = -\chi(\Sigma)$.
- (2): regularity of Gaussian Multiplicative Chaos measure

$$\int |z|^{-\gamma\alpha} : e^{\gamma X(z)} : d^2z < \infty \text{ a.s. iff } \alpha < Q$$

(1): Gauss-Bonnet: $\int_{\Sigma} R_g dv_g = -\chi(\Sigma)$.

$$\langle \prod_{i=1}^n e^{\alpha_i \phi(z_i)} \rangle = \mathbb{E} \left[\prod_i e^{\alpha_i X(z_i)} \int_{\mathbb{R}} e^{(\sum_i \alpha_i + \chi(\Sigma))c - \mu e^{\gamma c} \int : e^{\gamma X(z)} : d^2 z} dc \right]$$

The *c*-integral converges if $\sum_i \alpha_i > 2Q$:

$$\langle \prod_{i=1}^n e^{\alpha_i \phi(z_i)} \rangle = \frac{\Gamma(s)}{\mu^s \gamma} \mathbb{E} \left[\prod_i e^{\alpha_i X(z_i)} (\int : e^{\gamma X(z)} : d^2 z)^{-s} \right], \quad s := \frac{\sum_i \alpha_i - 2Q}{\gamma}$$

(2): Shift in X-integral (Girsanov theorem):

$$X(z) o X(z) - \sum_i \Delta_g^{-1}(z, z_i) \sim X(z) - \sum_i \alpha_i \log|z - z_i|$$

gives

$$\langle \prod_{i=1}^n e^{\alpha_i \phi(z_i)} \rangle \sim \mathbb{E} \left(\int \prod_i \frac{1}{|z-z_i|^{\gamma \alpha_i}} : e^{\gamma X(z)} : d^2 z \right)^{-s}$$

Now $\frac{1}{|z-z|^{\gamma\alpha_i}}$ is $:e^{\gamma X(z)}:d^2z$ -integrable (almost surely) if and only if

$$\alpha_i < Q$$
 i.e. $\gamma \alpha_i < 2 + \frac{\gamma^2}{2}$.

Structure constants

For the structure constants we take $\Sigma=\hat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}.$ Then

Theorem (K, Rhodes, Vargas, Annals of Mathematics **191**, 81) Let α_i satisfy the Seiberg bounds. Then

$$\langle V_{\alpha_1}(0)V_{\alpha_2}(1)V_{\alpha_3}(\infty)\rangle_{\hat{\mathbb{C}}}=C_{DOZZ}(\alpha_1,\alpha_2,\alpha_3)$$

 $C_{DOZZ}(\alpha_1,\alpha_2,\alpha_3)$ is an explicit formula conjectured by Dorn, Otto, Zamolodchicov, Zamolodchicov in 1995 involving 16 Barnes G-functions (!).

Proof involves GMC analysis to derive recursive equations determining $C(\alpha_1, \alpha_2, \alpha_3)$

Amplitudes

Let $\partial \Sigma = \bigcup_{a=1}^n \mathcal{C}_a$. For $\phi : \Sigma \to \mathbb{R}$ set

$$\phi|_{\mathcal{C}_a} = \varphi^a, \quad \varphi := (\varphi^1, \dots, \varphi^n)$$

How to make sense of

$$\mathcal{A}_{\Sigma}(\varphi) = \int_{\phi|_{\partial\Sigma} = \varphi} \prod_{i} V_{\alpha_{i}}(z_{i}) e^{-S_{\Sigma}(\phi)} D\phi$$
 ?

Free field

Let $\phi = \phi_0 + \zeta$ with

- ϕ_0 harmonic extension of φ : $\Delta_g \phi_0 = 0$, $\phi_0|_{\partial \Sigma} = \varphi$

Then the free field action factorises

$$S^0(\phi) := \int_{\Sigma} g^{lphaeta} \partial_lpha \phi \partial_eta \phi \, d extsf{v}_g = S^0(\phi_0) + S^0(\zeta)$$

 $S^0(\phi_0)$ reduces to a boundary term

$$\mathcal{S}^0(\phi_0) = \int_{\partial \Sigma} \phi_0 \partial^\perp \phi_0 = (oldsymbol{arphi}, \mathcal{D}_{\!\Sigma} oldsymbol{arphi})$$

where D_{Σ} is the **Dirichlet-Neumann** operator acting on the boundary fields

$$\phi|_{\partial\Sigma} = \varphi = (\varphi^1, \varphi^2, \dots \varphi^n)$$

Liouville amplitudes

Let $\varphi^a(\theta) = \sum_{k \in \mathbb{Z}} \varphi^a_k e^{ik\theta}$. Then

$$\mathcal{S}^0(\phi_0) = rac{1}{4} \sum_{a=1}^n \sum_{k \in \mathbb{Z}} |k| |\hat{arphi}_k^a|^2 + ig(arphi, ilde{D}_\Sigma oldsymbol{arphi}ig)$$

 \tilde{D}_{Σ} is **smoothing**: $(\varphi, \tilde{D}_{\Sigma}\varphi)$ defined on $\varphi^a \in H^{-s}(\mathbb{T}) \ \forall s > 0$.

Definition. The Liouville amplitude with primary fields V_{α_i} at z_i

$$\mathcal{A}_{\Sigma}(\varphi) = Z \ e^{-(\varphi, \tilde{D}_{\Sigma}\varphi)} \, \mathbb{E}\left(\prod \, V_{\alpha_i}(z_i) e^{-\int_{\Sigma} QR_g \phi dv_g - \mu \int_{\Sigma} : e^{\gamma \phi} : dv_g}\right)$$

with

- ϕ_0 harmonic extension of φ
- ightharpoonup is over the Dirichlet GFF ζ on Σ.

Gluing

Let μ be measure on distributions $\varphi = \sum_{k \in \mathbb{Z}} \varphi_k e^{ik\theta} \in H^s(\mathbb{T}), \ \ s < 0$

$$d\mu(\varphi) = d\varphi_0 \prod_{k>0} e^{-rac{1}{2}|k|\,|\hat{arphi}_k|^2} rac{d^2 arphi_k}{\pi |k|}$$

and define the Liouville Hilbert space

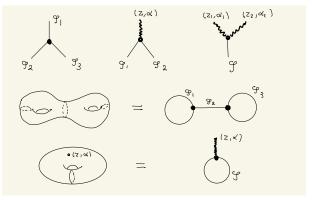
$$\mathcal{H} = L^2(H^s(\mathbb{T}), d\mu).$$

Proposition (GKRV'22). A_{Σ} are Hilbert-Schmidt operators and

$$\mathcal{A}_{\Sigma \circ \Sigma'} = \mathcal{A}_{\Sigma} \mathcal{A}_{\Sigma'}$$

Examples

ϕ^3 graphs



Express the scalar product $\int F(\varphi)G(\varphi)d\mu(\varphi)$ using eigenfunctions of the **Hamiltonian** of LCFT:

$$H=H_0+\mu\int_0^{2\pi}:m{e}^{\gammaarphi(heta)}:m{d} heta$$

where H_0 is the Hamiltonian of the free field.

Spectrum of Liouville theory

Theorem (GKRV, Acta Math. to appear) *H* has spectral resolution

$$L^2(d\mu(\varphi)) = \int_{\mathbb{R}_+}^{\oplus} \mathcal{H}_P \otimes \tilde{\mathcal{H}}_P dP$$

 \mathcal{H}_P and $\tilde{\mathcal{H}}_P$ are Verma modules of two commuting Virasoro algebras with central charge $c = 1 + 6Q^2$ of highest weights $(\Delta_{Q+iP}, \Delta_{Q+iP})$.

Complete set of generalised eigenfunctions $\Psi_{P,\nu,\tilde{\nu}}$

- ▶ $P \in \mathbb{R}_+$ and ν , $\tilde{\nu}$ are Young diagrams
- $\Psi_{P,0,0}$ is amplitude of (\mathbb{D}, α) , $\alpha = Q + iP$
- ▶ CFT spectrum of LCFT is $\{\Delta_{Q+iP}\}_{P\in\mathbb{R}}$

Proof. For the free field $\mu=0$ this is well known. Deformation to $\mu\neq 0$ is obtained by **scattering theory**.

Ward identities

Need to evaluate amplitudes of building blocks at eigenstates:

Proposition (GKRV'22). Let \mathcal{B} be a pair of pants. Then

$$A_{\mathcal{B}}(\otimes_{j=1}^{3}\Psi_{P_{j},\nu_{i},\tilde{\nu}_{i}})=D(\nu,\textbf{\textit{P}})D(\tilde{\nu},\textbf{\textit{P}})A_{\mathcal{B}}(\otimes_{j=1}^{3}\Psi_{P_{j},0,0}).$$

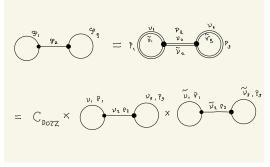
where $D(\nu, \mathbf{P})$ is **explicit**, representation theoretic and

$$A_{\mathcal{B}}(\otimes_{j=1}^{3} \Psi_{P_{j},0,0}) = C_{DOZZ}(Q + iP_{1}, Q + iP_{2}, Q + iP_{3})$$

the LCFT structure constant given by the DOZZ formula. Similar factorisation holds for other building blocks with some $Q + iP_i$ replaced by α_i of vertex insertions.

Proof is based on probabilistic Ward identities.

Integrability of Liouville theory



Theorem (GKRV (2022). Let Σ have genus g. Then

$$\langle \prod_{i=1}^m V_{\alpha_i}(z_i) \rangle_{\Sigma} = \int_{\mathbb{R}^{3g+m-3}_+} |\mathcal{F}(\mathbf{z},\mathbf{P})|^2
ho(\mathbf{P}) d\mathbf{P}$$

- ► Conformal block $\mathcal{F}(\mathbf{z}, \mathbf{P})$ is purely representation theoretic and holomorphic in the moduli of the surface $(\Sigma, z_1, \dots, z_m)$
- ▶ ρ (**P**) is a product of structure constants $C(\alpha, \alpha', \alpha'')$ with $\alpha, \alpha', \alpha'' \in \{\alpha_i, Q \pm iP_i\}$

Work in progress

For $\gamma \in \mathbb{R}$, $c = 1 + 6(\frac{\gamma}{2} + \frac{2}{\gamma})^2 \ge 25$. How about other c?

For $\gamma = i\beta$ with $\beta \in \mathbb{R}$, $c \in (-\infty, 1]$. This also has a probabilistic formulation. Can one recover the minimal models from imaginary Liouville?

Connection to the AdS₃ σ -model

$$S = k \int (\bar{\partial}\phi \partial \phi + e^{2\phi} \bar{\partial}v \partial \bar{v}) d^2z$$

and analytic Langlands correspondence

Integrable perturbations of LCFT: e.g. $e^{\gamma\phi} \to \cosh(\gamma\phi)$

Thank you!