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Quantum Hall effect

Quantum Hall Effect

Quantized transverse (Hall) current in
Ï Quantum Hall systems

[von Klitzing et al. 1980, Thouless et al.
1982]

Ï Haldane model [Haldane 1988],
Chern insulators [Chang et al. 2015, Best-
wick et al. 2015]
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Kubo formula for the Hall conductivity (linear response)

jy =σxy Ex +O(Ex
2)

with

σxy = ν e2

h , ν=Chern number=TKNN invariant ∈Z

D. Monaco (Sapienza) Purely linear response of the QH current 7/02/2023 1 / 19



Quantum Hall effect

Exactness of Kubo formula

Theorem
Actually

jy =σxy Ex +O(Ex
∞).
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Quantum Hall effect

Comments

Ï This result is due to [Klein, Seiler 1990] (see also [Bachmann et al. 2021])
Ï Their proof is based on Laughlin’s magnetic-flux insertion argument

[Laughlin 1981] made rigorous by the use of time-adiabatic perturba-
tion theory [Avron, Simon, . . . ]

Ï It applies to many-body, disordered electron gases at zero temperature
under a spectral gap assumption

Ï Our proof is based on space-adiabatic perturbation theory [Nenciu,
Teufel, . . . ]: more physical?

Ï It applies to non-interacting, periodic electrons at zero temperature under
a spectral gap assumption

Ï It computes ν by means of equilibrium quantities
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Laughlin–Klein–Seiler’s argument

Review: Klein–Seiler’s argument
On Λ= [0,L1]× [0,L2] consider (a fermionic many-body version of)

H̃(φ1,φ2) := 1
2

(
−i∇− B

2 e3×x−φ1
e1
L1

−φ2
e2
L2

)2
+W (x)

Ï φi ei/Li “threads a magnetic flux φi trough the loop in i-th direction”
Ï H̃(φ1,φ2) is 2π-periodic in φ1, φ2 up to gauge transformations: for

G(φ1,φ2) := ei(φ1 X1/L1+φ2 X2/L2)

Ĥ(φ1,φ2) :=G(φ1,φ2)H̃(φ1,φ2)G(φ1,φ2)∗

= Ĥ(φ1+2π,φ2)= Ĥ(φ1,φ2+2π)

Ï Assume: H̃(φ1,φ2) has an isolated spectral island, with spectral projec-
tion P̃(φ1,φ2)
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Laughlin–Klein–Seiler’s argument

Review: Klein–Seiler’s argument

Hτ(t ,Φ) := H̃(φ1 = f (t/τ), φ2 =Φ)
τ : time-adiabatic parameter
ε= τ−1 ∝V ≪ 1 : Hall voltage
s = t/τ

P(t ,Φ) := P̃(φ1 = f (t/τ), φ2 =Φ) spectral projection
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Laughlin–Klein–Seiler’s argument

Review: Klein–Seiler’s argument

Ï Physical evolution:

i∂sUτ(s ,Φ)= τHτ(s ,Φ)Uτ(s ,Φ), Uτ(0,Φ)= 1

Ï Physical state:

Pτ(s ,Φ)=Uτ(s ,Φ)P(0,Φ)Uτ(s ,Φ)∗
(
̸=P(s ,Φ)

)
Ï Adiabatic evolution:

i∂sU(a)
τ (s ,Φ)= τH(a)

τ (s ,Φ)U(a)
τ (s ,Φ), U(a)

τ (0,Φ)= 1

where
H(a)
τ (s ,Φ) :=Hτ(s ,Φ)+ i

τ

[
∂sP(s ,Φ),P(s ,Φ)

]
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Laughlin–Klein–Seiler’s argument

Review: Klein–Seiler’s argument

Theorem (Adiabatic theorem)
Ï Since Hτ(s ,Φ) is constant near s = 1

P(0,Φ)U(a)
τ (1,Φ)∗Uτ(1,Φ)P(0,Φ)=O(τ−∞)

Ï Intertwining property of the adiabatic evolution:

P(s ,Φ)U(a)
τ (s ,Φ)=U(a)

τ (s ,Φ)P(0,Φ)
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Laughlin–Klein–Seiler’s argument

Review: Klein–Seiler’s argument
Hall current

Iτ(s ,Φ) :=TrPτ(s ,Φ)∂ΦHτ(s ,Φ)

Average transported charge

〈Q〉 :=
∫ 2π

0

dΦ
2π

(
τ

∫ 1

0
ds I(s ,Φ)

)
= i

2π

∫ 2π

0
dΦ

∫ 1

0
ds∂s TrP(0,Φ)Uτ(s ,Φ)∗∂ΦUτ(s ,Φ)

= i
2π

∫
∂[0,1]×[0,2π]

TrP(0,Φ)U(a)
τ (s ,Φ)∗ dU(a)

τ (s ,Φ)+O(τ−∞)

= 1
2π︸︷︷︸

=e2/h

(
i
∫
T2

dφ1 dφ2 Tr P̂
[
∂φ1P̂ ,∂φ2P̂

])
︸ ︷︷ ︸

Chern number ∈Z

+O(τ−∞)

where last equality employs Chern–Simons formula:
TrPU dPU ∧dPU =TrP dP ∧dP +d

(
TrP U−1 dU

)
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Our argument

Our argument

The model
Ï H0 : unperturbed 2D (magnetic-)periodic gapped Hamiltonian (e.g.

Bloch–Landau operator, Haldane Hamiltonian, . . . )
Π0 : equilibrium spectral projection below the gap

Ï Hε : perturbed Hamiltonian, the electric field is modelled by a slowly-
varying linear potential (space-adiabatic perturbation)

Hε =H0−εX1

These two have very different spectral properties: typically σ(Hε)=R

What we need
Ï Πε : a non-equilibrium state
Ï J2 : a transverse Hall current operator
Ï T(·) : a trace functional to compute expectations of extensive observables

in extended states (in view of periodicity)
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Our argument

Exactness of Kubo formula (reprise)

Theorem ([Marcelli, M., LMP 2022])

T(J2Πε)= εσ12+O(ε∞)

with
σ12 =−iT

(
Π0

[[
Π0,X1

]
,
[
Π0,X2

]]
Π0

)
∈ 1

2πZ
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Our argument

Exactness of Kubo formula (reprise)

Theorem ([Marcelli, M., LMP 2022])

For all n ∈N there is Π(n)
ε such that

T(J2Π
(n)
ε )= εσ12+O(εn+1)

with
σ12 =−iT

(
Π0

[[
Π0,X1

]
,
[
Π0,X2

]]
Π0

)
∈ 1

2πZ
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Our argument

Hall current operator
Hall current operator

J2 := i
[
H0,X2

]= i
[
Hε,X2

]
Remark: Bloch–Floquet transform
Periodic operators can be fibered in the Bloch–Floquet representation:

UH0U
−1 =

∫ ⊕

R2/(2πZ2)
dk H0(k) with (Uψ)(k ,x) := ∑

n∈Z2
e−ik ·(x−n) (Tnψ)(x)

Assumption
Since

i
[
H0,Xj

]
(k)= ∂kj H0(k)

we assume that

k 7→H0(k) is C∞-smooth (in norm-resolvent topology)
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Our argument

Trace per unit volume

Trace per unit volume

T(A) := lim
L→∞

1
L2 Trχ[−L/2,L/2]2 Aχ[−L/2,L/2]2

(provided A is trace-class on compact sets)

For periodic operators A

T(A)=TrχCAχC
[
C= [−1/2,1/2]2 : unit cell

]
=

∫
C

dx A(x ;x)
[
A(x ;y) : integral kernel of A

]
=

∫
T2

dk TrL2(C) A(k)
[
A(k) : Bloch–Floquet fibers of A

]
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Our argument

NEASS

Theorem
Let Hε =H0−εX1, as before. There exist a sequence

S
(n)
ε , n ∈N,

of bounded, periodic operators with smooth Bloch–Floquet fibers such that
the non-equilibrium almost stationary state (NEASS)

Π
(n)
ε := exp

(
iεS(n)

ε

)
Π0 exp

(
−iεS(n)

ε

)
satisfies [

Hε,Π
(n)
ε

]
= εn+1

[
R(n)
ε ,Π

(n)
ε

]
=O

(
εn+1

)
.
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Our argument

Comments

Ï Older approaches to space-adiabatic perturbation theory: [Nenciu, Teufel,
Panati, . . . ] ⇝ Π

(n)
ε as an asymptotic power series in ε

Ï Here: Π(n)
ε is unitarily conjugated to equilibrium state Π0 (useful!). . .

. . . but S(n)
ε is still constructed order by order in ε

Ï This type of NEASS was constructed previously
Ï in [M., Teufel 2019] for time-dependent lattice Hamiltonian in finite volume

with uniform gap (estimates uniform in system size)
Ï in [Teufel 2020] for space-adiabatically perturbed lattice Hamiltonian in

finite volume (estimates uniform in system size)
Ï in [Marcelli, Panati, Teufel 2021] in our context, up to first order
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Our argument

Inverse Liouvillian

The proof relies on the following

Lemma
Decompose H=RanΠ0⊕ (RanΠ0)⊥, and correspondigly operators as

A=AD+AOD

with AD :=Π0 AΠ0+Π⊥
0 AΠ⊥

0 , AOD :=Π0 AΠ⊥
0 +Π⊥

0 AΠ0 .
Define the Liouvillian

LH0(A) :=−i
[
H0,A

]
.

The Liouvillian is invertible on OD operators:

LH0(A)=B =BOD

=⇒ A=AOD =L−1
H0

(B) := 1
2π

∮
dz (H0−z1)−1 [

Π0,A
]
(H0−z1)−1.
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=⇒ A=AOD =L−1
H0

(B) := 1
2π

∮
dz (H0−z1)−1 [

Π0,A
]
(H0−z1)−1.

For example

S
(1)
ε =−L−1

H0

(
XOD

1

)
=−L−1

H0

([
[X1,Π0],Π0

])
.
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Our argument

Exactness of Kubo formula (proof)

Theorem ([Marcelli, M., LMP 2022])

T(J2Π
(n)
ε )= εσ12+O(εn+1)

with
σ12 =−iT

(
Π0

[[
Π0,X1

]
,
[
Π0,X2

]]
Π0

)
∈ 1

2πZ

Denote Π(n)
ε ≡Π, exp

(
iεS(n)

ε

)≡U in what follows.

T(J2Π)= iT
(
Π

[
Hε,X2

]
Π

)= iT
([
ΠHεΠ,ΠX2Π

])+O(εn+1)

= iT
([
ΠH0Π,ΠX2Π

])︸ ︷︷ ︸
persistent current

+ε
{
− iT

([
ΠX1Π,ΠX2Π

])}
︸ ︷︷ ︸

σ12

+O(εn+1)

D. Monaco (Sapienza) Purely linear response of the QH current 7/02/2023 16 / 19



Our argument

Exactness of Kubo formula (proof)

Theorem ([Marcelli, M., LMP 2022])

T(J2Π
(n)
ε )= εσ12+O(εn+1)

with
σ12 =−iT

(
Π0

[[
Π0,X1

]
,
[
Π0,X2

]]
Π0

)
∈ 1

2πZ

Denote Π(n)
ε ≡Π, exp

(
iεS(n)

ε

)≡U in what follows.

T(J2Π)= iT
(
Π

[
Hε,X2

]
Π

)= iT
([
ΠHεΠ,ΠX2Π

])+O(εn+1)

= iT
([
ΠH0Π,ΠX2Π

])︸ ︷︷ ︸
persistent current

+ε
{
− iT

([
ΠX1Π,ΠX2Π

])}
︸ ︷︷ ︸

σ12

+O(εn+1)

D. Monaco (Sapienza) Purely linear response of the QH current 7/02/2023 16 / 19



Our argument

Exactness of Kubo formula (proof)

Lemma (Vanishing of the persistent current)

T
([
ΠH0Π,ΠX2Π

])= 0.

Proof. [
ΠH0Π,ΠX2Π

]= [
ΠH0Π,X2

]− [
ΠH0Π,XOD,ε

2
]

and ΠH0Π, XOD,ε
2 are bounded with smooth Bloch–Floquet fibers.
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Our argument

Exactness of Kubo formula (proof)

Lemma (Chern–Simons formula)
Since Π=UΠ0 U−1

T
([
ΠX1Π,ΠX2Π

])=T
([
Π0 X1Π0,Π0 X2Π0

])
=T

(
Π0

[[
Π0,X1

]
,
[
Π0,X2

]]
Π0

)
.

σ12 = 1
2π

( 1
2π

∫
T2

dk1 dk2 Tr
(
Π0(k)

[
∂k1Π0(k),∂k2Π0(k)

]
Π0(k)

))
= 1

2π
(
Chern number

) ∈ 1
2π Z

D. Monaco (Sapienza) Purely linear response of the QH current 7/02/2023 18 / 19



Our argument

Exactness of Kubo formula (proof)

Lemma (Chern–Simons formula)
Since Π=UΠ0 U−1

T
([
ΠX1Π,ΠX2Π

])=T
([
Π0 X1Π0,Π0 X2Π0

])
=T

(
Π0

[[
Π0,X1

]
,
[
Π0,X2

]]
Π0

)
.

σ12 = 1
2π

( 1
2π

∫
T2

dk1 dk2 Tr
(
Π0(k)

[
∂k1Π0(k),∂k2Π0(k)

]
Π0(k)

))
= 1

2π
(
Chern number

) ∈ 1
2π Z

D. Monaco (Sapienza) Purely linear response of the QH current 7/02/2023 18 / 19



Perspectives

What next?

Ï Inclusion of ergodic disorder ⇝ noncommutative Chern number [Bellis-
sard, Van Elst, Schulz-Baldes 1994; Bouclet, Germinet, Klein, Schenker
2005]

Ï Inclusion of interactions (on a lattice) [Teufel 2020; Henheik, Teufel 2021]
Ï Spin transport [Marcelli, Panati, Teufel 2021]
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