
Magnetic skyrmions under confinement

Cyrill B. Muratov


Dipartimento di Matematica 
Università di Pisa 

in collaboration with G. Di Fratta, A. Monteil, T. Simon and V. Slastikov


supported by NSF via DMS-1908709



Magnetism and magnets

images borrowed from:

Tom Whyntie. (2016), zenodo.com


mammothmemory.net

- spins act as tiny magnetic dipoles

- quantum-mechanical interaction between spins: exchange

- in transition metals below the critical temperature, exchange results in local 

spin alignment into the ferromagnetic state

-  magnetic field mediates long-range attraction/repulsion between magnets
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interfaces and atomically thin (2D) materials, and examine their utility 
towards the generation and conversion of spin currents. Next, we describe 
the developments on interfacial-DMI-induced non-collinear spin textures 
(skyrmions and chiral domain walls) in magnetic films, and techniques 
to generate, stabilize and manipulate them in devices. Finally, we explore 
the feasibility of realizing the technological promise of these diverse SOC-
induced surface and interface phenomena towards room-temperature 
device applications.

Spin-polarized surface and interface states
Rashba states
The Rashba effect arises from SOC and broken inversion symmetry at 
material surfaces and interfaces1, with the corresponding Hamiltonian:

ˆ σ= ⋅ ×z kH v ( ) (2)R 0

Here v0 is the Rashba parameter, σ is spin, k is momentum and ẑ  is the 
unit normal to the surface or interface. The Rashba effect results in spin-
split 2D dispersion surfaces and, importantly, in the locking of spin and 
momentum degrees of freedom to each other (Fig. 2b).

Rashba SOC–split states have been investigated across various sur-
faces and interfaces2,12,13, as shown for angle-resolved photoemission 
spectroscopy (ARPES) measurements of the Au(111) surface (Fig. 2d)13. 
Interface alloying of heavy elements with intermediate-weight metals 
can enhance the in-plane potential gradient via hybridization, leading to 
more pronounced Rashba effects, as on the Bi/Ag(111) alloyed interface 
(v0 = 3 eV Å; ref. 14).

Topological surface states
In materials with heavy elements, strong SOC can split the p band by a 
large enough magnitude to flip the s–p band structure, inducing band 

inversion. Notably, 2D heterostructures of HgxCd1−xTe exhibit, in 
 addition to such an inversion, an associated topological phase 
 transition15,16, which results in protected states at the edges of the sample. 
The presence of edge states in 2D heterostructures was subsequently 
 generalized to 3D insulators17,18. The surfaces or interfaces of such topo-
logical insulators must host protected states at time-reversal-invariant 
k-space points17,18. These topological surface states have a nearly linear 
energy–momentum relationship (Fig. 2a)18. The Dirac Hamiltonian that 
describes these  surface states, ˆ σ∝ ⋅ ×z kH v ( )D 0 , has the same Rashba 
form (Equation (2)) and locks the spin and momentum degrees of 
 freedom (Fig. 2a, c)18. However, whereas Rashba SOC leads to spin-split 
parabolic surface states in conventional metals, topological surface states 
are distinguished by their helical single Dirac cone character, which 
emerges from the  requirement to connect the bulk valence and 
 conduction bands.

ARPES measurements demonstrated the topological nature of surface 
states first in the indirect-bandgap semiconductor Bi1−xSbx (ref. 19) and 
then in a larger, direct-bandgap (300 meV) topological insulator Bi2Se3 
(ref. 20). The discovery of a simple Dirac cone within the bandgap of bulk 
Bi2Se3 (Fig. 2c), with a chemical potential that is tunable via chemical 
doping20 and the electric field effect21, has since led to the discovery of 
several other single-Dirac-cone topological insulators18.

The electronic transport of topological insulators is governed by the 
helical Dirac nature of topological surface states. First, surface-state 
transport arises from a 2D Dirac cone: therefore, it can be ambipolar, 
controlled by electric fields, and tuned through the Dirac point with a 
characteristic minimum conductivity21. Second, spin–momentum lock-
ing prevents backscattering between states of opposite momenta with 
opposite spins, as evidenced across several topological insulators22. 
Because backscattering dominates charge dissipation in conventional 
metals, quasiparticles of topological insulators are expected to exhibit 

Figure 1 | Emergent phenomena from spin–orbit coupling (SOC) at 
surfaces and interfaces. A schematic illustration of the connection between 
the presence of strong SOC at material surfaces and interfaces (inner ellipse) 
and the resulting emergence of new interactions and electronic states 
(middle ellipse), such as Dzyaloshinskii–Moriya interaction (DMI; see 
Fig. 4a, e for details), Rashba interfaces (Fig. 2b, d) and topological surface 

states (TSS; Fig. 2a, c). These emergent phenomona can in turn be used to 
generate new 2D spintronics effects (outer ellipse), such as spin–charge 
conversion (Fig. 2e, f and 3), the photogalvanic effect, enhanced SOC  
in 2D materials, such as graphene (Fig. 3d, e), magnetic skyrmions  
(Fig. 4b) and chiral domain walls (Fig. 4c), which have direct device 
applications (periphery). FM, ferromagnet; NM, non-magnetic material.

SOC in
2D materials

Rashba
interfaces

Chiral
domain wall

Spin–charge
conversion

Jc

SOC

Photogalvanic
effect

Topological
surface states

DMI

Skyrmion

Spin battery Opto-spintronics

Skyrmion
oscillators

Next-generation
memory

Jc

Js

Js
FM
NM

FM
NM

Spin logic SOT-MRAM

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

from A. Soumyanarayanan et al., Nature 539, 509-517 (2016)

C.-M. Choi et al., Semicond. Sci. Technol. 32, 105007 (2017)


MgO layer relating to the Mg insertion. We first verified
whether the self-heating phenomenon changes according to
the electrons direction using Technology Computer Aided
Design (TCAD) simulations under the same experimental
environment. Next, we fabricated the actual MTJs and
identify the amount of trap sites generated according to the
Mg layer through interval voltage stress (IVS) tests. Finally,
we investigated a suitable reliability model via a time-
dependent dielectric breakdown (TDDB) experiment, and
confirmed that the power-law V model is most appropriate
for the case of MgO with an Mg insertion.

2. Device fabrication

To evaluate the effect of the Mg insertion upon resistance
drift and TDDB characteristics, we fabricated MTJ structures
with an Mg layer inserted below the MgO dielectric. We
deposited multilayer stacks on thermally oxidized Si sub-
strates by using an ultrahigh vacuum magnetron sputtering
system with a base pressure of less than 8×10−7 Pa. The
stacks had the following structure, with numbers in par-
entheses representing thicknesses in nm: Ta (5)/Ru (10)/Ta
(5)/ Ni80Fe20 (5) buffer layer/Ir20Mn80 (11)/Co75Fe25
(CoFe) (2.5)/Ru (0.85)/Co40Fe40B20 (CoFeB) (2)/CoFe (1)/
Mg (0.25 or 0.5)/MgO (1)/CoFe (0.4)/CoFeB (2)/Ta (2)/
Ru (8). Here, the CoFe layers below the Mg insertion and
above the MgO layer are inserted to promote crystallization of
the CoFeB layers for a large TMR ratio. After deposition, the
stacks were annealed at 360 °C for 30 min under a 5 kOe
magnetic field to obtain a large TMR ratio and to improve a
magnetic hysteresis shape. After the annealing process under
5 kOe, the MTJ is in plane magnetized and the purpose of
5 kOe was to set the exchange bias of the pinned layer. The

stacks were then patterned into 100×200 nm2 ellipsoidal
shapes by means of electron beam lithography, photo-
lithography, and Ar-ion milling. Figures 1(a) and (b) show a
schematic illustration and a high-resolution transmission
electron microscopy (TEM) image, respectively. The TMR
ratio and the RA of the MTJ with a 0.25 nm Mg layer were
125% and 39Ω·μm2, and those of the MTJ with a 0.5 nm
Mg layer were 143% and 78Ω·μm2, respectively. Here,
values of RA showing 39∼79Ω·μm2 are higher compared
to 5∼10Ω·μm2 in STT-MRAM [21]. The RA value is
critical for cycling tests based on STT, but this work is to
extract the breakdown model of MTJ under constant voltage
stress. From this consideration, we believe that the results
from this MTJ can be applicable to a TDDB model in those of
STT-MRAM. When an Mg layer is inserted under the MgO,
it not only suppresses the generation of trap sites but also
extends the total MgO thickness since the Mg layer itself
reacts with oxygen in the sputter chamber to form MgO as
investigated in our previous works [18]. MTJs without the Mg
insertion in our experiment showed very small TMR ratios
(below 50%) due to a degraded bottom MgO barrier interface
(overoxidation). Therefore, we selected the Mg inserted MTJs
for this work. The actual MgO thicknesses (tMgO) evaluated
using TEM images of the MTJs with the 0.25 and the 0.5 nm
Mg insertion were approximately tMgO=1.1 and 1.2 nm,
respectively. Note that state-of-the-art MTJs for STT-MRAM
applications use perpendicular MTJs with high thermal sta-
bility. In the present study, although experiments were con-
ducted using in-plane MTJs instead of perpendicular ones, the
results of our experiments can be thought to be sufficiently
applicable to the case for state-of-the-art MTJs (tMgO∼1 nm)
because almost the same tunnel barrier thicknesses
(tMgO∼1.1–1.2 nm) with the adaptable RA range were used.

Figure 1. Cross-sectional structure of MTJ device: (a) schematic illustration and (b) high-resolution TEM image.
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commentary

on the controlled motion of these particle-
like magnetic nanostructures.

Today’s hard-disk drives achieve very 
high densities of information storage, 
but the complexity and fragility of their 
mechanical parts motivate the need for 
solid-state devices with comparable or 
higher bit densities. !e archetype of such 
devices is the so-called racetrack memory5 
in which the information is coded in a 
magnetic nanoribbon by a train of up or 
down magnetic domains separated by 
domain walls (DWs). !e train of DWs can 
be moved electrically by spin torque to read 
or write the magnetic information. However, 
challenges such as reducing the critical 
currents for DW motion while keeping 
high velocities and avoiding the detrimental 
e"ects of defects must be addressed before 
this approach can be translated into a 
competitive technology. !e intrinsic 
properties of magnetic skyrmions might 
help tackle most of these issues. 

The origin of skyrmions
!e spin texture of a magnetic skyrmion6 

is a stable con#guration (or metastable 
in some cases) that, in most systems 
investigated up to now, originates 
from chiral interactions, known as 
Dzyaloshinskii–Moriya interactions 
(DMIs)7–9. Such interactions are induced 
because of the lack or breaking of inversion 
symmetry in lattices or at the interface 
of magnetic #lms, respectively. !e DMI 
between two atomic spins S1 and S2 can be 
expressed as: HDM = −D12 · (S1 × S2).

For ultrathin magnetic #lms, which 
are the main focus here, interfacial DMIs 
have been predicted10 from a 3-site indirect 
exchange mechanism11 between two atomic 
spins S1 and S2 with a neighbouring atom 
having a large SOC. !e resulting DMI 
vector is perpendicular to the plane of the 
triangle (Fig. 1e). At the interface between 
a ferromagnetic thin layer and a metallic 
layer with a large SOC, this mechanism 
generates a DMI for the interface spins S1 
and S2 with the DMI vector D12 shown in 
Fig. 1f (ref. 10). !e existence of such an 
interfacial DMI has also been derived from 
ab initio calculations for the Ir(111)/Fe 

interface12. !e magnitude of the interfacial 
DMI can be very large, ~10–20% of 
the exchange interaction in analytical 
calculations10,11 and up to 30% in ab initio 
calculations12.

Starting from a ferromagnetic state 
with S1 parallel to S2, the DMI tilts S1 with 
respect to S2 by a rotation around D12. In 
a two-dimensional (2D) ferromagnet with 
uniaxial anisotropy and a non-negligible 
DMI compared with the exchange 
interaction, the energy is minimized by the 
skyrmion structure in Fig. 1a for D12 � R12 
and Fig. 1b for D12 || R12, where  R12 is the 
vector joining the site of S1 to the site of 
S2. !e extension of this principle to a 3D 
lattice is straightforward, the skyrmion 
structure is obtained by a translation 
along the anisotropy axis and is made of 
skyrmion tubes.

A large value of the ratio between 
D = |D12| and the exchange coupling J 
favours a faster rotation of the spin, reducing 
the skyrmion size (at least in the absence 
of other interactions like edge e"ects). !e 
smaller skyrmion size in skyrmion lattices 

HDM = −D12���(S1 × S2)
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Figure 1 | Spins in a skyrmion. a,b, Skyrmions in a 2D ferromagnet with uniaxial magnetic anisotropy along the vertical axis. The magnetization is pointing up on 
the edges and pointing down in the centre. Moving along a diameter, the magnetization rotates by 2π around an axis perpendicular to the diameter (a) and by 
2π around the diameter (b), which corresponds to di!erent orientations of the Dzyaloshinskii–Moriya vector. c, Lorentz microscopy image13 of a skyrmion lattice 
(of the type shown in  Fig. 1b) in Fe1−xCoxSi. d, Sketch of a nano-skyrmion structure observed in Fe monolayers on Ir(111) (ref. 12). e, Schematic of a DMI generated 
by indirect exchange for the triangle composed of two atomic spins and an atom with a strong SOC11. f, Sketch of a DMI at the interface between a ferromagnetic 
metal (grey) and a metal with a strong SOC (blue). The DMI vector D12 related to the triangle composed of two magnetic sites and an atom with a large SOC 
is perpendicular to the plane of the triangle. Because a large SOC exists only in the bottom metal layer, this DMI is not compensated by a DMI coming from a 
symmetric triange10. Figure reproduced with permission from: a,b, ref. 24, © K. Everschor, Univ. of Köln; c, ref. 13, © 2010 NPG; d, ref. 12, © 2011 NPG.
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Dzyaloshinskii-Moriya interaction (DMI)

• In 1957, while trying to explain weak ferromagnetism in ⍺-Fe2O3, Dzyaloshinskii, 
used symmetry arguments to introduce an antisymmetric exchange term that 
favors canted spin arrangements            I. Dzyaloshinskii, Sov. Phys. JETP 5, 1259-1272 (1957)   
  


• In 1960, Moriya developed a theory of anisotropic  
super-exchange interaction, including spin-orbit  
coupling in Anderson theory of super-exchange


• The same effect was shown to be induced by the symmetry breaking at an 
interface 

T. Moriya, Phys. Rev. B 120, 91-98 (1960)

A. Fert and P. M. Levy, Phys. Rev. Lett. 44, 1538-1541 (1980)

A. Crépieux and C. Lacroix, J. Magn. Magn. Mater. 182, 341-349 (1998)  

A. Fert, V. Cross and J. Sampaio, Nature Nanotechnol. 8, 152-156 (2013)
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spin spirals and chiral domain walls from Dzyaloshinskii-Moriya interaction (DMI):
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When the DM interaction is comparably small or the ani-
sotropy energy

∑= ( )E K S
i

i i
z

ani
2

 (3)

plays a signi!cant role a system can also form an inhomogeneous 
spin spiral, where the variation of the angle between adjacent 
spins depends on the quantization axis. In an extreme case this 
may lead to collinear magnetic domains which are separated by 
walls with unique rotational sense due to the DM interaction, i.e. 
chiral domain walls. This means that a pair of domain walls will 
always ful!ll a 360° rotation of the magnetization as the walls 
must have the same rotational sense. If in such a case the domains 
are ferromagnetic also contributions from the dipolar energy
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need to be considered for the magnetic properties of the 
system.

Higher-order Heisenberg interactions are typically 
neglected but recently it has been shown that they can become 
important and contribute to the energy landscape and ground 
state formation [15, 19]. In the extended Heisenberg model 
the next higher-order interactions are the biquadratic and four-
spin interactions, which involve two and four nearest neigh-
bors, respectively, as is obvious from their Hamiltonians:

∑= − ( )E B S S· ,
ij

ij i jbiq
2

 (5)
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In the Heisenberg model spin spirals (single- ⃗Q  states) are 
degenerate with superpositions of symmetry-equivalent spin 
spirals (multi- ⃗Q  states); however, the higher order interac-
tions can lift this degeneracy and depending on the sign of the 
interaction favor one over the other state [16].

3. Chirality and topological protection

A phenomenological view of the symmetry of spin spirals 
helps to understand the DM related selection rules from 

Moriya [20, 21]. Figure 5 sketches helical (left) and cycloi-
dal (right) spin spirals. Whereas helical spirals can exist 
with two opposite rotational senses, there is only one type 
of cycloidal spiral possible (the ones shown in !gure 5 can 
be transformed into each other by rotation and translation). 
However, such a cycloidal spiral can be placed onto a sur-
face (dark blue plane in !gure  5) in two different ways, 
i.e. due to the breaking of the inversion symmetry of the 
environment two distinct rotational senses of cycloidal 
spin spirals are generated. Looking at the yellow ribbons 
symbolizing the different spirals it becomes evident that 
the two helical spirals (with or without surface) are mirror 
images of each other, meaning that they are degenerate in 
energy. Contrary to that, the two cycloidal spirals on the 
surface cannot be linked by any symmetry operation, prov-
ing the possibility to have different energy, i.e. one rota-
tional sense is favored due to the DM-interaction and the 
other one does not occur as it possesses higher energy. The 
same arguments also hold for domain walls induced by the 

Figure 3. The DM interaction favors a 90° rotation between 
adjacent spins and the rotational sense is determined by the sign 
of the DM vector.

Figure 4. The two-dimensional Brillouin-zone of a hexagonal 
lattice. The red line indicates a typical cut for the calculation of 
the spin spiral dispersion, where the angle φ between adjacent 
spins ranges from 0° at the Γ -point (ferromagnetic FM) via 120° 
at the K -point (Néel state) to 180° for the M -point (row-wise 
antiferromagnetic order RWA).

= 0° 120° 180°

FM RWANéel

Figure 5. Sketch of helical (left) and cycloidal (right) spin spirals, 
where the propagation direction is perpendicular to or within the 
plane of the spin rotation, respectively. While the helical spin spirals 
are degenerate in energy even when they are on a surface (dark blue 
plane), the cycloidal spin spirals can have a different energy due 
to the DM interaction, i.e. one cycloidal spin spiral can be favored 
while the other one has a higher energy on the surface.
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the !eld grow (shrink). Thus, the direction of ms can be identi-
!ed for all domains. On the tip side, sweeping the !eld causes 
mt to increasingly rotate into the perpendicular direction. 
Consequently, the in-plane domain wall contrast gradually 
disappears and is eventually replaced by an out-of-plane con-
trast, allowing to image the domains rather than the domain 
walls, !gures 9(c) and (d). The large domains with ms being 
parallel to the !eld appear bright whereas residual domains, 
being shrunken to mere lines and with ms being antiparallel 
to the !eld, appear dark. This observation can be generalized 
such that for the tip-sample combination in our experiment, at 
the given bias voltage, bright colors (high dI/dU signal) indi-
cate a parallel alignment of ms and mt while dark (low dI/dU 
signal) corresponds to an antiparallel alignment. Applying this 
result to the measurement shown in !gure 8(a) one can iden-
tify the direction of ms also for the domain walls. Combining 
the knowledge from these two experiments (!gures 8 and 9) 
we can conclude that the Fe DL exhibits only right-rotating 
Néel-type walls ↑ →↓(  and ↓←↑ ) [29, 34].

This experimental !nding of cycloidal walls with unique 
rotational sense immediately suggests that the DM interaction 
is the relevant factor determining the rotational sense of the 
walls, see section 3. Indeed, starting from phenomenological 
DM vectors [20] Monte-Carlo simulations showed that the 
unique rotational sense can be explained as a consequence 
of the DM interaction [36]. By density functional theory 
(DFT) combined with micromagnetic calculations the DM 
vector was determined from !rst principles [37]. The mag-
netic ground state was predicted to be ferromagnetic although 
within numerical accuracy a non-collinear spin spiral ground 
state could not be ruled out. However, two domains of opposite 

magnetization induced in this system by appropriate boundary 
conditions were found to be separated by right-rotating Néel-
type domain walls extending along the [110] axis, in agree-
ment with the experiment [29].

It appears to be an academic question whether this spin 
con!guration of the extended Fe DL should be classi!ed as an 
inhomogeneous spin spiral or a periodic arrangement of chiral 

Figure 8. Spin-polarized dI/dU maps of the Fe DL on W(1 1 0) (red 
areas correspond to DL and black to other Fe thickness); B indicates 
the in-plane orientations of the external magnetic !eld B = 150 mT 
which aligns the tip magnetization. (a), (b) Domain walls show up 
in the DL as black and white lines along the [110] direction; they 
invert the contrast from (a) to (b). (c), (d) Vanishing domain wall 
contrast. Tunnel parameters: U = + 0.55 V, I = 0.5 nA (all images 
taken from [29]).
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Figure 9. Spin-polarized dI/dU maps of the Fe DL on W(1 1 0) 
measured for variable !eld values B applied normal to the surface, 
as indicated in (a)–(d). The domains parallel to B grow while 
antiparallel domains shrink. The tip magnetization (and hence the 
magnetic sensitivity) is gradually rotated from in-plane to out-of-
plane due to the applied magnetic !eld. Tunnel parameters:  
U = + 0.55 V, I  = 0.5 nA (all images taken from [29]).
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Figure 10. Chiral domain walls in Fe DL wires on W(1 1 0). 
(a) Spin-polarized dI/dU map. The density of domain walls 
decreases with decreasing DL wire width while the chirality is 
preserved. Tunnel parameters: U = + 0.7 V, I = 0.3 nA, T = 14 K.  
(b) Schematic side view of two right rotating domain walls.
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which is magnetized mostly in-plane; the arrow indicates the 
tip magnetization, which was derived from the analysis of the 
magnetic contrast. As in SP-STM the magnetic contrast re!ects 
the projection of tip and sample magnetization this leads to a 
bright-to-dark gradient of a skyrmion along the tip magnetiza-
tion axis. From this image it is apparent, that all skyrmions have 
the same rotational sense not only within one island, but also 
in independent islands, as is expected from the directionality 
imposed by the DM interaction. The spin spiral is now inhomo-
geneous due to the applied magnetic "eld, but also here one can 
see the unique rotational sense which is identical to that of the 
skyrmions. When the lines of the spin spiral run parallel to the 
tip magnetization axis the magnetic contrast vanishes (see left 
end of top island).

7.  3. Writing and deleting single magnetic skyrmions

While in previous studies the samples were in the thermo-
dynamic ground state, for PdFe the ratio between the energy 
barrier separating two topologically distinct states and the mea-
surement temperature is much larger. This can be exploited to 
study ground state properties at slightly higher temperature, i.e. 

about T  >  8 K, or to trap the magnetic con"guration in a meta-
stable state for lower temperatures. This can be understood e.g. 
for the transition between skyrmions (S  =  1) and the ferromag-
netic state (S  =  0) within a simple two state model, see sketch 
in "gure 21(a): when the magnetic "eld is increased, the energy 
of the skyrmion state rises and the ferromagnetic state becomes 
the lower energy state. When the system is in the ferromagnetic 
state and the magnetic "eld is lowered at reduced temperature, 
then the energy barrier cannot be overcome and the ferro-
magnetic state is preserved to smaller magnetic "eld values, 
even though the topologically protected skyrmion has a lower 
energy, see top sketch in "gure 21(a). It has been found, that the 
energy barrier between the two states can be overcome not only 
by thermal excitation, but also the tunnel electrons can induce 
a transition between the topologically distinct states. Note that 
the potential landscape is asymmetric, as the two states are not 
linked by a symmetry operation, and different attempt frequen-
cies and lifetimes of the two states are likely.

The telegraph noise in "gures 21(b)–(d) demonstrates the 
switching between the presence of a skyrmion (S = 1) and 
its absence (S = 0) for different parameters at the same sam-
ple position. While the power of the injected tunnel current 
is identical for all three traces, the response of the system is 
very different: for (b) the switching takes place at a time scale 
of several seconds and the histogram to the right shows that 
the skyrmion state is slightly favored. In (c) the magnetic "eld 
is increased, which leads to a shift of the population of the 
states towards the ferromagnetic state, as expected. However, a 

Figure 19. SP-STM measurements of the PdFe bilayer on 
Ir(1 1 1) in dependence on an external magnetic "eld at T = 8 K. 
(a) B = 0 T: spin spiral state, (b) B = 1.4 T: hexagonal skyrmion 
lattice, (c) B = 2 T: ferromagnetic phase. (d) Sketch of the different 
magnetic phases (all taken from [4]).

Figure 20. SP-STM measurements of the PdFe bilayer on Ir(1 1 1) 
at T = 8 K. (a) B = 0 T: the spin spiral state in the PdFe wire and 
island is visible together with the nanoskyrmion lattice in the Fe 
ML on Ir(1 1 1) [15], (b) B = − 1 T: coexistence of spin spiral and 
skyrmions with unique rotational sense, the tip magnetization 
direction is indicated by the arrow (for both: gray-scale of the layers 
adjusted separately for better visibility of the magnetic state).

(a)

(b)

J. Phys.: Condens. Matter 26 (2014) 394002

magnetic skyrmions:

 2ML Fe on W(110) Pd/Fe bilayer on Ir(111)

K. von Bergmann et al., J. Phys.: Condens. Matter 26, 394002 (2014) 


distance d from its centre for several magnetic field values.
We relate the degree of non-collinearity in the centre of a skyrmion
with the angle αc between a central atom and its neighbouring
spins, and find that αc scales linearly with B (inset of Fig. 3a).
Figure 3b displays spectra taken at the centre of one skyrmion at
different applied fields, as indicated, together with reference
spectra of the FM background. One can clearly see a systematic
shift of the higher-energy peak with the applied field. The
peak shift ΔE with respect to the peak of the FM state is roughly
linear with αc (inset of Fig. 3b), which corroborates our proposal
of an effect of the local magnetic non-collinearity on the
electronic properties. The laterally resolved dI/dU maps at the FM
peak energy in Fig. 3c show how the maximum of non-collinearity
moves from the rim of the skyrmion to its centre with
increasing magnetic field, in agreement with the skyrmion profiles
in Fig. 3a.

For the FM state, the experimental dI/dU spectra (Figs 2d
and 3b) are in good agreement with the vacuum LDOS calculated
by density functional theory (DFT)10 (Fig. 4a). The vacuum
LDOS is typically dominated by states close to the !Γ point. A
detailed analysis of the spin-resolved band structure and LDOS
(Supplementary Sections 2 and 3) reveals that the sharp peak at
about +0.9 eV stems from the minority d states, whereas the
step-like LDOS of the majority spin channel is caused by bands
of s and p character.

In a non-collinear spin structure, there is a mixing between the
two spin channels that results in a change of the band structure
and the LDOS29. This is seen in DFT calculations for the spin
spiral phase (Supplementary Sections 2 and 3), which are in agree-
ment with the corresponding experimental data (Supplementary
Section 4). To capture the key physics of this band mixing for
two-dimensional (2D) localized skyrmions and to include the
skyrmion profiles12 (Fig. 3a) we use a tight-binding (TB)
model. The corresponding Hamiltonian at every atom site is
given by

H0 =
ϵ↑ 0
0 ϵ↓

( )
(1)

where ϵ↑, ϵ↓ are the on-site energies of the two states. Based on
DFT for the FM state, we describe the electronic states of PdFe/
Ir(111), which dominate the vacuum LDOS, by using a majority
band with a hopping parameter t↑ = −0.5 eV, and a minority band
with t↓ = +0.09 and ϵ↑ − ϵ↓ = 3.1 eV, as depicted in green and
red in Fig. 4b. The corresponding spin-resolved LDOS in the
vacuum for the FM state is qualitatively very similar to that
obtained by DFT calculations10 (compare Fig. 4a,c) and a
similar agreement is obtained for the spin spiral states
(Supplementary Section 3). The non-collinearity within the
skyrmion leads to a mixing between the majority and the
minority spin channels and the hopping between adjacent
atomic sites can be described by the matrix

V(αij) =
t↑ cos(αij /2) −t↑↓ sin(αij /2)
t↓↑ sin(αij /2) t↓cos(αij /2)

( )
(2)

where αij is the angle between the spins on neighbouring sites i
and j and t↑↓ = −t↓↑ describes the nearest-neighbour hopping
matrix element between the two states.

Before solving this TB model for a realistic skyrmion profile,
it is instructive to study the effect of the spin mixing in a simpli-
fied way. We assume that the matrix V(αij) is the same for all
atom sites by fixing all αij to the same angle α and thus obtain a
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a   Néel-type skyrmion b   Bloch-type skyrmion

c   Skyrmion lattice in an Fe monolayer 
 on Ir(111)

d   Individual skyrmions in a PdFe 
 bilayer on Ir(111)

B 10 nm

and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.

Interfacial Dzyaloshinskii–Moriya interaction
In systems that lack inversion symmetry, spin–orbit cou-
pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 × S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z × u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
from S1 to S2 around d12 is in the clockwise or in the anti-
clockwise sense. If S1 and S2 are initially parallel, the effect 
of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
magnetic films with interfacial DMI, the Dzyaloshinskii–
Moriya vector lies in the plane of the film (the x–y plane), 
and the global effect of the DMI on the magnetization 
m can be expressed by the micromagnetic energy per 
volume as

E = D ∙ (mz∂xmx − mx∂xmz + mz∂ymy − my∂ymz) (3)

where D is the DMI constant, which is related to the pair 
interaction d12 of equation 2. For a purely interfacial DMI, 
D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.

The existence of the DMI was first proposed to 
account for the properties of magnetic compounds with 
a non-centrosymmetric lattice, such as α-Fe2O3 (REFS 1,2). 
The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
was first demonstrated for disordered alloys, in which 
an atom with large spin–orbit coupling mediates a DMI 
between two magnetic atoms; d12 in this case is perpen-
dicular to the plane of the triangle formed by the three 
atoms13. The DMI was then predicted to exist with the 
same sym metry at the interface between magnetic films 
and metals with large spin–orbit coupling14. In systems 
composed of a magnetic film (such as Co) and a metal 

Figure 1 | Magnetic texture of skyrmions. a,b | Néel-type (panel a) and Bloch-type  
(panel b) skyrmions with the magnetization rotating from the down direction at  
the skyrmion’s centre to the up direction of the external uniform magnetization at the 
skyrmion’s edge, as in a Néel or in a Bloch domain wall. c | Lattice of skyrmions as observed 
by spin-polarized scanning tunnelling microscopy in a monolayer of Fe grown on Ir(111). 
The colour wheel indicates the in-plane magnetization, and the square unit cell has a side 
length of 1 nm. The grey cones indicate the direction of magnetization in 3D. d | Individual 
skyrmions observed by the same technique in a PdFe bilayer on Ir(111). The out-of-plane 
magnetization is colour-coded from red for ‘up’ to blue for ‘down’ magnetization.  
An external field B = 1.5 T is used to stabilize the skyrmions. Panels a and b are reproduced 
with permission from REF. 94, courtesy of K. Everschor-Sitte, University of Cologne, 
Germany. Panel c is reproduced with permission from REF. 95, Macmillan Publishers 
Limited. Panel d is reproduced with permission from REF. 96, American Physical Society.
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and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.

Interfacial Dzyaloshinskii–Moriya interaction
In systems that lack inversion symmetry, spin–orbit cou-
pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 × S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z × u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
from S1 to S2 around d12 is in the clockwise or in the anti-
clockwise sense. If S1 and S2 are initially parallel, the effect 
of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
magnetic films with interfacial DMI, the Dzyaloshinskii–
Moriya vector lies in the plane of the film (the x–y plane), 
and the global effect of the DMI on the magnetization 
m can be expressed by the micromagnetic energy per 
volume as

E = D ∙ (mz∂xmx − mx∂xmz + mz∂ymy − my∂ymz) (3)

where D is the DMI constant, which is related to the pair 
interaction d12 of equation 2. For a purely interfacial DMI, 
D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.

The existence of the DMI was first proposed to 
account for the properties of magnetic compounds with 
a non-centrosymmetric lattice, such as α-Fe2O3 (REFS 1,2). 
The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
was first demonstrated for disordered alloys, in which 
an atom with large spin–orbit coupling mediates a DMI 
between two magnetic atoms; d12 in this case is perpen-
dicular to the plane of the triangle formed by the three 
atoms13. The DMI was then predicted to exist with the 
same sym metry at the interface between magnetic films 
and metals with large spin–orbit coupling14. In systems 
composed of a magnetic film (such as Co) and a metal 

Figure 1 | Magnetic texture of skyrmions. a,b | Néel-type (panel a) and Bloch-type  
(panel b) skyrmions with the magnetization rotating from the down direction at  
the skyrmion’s centre to the up direction of the external uniform magnetization at the 
skyrmion’s edge, as in a Néel or in a Bloch domain wall. c | Lattice of skyrmions as observed 
by spin-polarized scanning tunnelling microscopy in a monolayer of Fe grown on Ir(111). 
The colour wheel indicates the in-plane magnetization, and the square unit cell has a side 
length of 1 nm. The grey cones indicate the direction of magnetization in 3D. d | Individual 
skyrmions observed by the same technique in a PdFe bilayer on Ir(111). The out-of-plane 
magnetization is colour-coded from red for ‘up’ to blue for ‘down’ magnetization.  
An external field B = 1.5 T is used to stabilize the skyrmions. Panels a and b are reproduced 
with permission from REF. 94, courtesy of K. Everschor-Sitte, University of Cologne, 
Germany. Panel c is reproduced with permission from REF. 95, Macmillan Publishers 
Limited. Panel d is reproduced with permission from REF. 96, American Physical Society.
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250 T. LANCASTER

Figure 4. (a) The potential energy for d = D = 2. (b) The vor-
tex excitation. (c) The hedgehog or monopole excitation for
d = D = 3. (Adapted from Ref. [2].)

in di!erent regions of space, subject to the all-important
constraint that the "eld vary smoothly from place to
place. The defect in this case is known as a vortex, an
example of which is shown in Figure 4(b). The vortex has
a core at its centre and has a "eld that swirls around the
core.3

An important point about the vortex is that there are
lots of very similar structures we can make, for exam-
ple, by globally rotating all of the arrows by some "xed
angle. In fact, from the point of view of topology, each of
these excitations is equivalent. The quantity that de"nes
the topological properties of the vortex is its integerwind-
ing number w. This quantity counts the number of times
the arrows rotate through 2π radians as we follow a cir-
cle around the vortex core. The diagram shows a w = 1
vortex, since the arrows make a complete rotation as we
follow a circle around the vortex core. It is possible to
make vortices with w = 2. In contrast to a w = 1 object,
a w = −1 object, known as an antivortex, does not have
the arrows pointing in the opposite direction, but rather
has arrows thatwrap in the opposite direction as the circle
is traversed around the core.

In the three-dimensional case of D = 3, d = 3 we
have a con"guration called a hedgehog (or monopole)
shown in Figure 4(c). Here the winding number is given
by considering the 3D "eld φ(x1, x2), where x1 and x2
are coordinates allowing us to locate points on a closed
surface (conventionally we choose angles x1 = θ and

Figure 5. The stereographic projection (denoted P ) squashes
the hedgehog into D = 2, where it becomes a skyrmion. The left-
hand version is aNéel skyrmion; the right-hand version,where the
spins have been combed over (denotedR), is a Bloch skyrmion.
(Based on a figure from Ref. [22].)

x2 = ϕ, for example), and we evaluate the integral

w = 1
4π

∫
dx1dx2 φ̂ ·

(
∂φ̂

∂x1
× ∂φ̂

∂x2

)

, (3)

where φ̂ = φ/|φ| is the normalised (unit) "eld andwhere
the surface over which we integrate surrounds the core of
the hedgehog. The integrand in this expression gives an
element of the solid angle swept out by the vectors φ. By
comparing the integral of this quantity with 4π we can
therefore compute how many times these vectors wrap
around a sphere. In the same way that we can globally
rotate the D = 2 arrows of the vortex without chang-
ing w, a combed hedgehog, with all of its arrows rotated
globally by the same amount, also has the same winding
number as the conventional hedgehog (see Figure 5, top).

The vortex and hedgehog introduce a new feature
compared to the domain wall: they cost an in"nite
amount of energy! This can be understood by inspection
of the vortex. It is swirly at large distances from the core,
so that the "elds never become uniform. The "rst term
in Equation (2) then keeps costing energy causing a vol-
ume integral over the free energy density to diverge. This
energetic cost is a consequence of Derrick’s theorem and
is important in judging whether each of these objects can
hope to exist. That is, if an object costs an in"nite amount
of energy to create, it is not going to be realised in a sys-
tem (at least without some other physical property being
introduced) [2,5]. Speci"cally, Derrick investigated static
"eld con"gurations as they are scaled up and down in
their spatial size. If a "eld con"guration is stable, then
there is a pointwhere the energy is stationarywith respect
to such a scaling. If the "eld con"guration has no such
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place. The defect in this case is known as a vortex, an
example of which is shown in Figure 4(b). The vortex has
a core at its centre and has a "eld that swirls around the
core.3
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angle. In fact, from the point of view of topology, each of
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ing number w. This quantity counts the number of times
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vortex, since the arrows make a complete rotation as we
follow a circle around the vortex core. It is possible to
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a w = −1 object, known as an antivortex, does not have
the arrows pointing in the opposite direction, but rather
has arrows thatwrap in the opposite direction as the circle
is traversed around the core.
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by considering the 3D "eld φ(x1, x2), where x1 and x2
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the surface over which we integrate surrounds the core of
the hedgehog. The integrand in this expression gives an
element of the solid angle swept out by the vectors φ. By
comparing the integral of this quantity with 4π we can
therefore compute how many times these vectors wrap
around a sphere. In the same way that we can globally
rotate the D = 2 arrows of the vortex without chang-
ing w, a combed hedgehog, with all of its arrows rotated
globally by the same amount, also has the same winding
number as the conventional hedgehog (see Figure 5, top).

The vortex and hedgehog introduce a new feature
compared to the domain wall: they cost an in"nite
amount of energy! This can be understood by inspection
of the vortex. It is swirly at large distances from the core,
so that the "elds never become uniform. The "rst term
in Equation (2) then keeps costing energy causing a vol-
ume integral over the free energy density to diverge. This
energetic cost is a consequence of Derrick’s theorem and
is important in judging whether each of these objects can
hope to exist. That is, if an object costs an in"nite amount
of energy to create, it is not going to be realised in a sys-
tem (at least without some other physical property being
introduced) [2,5]. Speci"cally, Derrick investigated static
"eld con"gurations as they are scaled up and down in
their spatial size. If a "eld con"guration is stable, then
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Room-temperature skyrmions have also been found in magnetic 
bilayers (Figs. 4f, 5b), although generally with a larger diameter69,77–79. 
These efforts offer promising directions towards stack engineering of 
magnetic interactions to tune skyrmion properties in films for device  
applications80.

Detection and manipulation of chiral spin textures
Skyrmions in epitaxial films were first imaged using spin-polarized 
scanning tunnelling microscopy (SP-STM; Fig. 4d)61,62. Since then, they 
have been imaged in sputtered multilayer films using various magnetic 
microscopy techniques, including scanning transmission X-ray micros-
copy (STXM; Fig. 4g)67,68, photoemission electron microscopy (PEEM;  
Fig. 4f)78, spin-polarized low-energy electron microscopy (SPLEEM)77, 
and magneto-optical Kerr effect (MOKE) microscopy (Fig. 5b)69. 
Importantly, skyrmions can also be detected using a variety of thermo-
dynamic and transport techniques81. In particular, the Berry phase that 
is accumulated by electrons traversing the 2D spin texture of skyrmions 
results in an additional component in anomalous Hall effect measure-
ments, known as the topological Hall effect60,81. The Hall signal can be 
used to detect the presence of skyrmions and to address their motion 
in films and devices81,82. However, such Hall signatures of skyrmions 
have been detected thus far only in bulk crystal and films with intrinsic 

DMI81–83; these techniques remain to be established in multilayer films 
with interfacial DMI.

Magnetic skyrmions, owing to their small size and non-trivial topology, 
are attractive candidates for data storage in magnetic materials—provided 
that they can be nucleated, moved and read. Several nucleation techniques 
have been explored with micromagnetics simulations75,84. In SP-STM 
experiments on Fe/Pd bilayers (Fig. 5a), individual skyrmions were nucle-
ated and deleted using the current injected from the STM tip62. In other 
experiments, skyrmions have been created by applying field pulses68. A 
remarkable result in this regard is the recent demonstration of “blowing of 
skyrmion bubbles”69,85, generated by the current divergence out of a con-
striction (Fig. 5b). In future, skyrmions should be able to be moved with 
notable ease compared with, for example, domain walls82 by exploiting the 
SOT provided by the spin current75,86,87, which emerges naturally from the 
spin Hall effect of the neighbouring heavy metal layers. The dynamic prop-
erties of skyrmions have been explored using micromagnetics simulations 
and microscopy techniques in device configurations68,69. These works 
demonstrate that skyrmions can be manipulated with current and field 
pulses in lithographed geometric structures (Fig. 5b, c)68,69—techniques  
that can be incorporated in memory devices with relative facility.

These properties of magnetic skyrmions portend great potential 
towards realizing high-density and energy-efficient memory86,87. Several 

Figure 4 | Interfacial DMI and chiral spin textures. a, Anatomy of 
interfacial DMI from ab initio calculations. Bottom, Layer-resolved DMI 
in a Pt/Co bilayer. Top, distribution of SOC energies associated with the 
DMI in the interfacial Co layer. Inset, a schematic of DMI at the interface 
between a ferromagnetic metal with out-of-plane magnetization (Co, grey) 
and a strong SOC metal (Pt, blue). The DMI vector D12, associated with 
the triangle composed of two Co atoms and a Pt atom, is perpendicular to 
the plane of the triangle. S1,2, neighbouring spins. b, c, Schematics of the 
spin configuration in interfacial-DMI-induced chiral spin textures such as 
magnetic skyrmions (b) and chiral Néel domain walls (c), with the colour 
scale corresponding to the out-of-plane magnetization component. d, 
SP-STM imaging of an individual skyrmion (with a diameter of 8 nm at a 
field of 3.25 T) in a Fe/Pd bilayer on Ir(111), acquired in constant-current 
topographic mode, with an in-plane magnetized tip, with the modelled 
magnetization overlaid (arrows). e, Skyrmion stabilization in multilayers, 

illustrated using a multilayer stack of Ir/Co/Pt. The close-up of the trilayer 
shows DMI vectors (D12 and D34) at the top (Co/Ir) and bottom (Pt/Co) 
interfaces of Co. The effective DMI magnitude is enhanced by the same 
direction of D12 and D34 at the different interfaces. f, Room-temperature 
skyrmions in a Pt/Co/MgO multilayer in a lithographed 400 nm × 400 nm 
square, seen by XMCD-PEEM, with the magnetization profile along the 
red line shown below. g, Room-temperature skyrmions in (Ir/Co/Pt) × 10 
multilayers patterned into 300-nm-diameter disks (left) or 200-nm-wide 
tracks (right), seen by STXM. Panel a (main panel) adapted from ref. 72, 
American Physical Society. Panel a (inset) adapted from ref. 70, Nature 
Publishing Group. Panel d reproduced from ref. 62, American Association 
for the Advancement of Science. Panels e and g adapted from ref. 67, 
Nature Publishing Group. Panel f adapted from ref. 78, Nature Publishing 
Group.
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a   Skyrmion velocity as a function of current density (from simulations)

b   Motion of a skyrmion in a track (from simulations)

c   Skyrmion Hall angle and velocity as a function  
 of skyrmion size
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as large for the skyrmionic bubbles in Ta/CoFeB/TaOx 
(FIG. 5a,b). However, small velocities have also been meas-
ured for skyrmions in the 100 nm range35, so the role of 
the skyrmion size on the velocity is not clearly under-
stood yet. Moreover, both in Ta/CoFeB/TaOx (REF. 36) 
and in Pt/CoFeB/MgO (REF. 51), the skyrmion Hall angle 
increases with the velocity; this is also inconsistent with 
the simple model based on the Thiele equation (equa-
tion 7), which describes skyrmions or chiral bubbles in 
films without defects52.

Several other interesting issues have not been thor-
oughly investigated yet. First, most experiments are 
performed on skyrmions with sizes above 100 nm, even 
though skyrmions in the 10 nm range are the most inter-
esting for applications. Second, the increase of the velo-
city along edges as a consequence of the repulsive force 
acting on skyrmions in a track is still a pending question, 
as is the related problem of the motion of very small skyr-
mions in narrow tracks. Finally, a better understanding 

of which level of sample homogeneity will be required 
to obtain uniform motion in devices is needed35. On the 
fundamental side, clear experimental results on skyrmion 
inertia53 have not been reported yet.

The current-induced motion of skyrmions has also 
been investigated in more complex systems, such as in two 
perpendicularly magnetized ferromagnetic layers strongly 
coupled by antiferromagnetic interactions54–56. When a 
skyrmion is created in one of the layers, it generates a skyr-
mion with the same chirality but opposite polarity in the 
second layer. Their current-induced longitudinal motion 
occurs in the same direction but, for strongly coupled 
skyrmions, their opposite transverse deflections com-
pensate, so that the motion is purely longitudinal54,55. In a 
different type of structure49, the dipolar coupling between 
ferromagnetic layers (more precisely, Ni/Co/Ni trilayers) 
separated by a layer of Au and interfaced with top and 
bottom Pt layers was used to obtain ferro magnetically 
coupled skyrmions of opposite chiralities in the two 

Figure 4 | Current-induced motion of skyrmions. a | Micromagnetic simulations of the motion of skyrmions induced 
by spin transfer torque (STT). The skyrmion velocity (v) is calculated as a function of the current density J in a 
0.4 nm-thick Co layer (damping coefficient α = 0.3) on a heavy metal layer for vertical spin injection (blue) — in this  
case, the spin injection is due to the spin Hall effect (SHE) in the heavy metal, which has a typical spin Hall angle of 0.1 —  
and for an in-plane current (red). For the in-plane current, the STT is due to a 40% spin-polarized current in the Co layer 
with non-adiabatic torque coefficient β = α = 0.3. The STT due to the SHE is one order of magnitude more efficient than 
the conventional STT in the magnetic layer42. The insets illustrate the two configurations: for SHE-STT the spin current 
propagates from the heavy metal layer (grey) to the Co layer, whereas for the in-plane current (CIP-STT) the spin current 
is a spin-polarized charge current that propagates along the magnetic track. b | Motion of a skyrmion in a track.  
The skyrmion initially moves with a non-zero transverse component of the velocity, then bends its trajectory owing  
to the repulsion by the edge and finally propagates along the edge42. c | Estimation of the velocities of skyrmions and 
chiral bubbles subject to a driving force due to the spin Hall effect as a function of the skyrmion radius, R, and of the 
parameter Δ = (A/K)1/2, where A is the stiffness constant and K is the anisotropy energy density. The velocities are 
calculated for sizes from that of compact skyrmions (R/Δ = π/2) to that of large bubbles using the Thiele equations for 
two values of α. The skyrmion Hall angle, θSH, (top) decreases as the size of the core of the chiral bubble increases, 
whereas the velocity normalized by the spin current Js (bottom) first increases and then saturates (vx) or decreases (vy). 
a.u., arbitrary units; DW, domain wall; Jc, charge current; mz, out-of-plane magnetization; t, time. Panels a and b are 
adapted with permission from REF. 42, Macmillan Publishers Limited.
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ferro magnetic stacks. These skyrmions (R ≈ 300 nm) can 
be moved at high velocity owing to the SHE-STT from the 
Pt layers (FIG. 5d), with a similar dependence on the cur-
rent as in FIG. 5b,c. The motion of skyrmions has also been 
controlled using magnons or temperature gradients57,58.

The main conclusion is that, after one year of exper-
iments on the current-induced motion of skyrmions in 
multilayers at room temperature, we know that skyrmi-
ons can be moved at relatively high speeds using currents 
that are comparable to those needed to obtain similar 
speed in the motion of Néel domain walls induced by 
the DMI59–62. These first results are not yet fully under-
stood, but show promise for applications. On the route 
to devices, it will be necessary to extend the current-in-
duced motion to smaller, more compact skyrmions and 
to improve the homogeneity of the multilayer structures 
for applications that will require the coordinated motion 
of individual skyrmions.

Nucleation and detection of skyrmions
As discussed in the last section, the combination of their 
topological nature and chiral properties imposed by the 
DMI makes magnetic skyrmions very promising for 
several classes of future spintronic devices. However, for 
any application, efficient and well controlled writing and 
reading processes will have to be implemented. Different 
strategies have already been proposed for achieving the 
reproducible nucleation of individual skyrmions at a 
given position in the device. Several concepts have been 
investigated through numerical simulations of current-in-
duced effects. For example, a process for the creation of 
skyrmions that relies on CIP-STT deflected by an artificial 
notch was proposed43 (FIG. 6a). A way to avoid the intro-
duction of local defects, which might pose a problem for 
device scalability, is to inject the spin-polarized current 
in a perpendicular geometry (FIG. 6b). In this configura-
tion, the dynamical reversal of the magnetization due to 

Figure 5 | Observations of the motion of skyrmions. a | The skyrmion Hall effect, characterized by a transverse 
component of the velocity, is clearly observed in successive Kerr microscopy images of a Ta/CoFeB/TaOx trilayer48. Je is the 
electronic current density. b | Velocity (v) as a function of Je for skyrmions in the Ta/CoFeB/TaOx trilayer. c | Velocity as a 
function of Je for skyrmions in Pt/Co/Ta and Pt/CoFeB/MgO multilayers, observed by scanning transmission X-ray 
microscopy33. As in the plot shown in panel b, velocity takes a finite value only above a critical current (~2 × 1011 A m−2)  
and then increases almost linearly. d | Velocity as a function of Je for skyrmions in a Pt/Ni/Co/Ni/Au/Ni/Co/Ni/Pt multilayer. 
Skyrmions of opposite chiralities are coupled in the two Ni/Co/Ni trilayers (the schematic at the bottom illustrates the 
mechanism of magnetostatic coupling) and are displaced in the same direction by the force, F, exerted by the spin Hall 
effect of the top and bottom Pt layers49. Panels a and b are adapted with permission from REF. 48, Macmillan Publishers 
Limited. Panel c is adapted with permission from REF. 33, Macmillan Publishers Limited. Panel d is adapted with permission 
from REF. 49, courtesy of A. Hrabec, Université Paris-Sud, France.
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applications and architectures have been proposed and modelled, includ-
ing skyrmion-based memory devices (Fig. 5d) analogous to domain-wall-
based racetrack memory88. The interest in skyrmions with respect to 
domain walls is the smaller current that is needed for their displacement 
and the weaker influence of defects on skyrmion motion75. More efficient 
SOT could also be obtained by using the spin–charge conversion at the 
interfaces of topological insulators instead of the spin Hall effect.

DMI of intermediate strength has direct relevance to chiral domain 
walls63, which are also being actively explored65,66,89. The motion of mag-
netic domain walls under SOT depends on the relative configuration 
of the domain-wall magnetization and the type of SOT under consid-
eration90. The large domain-wall velocity observed in perpendicular 
anisotropy films deposited on heavy metals was initially understood as 
emerging from the SOT at the interface between the magnet and the 
heavy metal91. However, it has been recently understood that the marked 
enhancement in domain-wall velocity results from the stabilization of 
chiral, Néel-type domain walls by interfacial DMI92. This DMI-induced 
stabilization suppresses the Walker breakdown mechanism that typi-
cally limits domain-wall dynamics and explains the efficient SOT action 
on this type of domain wall66. In addition, the domain-wall chirality, 
which is determined by DMI, corresponds to a fixed direction of motion; 
hence, all chiral domain walls move in the same direction in a given 
stack structure.

The motion of DMI-stabilized chiral domain walls can lead to new 
realizations of nanoscale data storage. For example, consider a memory 
element that stores the information by using the domain-wall position. 
The domain wall can have two stable positions (for example, using a notch 
along a short stripe). Here, the magnetization switch can be measured 
using a magnetic tunnel junction93. Such memory architectures based on 
switching nanoscale spin structures require much less current than does 
conventional MRAM, wherein the magnetization of the entire device 
needs to be reversed. Furthermore, the fast SOT-induced motion of chiral 
domain walls89 is relevant to advancing the development of other con-
cepts, such as domain-wall racetrack memory88.

Applications and outlook
The interplay between SOC and inversion-symmetry breaking has given 
rise to fascinating phenomena at surfaces and interfaces, especially in the 
past decade. Topological insulators have been described as a “new state of 
quantum matter”19, and the emergence of interfacial DMI has given rise to 
non-trivial spin structures. However, the remarkable properties induced by 
SOC at surfaces and interfaces go beyond chiral magnets and spin  topology, 
including several types of 2D materials with intrinsic or engineered SOC. 
The emergent characteristics of these SOC-induced phenomena, which are 
robust at room temperature, offer several potential applications.

First, spin–momentum locking in topological insulators can be 
exploited, via their interaction with normal metals, to obtain unprece-
dented efficiency in spin–charge conversions. High spin–charge conver-
sion efficiency will probably be harnessed in future spintronic devices, 
such as SOT-MRAM or nano-batteries. Second, the protection from 
backscattering in topological insulators can be used in low-dissipation 
devices. The topologically protected skyrmion spin configurations ulti-
mately represent the smallest achievable size for an emergent non-volatile 
magnetic memory element in magnetic films, with immediate relevance 
to information storage. Skyrmions can be moved, created and annihilated 
in nanostructures, making them suitable for ‘abacus’-type applications 
such as racetrack memory.

Although several of these avenues for application have emerged only 
in the past decade, the rapid advances along this front make us optimistic 
about the time frame in which we can reasonably expect to see devices 
that realize the potential of SOC-induced properties. Consider skyrmi-
ons in magnetic multilayers: pioneering efforts on epitaxial films at low 
temperature61,62 were soon followed by room-temperature observations in 
the kind of sputtered multilayer films67–69,78 typically used in spintronics 
technologies. Demonstrations of their small size, electrical nucleation 
and motion—all under ambient conditions—offer further technological 
promise. Other devices include skyrmion-based transistors94, oscillators 
and microwave detectors95. Furthermore, concepts of SOT-MRAM could 
be extended to utilize skyrmions.

Figure 5 | Manipulation of magnetic skyrmions. a, Individual 
skyrmions (with diameters of 8 nm at a field of 3.25 T) in Fe/Pd/Ir(111) 
before and after SP-STM manipulation, demonstrating the creation and 
annihilation of individual skyrmions at specific locations. b, Skyrmions 
in a Ta/CoFeB/TaOx structure, before (top) and after (bottom) applying 
a current pulse through a constriction, with current-induced nucleation 
and subsequent motion of several skyrmions, as seen by magneto-
optical Kerr effect (MOKE) microscopy. c, Experimental measurement 
of the current-induced skyrmion velocity in tracks of Pt/Co/Ta and Pt/

CoFeB/MgO (different symbols represent results from different devices) 
multilayers using STXM. (Error bars denote the standard deviation of 
multiple measurements.) d, Schematic of a skyrmion-based memory 
device in which skyrmions could be deleted, moved and written by 
the corresponding current j. Panel a adapted from ref. 62, American 
Association for the Advancement of Science. Panel b adapted from ref. 69, 
American Association for the Advancement of Science. Panel c reproduced 
from ref. 68, Nature Publishing Group. Panel d adapted from ref. 100, 
American Association for the Advancement of Science.
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sputtering is fast and spatially homogeneous and is compatible with
standard spintronics devices such as magnetic tunnel junctions,
which makes the industrial integration straightforward. Whereas
several recent experimental works have studied magnetic bubbles
in these materials14,18,49,50, and demonstrated their current induced
motion14,50, the direct evidence of their chiral internal structure is
still lacking. Here we report on the observation of stable chiral
skyrmions in sputtered ultrathin Pt/Co(1 nm)/MgO nanostructures
at room temperature and zero applied magnetic field. We used
photoemission electron microscopy combined with X-ray magnetic
circular dichroism (XMCD-PEEM) to demonstrate their chiral Néel
internal structure. The XMCD-PEEM combines several advantages
for the observation of magnetic nanostructures, such as skyrmions:
first, a high lateral spatial resolution (down to 25 nm); second, the
magnetic contrast is proportional to the projection of the local
magnetization along the X-ray beam direction. In our experiment,
the X-ray beam impinges at a grazing angle of 16° on the sample
surface plane so that the contrast is approximately three times
larger for the in-plane component of the magnetization than for
the out-of-plane one. This important feature allows the direct
imaging of the internal in-plane spin structure of DWs or skyrmions.

Observation of chiral Néel domain walls
All images shown here were acquired at room temperature and, unless
otherwise stated, no external magnetic field was applied during the
experiments. The PEEM observations were done in a virgin demag-
netized state obtained after nanofabrication and annealing of the
sample. Complementary magnetization measurements on unpat-
terned thin films show that the magnetization in the domains is
oriented perpendicularly to the film plane, which is due to a large
interfacial uniaxial anisotropy. Figure 1a shows an XMCD-PEEM
magnetic image of a multidomain state in the continuous film.
Bright and dark grey regions correspond respectively to the magneti-
zation pointing up and down. Interestingly, we observe a sharp
increase in the dichroic contrast for DWs perpendicular to the
X-ray beam, with a strong dark contrast when going from a down-
to an up-magnetized domain (along the beam direction) and a
strong bright contrast when going from an up- to a down-magnetized
domain. This can be seen more easily in the linescan of the magnetic
contrast shown in Fig. 1b, corresponding to the white dashed line in

Fig. 1a. A peak in the contrast is observed at the up/down DW
position while a dip is observed at the down/up DW position.
Thus, the magnetization in the up/down DW is aligned antiparallel
to the in-plane direction of the X-ray beam whereas the magnetiza-
tion in the down/up DW is aligned parallel. We conclude that the
DWmagnetization is perpendicular to the DW surface with an oppo-
site magnetization direction for the two DWs. This demonstrates that
DWs in this material are chiral Néel DWs with a left-handed chirality.
Note that for Bloch DWs, the magnetization would be always perpen-
dicular to the beam direction so that no peak or dip in the magnetic
contrast should be observed. The linescan is well-fitted assuming a
chiral Néel DW structure, the finite resolution of the instrument
being modelled by a Gaussian convolution (red curve, Fig. 1b). The
fit leads to a DW width of 29.5 ± 4 nm (π

!!!!!!!
A/Keff

√
) (see

Supplementary Information).

Large DM interaction in Pt/Co/MgO thin films
The driving force of the DW and skyrmion chiral structure is the
DMI. To further quantify its strength in our films, we carried out
spin wave spectroscopy experiments using a Brillouin light scatter-
ing (BLS) technique in the Damon-Eshbach geometry (see
Supplementary Information)41. This allows us to extract a DM
parameter D = 2.05 ± 0.3 mJ m−2. As D is expected to be inversely
proportional to the film thickness t (refs 39,41,42), one can define
a related interfacial DM parameter Ds such that D = Ds /t and we
find a value Ds = 2.17 ± 0.14 pJ m−1. To our knowledge, this value is
the highest reported so far for a sputtered magnetic ultrathin film.
To better understand this large value, we carried out ab initio calcu-
lations of the DMI in Pt/Co/vacuum and Pt/Co/MgO multilayers
(see Supplementary Information)42. For 5 monolayers (ML) of Co,
equivalent to a total Co thickness of 1 nm, the ab initio calculations
predict D = 2.3 mJ m–2 in relatively good agreement with experi-
ments, whereas a lower value D = 1.5 mJ m–2 is predicted for a
Pt/Co/vacuum structure. To explain this enhancement, we
calculated a layer resolved map of the DMI by imposing a spin
spiral on one monolayer whereas the other layers stay in a ferro-
magnetic alignment42. We show in Fig. 2 the resulting map for
Pt/Co(3 ML)/vacuum and Pt/Co(3 ML)/MgO multilayers. The
calculations show that for both multilayers, the DMI is largest at
the first Co ML and thus mainly arises from the Pt/Co interface.
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Figure 1 | Imaging of the chiral Néel structure of domain walls using XMCD-PEEM magnetic microscopy. a, Magnetic image of a multidomain state in a
continuous Pt/Co/MgO film. For DWs lying perpendicular to the X-ray beam direction, thin white and black lines can be seen, corresponding to the
magnetization being aligned antiparallel and parallel to the photon beam, respectively. This demonstrates their chiral Néel structure. b, Linescan of the
magnetic contrast corresponding to the dotted white line in a. To reduce the noise, the contrast has been averaged perpendicularly to the linescan
over 60 nm. The red line is a fit assuming a chiral Néel DW structure convoluted by a Gaussian function to take into account the finite spatial resolution
(see Supplementary Information).
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Abstract

.

1 Introduction

2 Model

We start by considering a reduced two-dimensional micromagnetic energy for an extended ferromag-
netic thin film of e↵ective thickness � > 0, with the lengths measured in the units of the exchange
length ` =

p
A/Kd, where Kd = 1

2µ0M2
s , µ0 is the vacuum permeability, Ms is the saturation mag-

netization and A is the exchange sti↵ness, that is characterized by the normalized magnetization
vector m(x) 2 R3 at each point x 2 R2 of the film. We assume that the film exhibits perpendicular
magnetic anisotropy, interfacial Dzyaloshinskii-Moriya (DMI) interaction and in the presence of an
applied field perpendicular to the film plane, so that the energy functional E(m) has the form

E(m) = Eex(m) + Ea(m) + EZ(m) + EDMI(m) + Es(m). (2.1)

Here, in order of appearance, the terms are the exchange, anisotropy, Zeeman, the DMI and the
stray field energies measured in the units of A`�. As was discussed in [1,17,27], in an extended film
where

m : R2 ! S2, (2.2)

is su�ciently smooth and goes to, say, m0 = (0, 0,�1) su�ciently fast at infinity, with the notations

m = (m?,mk), m? : R2 ! R2, mk : R2 ! R, (2.3)
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where m? is the in-plane component and mk is the out-of-plane component of m, respectively,
these terms take the following form [1,3]:

Eex(m) :=

Z

R2

|rm|2dx, (2.4)

Ea(m) := Q

Z

R2

|m?|2dx, (2.5)

EZ(m) := �2h

Z

R2

(1 +mk)dx, (2.6)

EDMI(m) := 

Z

R2

(mkdivm? �m? ·rmk) dx, (2.7)

Es(m) := �
Z

R2

|m?|2dx+
�

4⇡

Z

R2

Z

R2

divm? (x) · divm?(y)

|x� y| dxdy, (2.8)

� �

8⇡

Z

R2

Z

R2

(mk(x)�mk(y))2

|x� y|3 dxdy, (2.9)

where

Q =
Ku

Kd
,  =

Dp
AKd

, h =
H

Ms
, (2.10)

with Q,  and h being the dimensionless quality factor of the out-of-plane anisotropy, the dimension-
less DMI strength and the dimensionless applied field strength, corresponding to the dimensional
magnetocrystalline anisotropy constant Ku, DMI strength D normalized per unit volume, and the
out-of-plane field H, respectively. Note that  and h may change sign, while for a perpendicular
magnetic anisotropy material we have Q > 1. Under suitable conditions, the above energy ex-
hibits local minimizers in the form of the topologically non-trivial magnetization configurations –
magnetic skyrmions [1–8,16,22,25].

Observe that the stray field energy in (2.9) admits the following representation with the help of
the Fourier transform

cm(k) =

Z

R2

e�ik·x(m(x)�m0)dx (2.11)

of m�m0 2 C1
c
(R2;R3):

Es(m) = �
Z

R2

|cm?(k)|2
dk

(2⇡)2
+

�

2

Z

R2

|k ·cm?(k)|2
|k|

dk

(2⇡)2
� �

2

Z

R2

|k||bmk(k)|2
dk

(2⇡)2
. (2.12)

In particular, the first term in the right-hand side of (2.12), also referred to as the shape anisotropy
term, may be combined with Ea(m) to define an e↵ective out-of-plane anisotropy with strength
Q� 1 (going back to [30]); the second term in the right-hand-side of (2.12) represents the e↵ect of
the bulk charges and can be seen to be non-negative; and the third term represents the e↵ect of the
surface charges and is non-positive. The Fourier representation in (2.12) also arises as a relaxation
of the energy in (2.9) in the natural class of configurations in which m�m0 2 H1(R2;R3). Notice
that by (2.12) and simple interpolation inequalities the energy E(m) is always well defined in this
class (for further details, see [2]).

The expression for the stray field energy in (2.9) or (2.12) may be rigorously obtained as the lead-
ing order terms in the asymptotic expansion of the full micromagnetic energy of a three-dimensional
ferromagnetic film of thickness � ⌧ 1, with the errors controlled by the exchange energy at the
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field

m : Ω → S2.

Let us assume that the sample is a cylinder, i.e.,

Ω = Ω′ × (0, t)

where Ω′ is the cross section of the sample of diameter ! and t is the thickness of the cylinder

(see Figure 2.1). According to micromagnetics, stable magnetizations in Ω are described by (local)

tȍ’ t

l

x3

x1
x2

Figure 2.1: A ferromagnetic sample.

minimizers of the energy functional defined as:

E3D(m) = d2

∫

Ω
|∇m|2 dx + Q

∫

Ω
ϕ(m) dx +

∫

R3

|∇U |2 dx − 2

∫

Ω
Hext · m dx. (2.1)

In the following we explain the four components of the micromagnetic energy E3D.

• The first term, called exchange energy is due to short range interactions of spins and favors

parallel alignment of neighboring spins. The constant d is the exchange length and corresponds to

an intrinsic parameter of the material of the order of nanometers.

• The second term in (2.1) represents the anisotropy energy that penalizes certain magnetization

axes. The anisotropy energy density ϕ is a nonnegative function with symmetry properties inherited

from the crystalline lattice. The preferred directions of magnetization are the zeros of ϕ. Typically,

we have uniaxial or multi-axial anisotropy (e.g., ϕ(m) = 1−m2
1 that favors the direction (±1, 0, 0))

and surface anisotropy (e.g., ϕ(m) = m4
3 where the easy plane is the horizontal one). The quality

factor Q is a second intrinsic parameter of the material that measures the strength of the anisotropy

energy relative to the stray-field. According to the values of Q, we distinguish two classes of

materials: soft materials if Q < 1 and hard materials if Q > 1.

• The third term of E3D is the stray-field energy and is created by long range interactions between

electron spins modelled by the static Maxwell equation. More precisely, the stray-field potential

U : R3 → R is determined by

∆U = ∇ ·
(

m1Ω

)

in R3, (2.2)

i.e.,

∫

R3

∇U ·∇ζ dx =

∫

Ω
m ·∇ζ dx, ∀ζ ∈ C∞

c (R3).

By the electrostatic analogy, two types of charges generate the potential U : volume charges with

density given by the divergence of m in the interior of the sample Ω and surface charges represented

by the normal component of the magnetization on the boundary of Ω. Therefore, this nonlocal

term favors domain patterns that achieve flux closure.
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Theorem 1. Let � < �0 and Q < Q0. Then there exists C > 0 depending only on �0 and Q0 such
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Stray field energy

electron spins are magnetic dipoles

in a thin film the stray field is due to the bulk and surface magnetic charges:
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The minimal model

use the local approximation for the stray field Winter, 1961; Gioia and James, 1997 

two-dimensional micromagnetic energy:
Bogdanov and Yablonskii, 1989


Rohart and Thiaville, 2013

Bernand-Mantel, M and Simon, 2020 
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specify a non-trivial  topological degree:

m : R2
! S2 m = (m?,mk) m? 2 R2

mk 2 R

mk ! �1 as |r| ! 1

E(m) = Eex(m) + Ea(m) + EZ(m) + EDMI(m) + Es(m)

Eex(m) =

Z

R2

|rm|
2
d
2
r, Ea(m) = Q

Z

R2

|m?|
2
d
2
r, EZ(m) = �2h

Z

R2

(1 +mk)d
2
r,

EDMI(m) = 

Z

R2

�
mkr ·m? �m? ·rmk

�
d
2
r,

Es(m) = �

Z

R2

|m?|
2
d
2
r +

�

4⇡

Z

R2

Z

R2

r ·m? (r) ·r ·m?(r0)

|r� r0|
d
2
rd

2
r
0

�
�

8⇡

Z

R2

Z

R2

(mk(r)�mk(r0))2

|r� r0|3
d
2
r d

2
r
0

Es(m) =
1

�

Z

T`⇥(0,�)

|mk|
2
d
3
r �

�

8⇡

Z

T`

Z

R2

(mk(r)�mk(r0))2

|r� r0|3
d
2
r d

2
r
0

+
�

4⇡

Z

T`

Z

R2

r ·m?(r)r ·m?(r0)

|r� r0|
d
2
r d

2
r
0

 

p
Q� 1 |Es(m)� Es(m)|  C�

Z

T`⇥(0,�)

|rm|
2
d
3
r

E(m) =

Z

R2

�
|rm|

2
+ (Q� 1)|m?|

2
� 2m? ·rmk

 
d
2
r

+
1

2⇡�

Z

R2

Z

R2

 
1

|r� r0|
�

1p
|r� r0|2 + �2

� 2⇡�
(2)
(r� r0)�

!
mk(r)mk(r

0
) d

2
r d

2
r
0

+ �

Z

R2

Z

R2

K�(|r� r0|)r ·m?(r)r ·m?(r
0
) d

2
r d

2
r
0

1

m : R2
! S2 m = (m?,mk) m? 2 R2

mk 2 R

mk ! �1 as |r| ! 1

Q > 1 || <

p
Q� 1 m = ±ẑ
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2
(R2

)

o

Z

R2

|rm|
2
d
2
r � 8⇡ |N (m)| |rm|

2
± 2m · (@1m⇥ @2m) = |@1m⌥m⇥ @2m|

2

3

m : R2
! S2 m = (m?,mk) m? 2 R2

mk 2 R

mk ! �1 as |r| ! 1 |m?|
2
= 1�m

2
k

Q > 1 || <

p
Q� 1 m = ±ẑ m 6⌘ ±ẑ
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field

m : Ω → S2.

Let us assume that the sample is a cylinder, i.e.,

Ω = Ω′ × (0, t)

where Ω′ is the cross section of the sample of diameter ! and t is the thickness of the cylinder

(see Figure 2.1). According to micromagnetics, stable magnetizations in Ω are described by (local)

tȍ’ t

l

x3

x1
x2

Figure 2.1: A ferromagnetic sample.

minimizers of the energy functional defined as:

E3D(m) = d2

∫

Ω
|∇m|2 dx + Q

∫

Ω
ϕ(m) dx +

∫

R3

|∇U |2 dx − 2

∫

Ω
Hext · m dx. (2.1)

In the following we explain the four components of the micromagnetic energy E3D.

• The first term, called exchange energy is due to short range interactions of spins and favors

parallel alignment of neighboring spins. The constant d is the exchange length and corresponds to

an intrinsic parameter of the material of the order of nanometers.

• The second term in (2.1) represents the anisotropy energy that penalizes certain magnetization

axes. The anisotropy energy density ϕ is a nonnegative function with symmetry properties inherited

from the crystalline lattice. The preferred directions of magnetization are the zeros of ϕ. Typically,

we have uniaxial or multi-axial anisotropy (e.g., ϕ(m) = 1−m2
1 that favors the direction (±1, 0, 0))

and surface anisotropy (e.g., ϕ(m) = m4
3 where the easy plane is the horizontal one). The quality

factor Q is a second intrinsic parameter of the material that measures the strength of the anisotropy

energy relative to the stray-field. According to the values of Q, we distinguish two classes of

materials: soft materials if Q < 1 and hard materials if Q > 1.

• The third term of E3D is the stray-field energy and is created by long range interactions between

electron spins modelled by the static Maxwell equation. More precisely, the stray-field potential

U : R3 → R is determined by

∆U = ∇ ·
(

m1Ω

)

in R3, (2.2)

i.e.,

∫

R3

∇U ·∇ζ dx =

∫

Ω
m ·∇ζ dx, ∀ζ ∈ C∞

c (R3).

By the electrostatic analogy, two types of charges generate the potential U : volume charges with

density given by the divergence of m in the interior of the sample Ω and surface charges represented

by the normal component of the magnetization on the boundary of Ω. Therefore, this nonlocal

term favors domain patterns that achieve flux closure.
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Figure 4. (a) The potential energy for d = D = 2. (b) The vor-
tex excitation. (c) The hedgehog or monopole excitation for
d = D = 3. (Adapted from Ref. [2].)

in di!erent regions of space, subject to the all-important
constraint that the "eld vary smoothly from place to
place. The defect in this case is known as a vortex, an
example of which is shown in Figure 4(b). The vortex has
a core at its centre and has a "eld that swirls around the
core.3

An important point about the vortex is that there are
lots of very similar structures we can make, for exam-
ple, by globally rotating all of the arrows by some "xed
angle. In fact, from the point of view of topology, each of
these excitations is equivalent. The quantity that de"nes
the topological properties of the vortex is its integerwind-
ing number w. This quantity counts the number of times
the arrows rotate through 2π radians as we follow a cir-
cle around the vortex core. The diagram shows a w = 1
vortex, since the arrows make a complete rotation as we
follow a circle around the vortex core. It is possible to
make vortices with w = 2. In contrast to a w = 1 object,
a w = −1 object, known as an antivortex, does not have
the arrows pointing in the opposite direction, but rather
has arrows thatwrap in the opposite direction as the circle
is traversed around the core.

In the three-dimensional case of D = 3, d = 3 we
have a con"guration called a hedgehog (or monopole)
shown in Figure 4(c). Here the winding number is given
by considering the 3D "eld φ(x1, x2), where x1 and x2
are coordinates allowing us to locate points on a closed
surface (conventionally we choose angles x1 = θ and

Figure 5. The stereographic projection (denoted P ) squashes
the hedgehog into D = 2, where it becomes a skyrmion. The left-
hand version is aNéel skyrmion; the right-hand version,where the
spins have been combed over (denotedR), is a Bloch skyrmion.
(Based on a figure from Ref. [22].)

x2 = ϕ, for example), and we evaluate the integral

w = 1
4π

∫
dx1dx2 φ̂ ·

(
∂φ̂

∂x1
× ∂φ̂

∂x2

)

, (3)

where φ̂ = φ/|φ| is the normalised (unit) "eld andwhere
the surface over which we integrate surrounds the core of
the hedgehog. The integrand in this expression gives an
element of the solid angle swept out by the vectors φ. By
comparing the integral of this quantity with 4π we can
therefore compute how many times these vectors wrap
around a sphere. In the same way that we can globally
rotate the D = 2 arrows of the vortex without chang-
ing w, a combed hedgehog, with all of its arrows rotated
globally by the same amount, also has the same winding
number as the conventional hedgehog (see Figure 5, top).

The vortex and hedgehog introduce a new feature
compared to the domain wall: they cost an in"nite
amount of energy! This can be understood by inspection
of the vortex. It is swirly at large distances from the core,
so that the "elds never become uniform. The "rst term
in Equation (2) then keeps costing energy causing a vol-
ume integral over the free energy density to diverge. This
energetic cost is a consequence of Derrick’s theorem and
is important in judging whether each of these objects can
hope to exist. That is, if an object costs an in"nite amount
of energy to create, it is not going to be realised in a sys-
tem (at least without some other physical property being
introduced) [2,5]. Speci"cally, Derrick investigated static
"eld con"gurations as they are scaled up and down in
their spatial size. If a "eld con"guration is stable, then
there is a pointwhere the energy is stationarywith respect
to such a scaling. If the "eld con"guration has no such
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therefore compute how many times these vectors wrap
around a sphere. In the same way that we can globally
rotate the D = 2 arrows of the vortex without chang-
ing w, a combed hedgehog, with all of its arrows rotated
globally by the same amount, also has the same winding
number as the conventional hedgehog (see Figure 5, top).

The vortex and hedgehog introduce a new feature
compared to the domain wall: they cost an in"nite
amount of energy! This can be understood by inspection
of the vortex. It is swirly at large distances from the core,
so that the "elds never become uniform. The "rst term
in Equation (2) then keeps costing energy causing a vol-
ume integral over the free energy density to diverge. This
energetic cost is a consequence of Derrick’s theorem and
is important in judging whether each of these objects can
hope to exist. That is, if an object costs an in"nite amount
of energy to create, it is not going to be realised in a sys-
tem (at least without some other physical property being
introduced) [2,5]. Speci"cally, Derrick investigated static
"eld con"gurations as they are scaled up and down in
their spatial size. If a "eld con"guration is stable, then
there is a pointwhere the energy is stationarywith respect
to such a scaling. If the "eld con"guration has no such
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a   Néel-type skyrmion b   Bloch-type skyrmion

c   Skyrmion lattice in an Fe monolayer 
 on Ir(111)

d   Individual skyrmions in a PdFe 
 bilayer on Ir(111)

B 10 nm

and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.

Interfacial Dzyaloshinskii–Moriya interaction
In systems that lack inversion symmetry, spin–orbit cou-
pling can induce an asymmetric exchange interaction, 
the DMI, which takes the form

HDMI = (S1 × S2) ∙ d12 (2)

where S1 and S2 are neighbouring spins and d12 is the cor-
responding Dzyaloshinskii–Moriya vector. For the inter-
facial DMI, the focus of this Review, d12 can be written12 
d12 = d12∙(z × u12), where z and u12 are unit vectors, respec-
tively perpendicular to the interface in the direction of 
the magnetic layer and pointing from site 1 to site 2.  
For d12 > 0 the DMI favours anticlockwise rotations from 
S1 to S2, similarly to REFS 10,12 (d12 < 0 corresponds to 
lower energy for clockwise magnetization rotation). The 
DMI is a chiral interaction that lowers or increases the 
energy of the spins depending on whether the rotation 
from S1 to S2 around d12 is in the clockwise or in the anti-
clockwise sense. If S1 and S2 are initially parallel, the effect 
of a strong DMI (compared with the symmetric exchange 
interaction) is to introduce a relative tilt around d12. In 
magnetic films with interfacial DMI, the Dzyaloshinskii–
Moriya vector lies in the plane of the film (the x–y plane), 
and the global effect of the DMI on the magnetization 
m can be expressed by the micromagnetic energy per 
volume as

E = D ∙ (mz∂xmx − mx∂xmz + mz∂ymy − my∂ymz) (3)

where D is the DMI constant, which is related to the pair 
interaction d12 of equation 2. For a purely interfacial DMI, 
D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.

The existence of the DMI was first proposed to 
account for the properties of magnetic compounds with 
a non-centrosymmetric lattice, such as α-Fe2O3 (REFS 1,2). 
The DMI was theoretically understood by Moriya as an 
additional term induced by spin–orbit coupling in the 
super-exchange interaction between spins of magnetic 
insulators in the absence of inversion symmetry. For 
metallic systems, the existence of a chiral interaction 
was first demonstrated for disordered alloys, in which 
an atom with large spin–orbit coupling mediates a DMI 
between two magnetic atoms; d12 in this case is perpen-
dicular to the plane of the triangle formed by the three 
atoms13. The DMI was then predicted to exist with the 
same sym metry at the interface between magnetic films 
and metals with large spin–orbit coupling14. In systems 
composed of a magnetic film (such as Co) and a metal 

Figure 1 | Magnetic texture of skyrmions. a,b | Néel-type (panel a) and Bloch-type  
(panel b) skyrmions with the magnetization rotating from the down direction at  
the skyrmion’s centre to the up direction of the external uniform magnetization at the 
skyrmion’s edge, as in a Néel or in a Bloch domain wall. c | Lattice of skyrmions as observed 
by spin-polarized scanning tunnelling microscopy in a monolayer of Fe grown on Ir(111). 
The colour wheel indicates the in-plane magnetization, and the square unit cell has a side 
length of 1 nm. The grey cones indicate the direction of magnetization in 3D. d | Individual 
skyrmions observed by the same technique in a PdFe bilayer on Ir(111). The out-of-plane 
magnetization is colour-coded from red for ‘up’ to blue for ‘down’ magnetization.  
An external field B = 1.5 T is used to stabilize the skyrmions. Panels a and b are reproduced 
with permission from REF. 94, courtesy of K. Everschor-Sitte, University of Cologne, 
Germany. Panel c is reproduced with permission from REF. 95, Macmillan Publishers 
Limited. Panel d is reproduced with permission from REF. 96, American Physical Society.
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and low temperatures (the Curie temperature for one 
Fe monolayer is around 30 K). Moreover, the skyrmion 
lattice ground state of an Fe monolayer on Ir(111) does 
not allow the specific properties of individual skyrmi-
ons to be exploited. In PdFe bilayers epitaxially grown 
on Ir(111), spin spirals are observed at low field, but an 
applied field of about 1 T induces a transition to a ferro-
magnetic state embedding individual metastable skyr-
mions10,11 (FIG. 1d). The conditions for having individual 
skyrmions rather than periodic spin textures such as 
skyrmion lattices or spin spirals are discussed in BOX 1.

A prerequisite for the use of skyrmions in devices is 
hence the ability to stabilize small individual skyrmions 
at room temperature and in zero or very small applied 
fields. Because the transition temperatures of bulk com-
pounds in which skyrmions were first found are gen-
erally below or just around room temperature, these 
systems are not easily implementable for applications. 
Although thin films of ferromagnetic transition metals 
such as Fe or Co are more promising, ultrathin epitax-
ially grown films are not the most convenient candi-
dates for devices, first because, up to now, skyrmions in 
ultrathin films have been found only at low temperature, 
and second because epitaxial growth is not easily com-
patible with common spintronic technologies. A prom-
ising path toward practical room-temperature systems 
with individual skyrmions is represented by the recent 

development of perpendicularly magnetized multi-
layers prepared by sputtering deposition, which exploit 
the possibility of obtaining additive DMI at successive 
interfaces. Several groups have recently reported impres-
sive progress not only in the stabilization of skyrmions 
at room temperature, but also in their current-induced 
manipulation, creation and displacement. This Review 
focuses on the recent advances in this new field of top-
ological spintronics, in which topology, together with 
chiral interactions and spin–orbit torques, is exploited 
in an entirely new context for applications in future  
information and communication technologies.
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where S1 and S2 are neighbouring spins and d12 is the cor-
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D is inversely proportional to the thickness of the film;  
it is positive for anticlockwise rotations.
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super-exchange interaction between spins of magnetic 
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all minimizers with prescribed degree are known Belavin and Polyakov, 1975

after the stereographic projection, they are rational functions of z = x﹢iy 
or their complex conjugates

Eells and Sampson, 1964
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specifically, all degree 1 minimizing maps belong to:
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However, even for such Belavin-Polyakov profiles it holds that �+e3 62 L2(R2;R3) due to logarithmic
divergence of the anisotropy term. Consequently, we expect minimizers to be truncated Belavin-
Polyakov profiles which will shrink to keep the anisotropy energy finite in the limit � ! 0 in the
spirit of the construction by Döring and Melcher [28, Lemma 3].
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consider the topologically non-trivial admissible class

note that the last condition simply selects the limit at infinity, since

we have the following non-optimal existence result: Bernand-Mantel, M and Simon, 2020

adapting arguments of 

Melcher, 2014 


Döring and Melcher, 2017

see also Greco, 2019 
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Room-temperature skyrmions have also been found in magnetic 
bilayers (Figs. 4f, 5b), although generally with a larger diameter69,77–79. 
These efforts offer promising directions towards stack engineering of 
magnetic interactions to tune skyrmion properties in films for device  
applications80.

Detection and manipulation of chiral spin textures
Skyrmions in epitaxial films were first imaged using spin-polarized 
scanning tunnelling microscopy (SP-STM; Fig. 4d)61,62. Since then, they 
have been imaged in sputtered multilayer films using various magnetic 
microscopy techniques, including scanning transmission X-ray micros-
copy (STXM; Fig. 4g)67,68, photoemission electron microscopy (PEEM;  
Fig. 4f)78, spin-polarized low-energy electron microscopy (SPLEEM)77, 
and magneto-optical Kerr effect (MOKE) microscopy (Fig. 5b)69. 
Importantly, skyrmions can also be detected using a variety of thermo-
dynamic and transport techniques81. In particular, the Berry phase that 
is accumulated by electrons traversing the 2D spin texture of skyrmions 
results in an additional component in anomalous Hall effect measure-
ments, known as the topological Hall effect60,81. The Hall signal can be 
used to detect the presence of skyrmions and to address their motion 
in films and devices81,82. However, such Hall signatures of skyrmions 
have been detected thus far only in bulk crystal and films with intrinsic 

DMI81–83; these techniques remain to be established in multilayer films 
with interfacial DMI.

Magnetic skyrmions, owing to their small size and non-trivial topology, 
are attractive candidates for data storage in magnetic materials—provided 
that they can be nucleated, moved and read. Several nucleation techniques 
have been explored with micromagnetics simulations75,84. In SP-STM 
experiments on Fe/Pd bilayers (Fig. 5a), individual skyrmions were nucle-
ated and deleted using the current injected from the STM tip62. In other 
experiments, skyrmions have been created by applying field pulses68. A 
remarkable result in this regard is the recent demonstration of “blowing of 
skyrmion bubbles”69,85, generated by the current divergence out of a con-
striction (Fig. 5b). In future, skyrmions should be able to be moved with 
notable ease compared with, for example, domain walls82 by exploiting the 
SOT provided by the spin current75,86,87, which emerges naturally from the 
spin Hall effect of the neighbouring heavy metal layers. The dynamic prop-
erties of skyrmions have been explored using micromagnetics simulations 
and microscopy techniques in device configurations68,69. These works 
demonstrate that skyrmions can be manipulated with current and field 
pulses in lithographed geometric structures (Fig. 5b, c)68,69—techniques  
that can be incorporated in memory devices with relative facility.

These properties of magnetic skyrmions portend great potential 
towards realizing high-density and energy-efficient memory86,87. Several 

Figure 4 | Interfacial DMI and chiral spin textures. a, Anatomy of 
interfacial DMI from ab initio calculations. Bottom, Layer-resolved DMI 
in a Pt/Co bilayer. Top, distribution of SOC energies associated with the 
DMI in the interfacial Co layer. Inset, a schematic of DMI at the interface 
between a ferromagnetic metal with out-of-plane magnetization (Co, grey) 
and a strong SOC metal (Pt, blue). The DMI vector D12, associated with 
the triangle composed of two Co atoms and a Pt atom, is perpendicular to 
the plane of the triangle. S1,2, neighbouring spins. b, c, Schematics of the 
spin configuration in interfacial-DMI-induced chiral spin textures such as 
magnetic skyrmions (b) and chiral Néel domain walls (c), with the colour 
scale corresponding to the out-of-plane magnetization component. d, 
SP-STM imaging of an individual skyrmion (with a diameter of 8 nm at a 
field of 3.25 T) in a Fe/Pd bilayer on Ir(111), acquired in constant-current 
topographic mode, with an in-plane magnetized tip, with the modelled 
magnetization overlaid (arrows). e, Skyrmion stabilization in multilayers, 

illustrated using a multilayer stack of Ir/Co/Pt. The close-up of the trilayer 
shows DMI vectors (D12 and D34) at the top (Co/Ir) and bottom (Pt/Co) 
interfaces of Co. The effective DMI magnitude is enhanced by the same 
direction of D12 and D34 at the different interfaces. f, Room-temperature 
skyrmions in a Pt/Co/MgO multilayer in a lithographed 400 nm × 400 nm 
square, seen by XMCD-PEEM, with the magnetization profile along the 
red line shown below. g, Room-temperature skyrmions in (Ir/Co/Pt) × 10 
multilayers patterned into 300-nm-diameter disks (left) or 200-nm-wide 
tracks (right), seen by STXM. Panel a (main panel) adapted from ref. 72, 
American Physical Society. Panel a (inset) adapted from ref. 70, Nature 
Publishing Group. Panel d reproduced from ref. 62, American Association 
for the Advancement of Science. Panels e and g adapted from ref. 67, 
Nature Publishing Group. Panel f adapted from ref. 78, Nature Publishing 
Group.
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a rescaled and translated minimizing profile       converges to the
canonical Belavin-Polyakov profile — the Néel skyrmion
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relies crucially on the rigidity estimate for degree 1 almost harmonic maps:

for some universal c > 0 and all 
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Bounded domains

restrict to              — bounded simply connected domain with        boundary

⌘�(r) = ⌘(��1dist(r,⌦)) � ! 0

E(m) =

Z

R2

⌘
2
�

�
|rm|

2 + (Q� 1)|m?|
2 + (mkr ·m? �m? ·rmk)

 
d
2
r

+
�

4⇡

Z

R2

Z

R2

r · (⌘�m?)(r)r · (⌘�m?)(r0)

|r� r0|
d
2
r d

2
r
0

�
�

8⇡

Z

R2

Z

R2

(⌘�(r)mk(r)� ⌘�(r0)mk(r
0))2

|r� r0|3
d
2
r d

2
r
0

E0(m) :=

Z

⌦

�
rm|

2 + ↵|m?|
2
�
d
2
r + �

Z

⌦

�
mkr ·m? �m? ·rmk

�
d
2
r

+�

Z

@⌦

⇣
(m? · n)2 �m

2
k

⌘
dH

1(r)

N (m) =
1

4⇡

Z

R2

m · (@1m⇥ @2m) d2r 2 Z

A :=
n
m 2 H̊

1(R2; S2) : N (m) = 1, m+ ẑ 2 L
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Skyrmion destruction. When relaxing energy paths that directly involve the destruction of the skyrmion 
core in a region inside the track, the spins at the center of the skyrmion reverse to form a ferromagnetic state. 
!is is a non trivial process since the band su"ers drastic changes in energy when the NEBM tries to converge to 
a minimum energy transition and the system must undergo a topological change. !is path is (according to our 
observations) the most likely for a skyrmion situated in a large or in#nite sample, where it is meant to be topolog-
ically protected, thus we expect a larger energy barrier than in the transition mediated by a boundary.

We #rstly found that for DMI magnitudes of D = 0.676 meV and below, the algorithm converged to the skyr-
mion collapse process, which is similar to the one depicted in Fig. 3c. In Fig. 6a we show the #rst images of the 
bands, where the skyrmion state is given by the le% extrema, and we observe pronounced peaks at the saddle 
points. !ese points are the images that have a tiny skyrmion with only a few spins de#ning its core before revers-
ing. It is worth noting that these saddle points have a #nite energy since we have a discrete number of magnetic 
moments, whereas in a continuum model it is likely that the peak depends on the discretisation of the continuum 
mesh that de#nes the material. In our results, the saddle point energies (and thus the energy barriers) increase 
with the DMI constant, where values range between 0.1 and 0.25 eV larger than the skyrmion energy. Around 
the saddle points, the energy landscape must have a rough shape since the neighbouring images usually have a 

Figure 3. Minimum energy paths of a skyrmion in a cobalt nanotrack. !e DMI constant of the system is 
D = 0.676 meV of magnitude. !ere are two di"erent paths: a skyrmion annihilation at a boundary and a 
symmetrical skyrmion collapse. (a) Images of the band for the boundary annihilation, annotated according to 
the numbers in the corresponding curve in (b). !e colour scale refers to the out of plane (z) component of the 
magnetisation #eld. (b) Energy bands for both minimum energy paths as a function of the distance from the 
#rst image (le% extreme of the bands). !e top scale refers to the skyrmion collapse case. (c) Images of the band 
for the skyrmion collapse. (d) Topological charge (skyrmion number) Q as a function of the images distances 
for the cases depicted in (b). !e top scale refers to the skyrmion collapse case.
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FIG. 11. Energy barrier for the skyrmion escape through the
boundary of hexagons of different size. Barriers are calculated for
free boundary hexagons of variable circumradius R and magnetic
field strength. For R ! 6 nm and weak fields, the change in the
tendency of the curves is because the skyrmion (which has a large
size at weak fields) elongates until reaching the boundary instead of
being displaced while keeping its symmetrical shape. Snapshots with
the escape transition are shown below the figure for the parameters
of the data point marked with an open square in the energy barrier
curves.

energy than skyrmions for fields below 0.6 T. From Fig. 10(b),
we notice that in islands with a ferromagnetic rim the target
state becomes the lowest energy state in a region of hexagon
radii from approximately 7.5 nm up to 11 nm and below fields
of 0.5 T, and hence it is energetically favored in this region of
phase space. Furthermore, since the islands measured experi-
mentally have a radius of about 9 nm we can infer that target
states in Pd2/Fe islands have a larger probability of being
observed if the system overcomes energy barriers towards
lowest energy configurations.

C. Stability of skyrmions and target states

A method for the estimation of the stability of skyrmions is
the calculation of energy barriers separating them from other
equilibrium states, in particular from the uniform state. Two
known mechanisms [31–34] for the skyrmion annihilation
(creation) are the skyrmion collapse (emergence) and the
skyrmion escape (nucleation) mediated by the boundary. The
latter is only possible when free boundaries are present.

FIG. 12. Energy barrier for the skyrmion collapse in hexagons
of different size. Barriers are calculated for hexagons with either
free (a) or ferromagnetic (b) boundaries, and variable circumradius
R and magnetic field strength. For R = 6 nm and weak fields,
the change in the curve tendency is because the GNEBM finds a
boundary mediated transition rather than a collapse. For R " 8 nm,
and weak fields, the change in the curve is because the GNEBM
finds a skyrmion collapse mediated by a singularity. Snapshots with
the collapse transition [below (a)] and the collapse via a singularity
[below (b)] are shown below the corresponding plots with different
boundary conditions and for the data points marked with open
squares in the energy barrier curves.

In Fig. 11, we show the energy barriers between the
skyrmion and the uniform state via the escape mechanism for
the system with open boundaries. To obtain this transition,
we initialized the algorithm by moving the skyrmion towards
the upper boundary of the hexagon. In the figure, we observe
that for R < 6 nm the height of the barrier increases with
larger field strengths, and for R ! 6 nm we see the opposite
tendency. Furthermore, for R ! 6 nm and fields 0.6 T there is
a drastic change in the slope of the curve because the skyrmion
elongates towards a boundary until reaching the sample border
and starts escaping, instead of displacing without deformation
towards the sample edge, as occurs for sufficiently large
fields. In small samples, the effect is unnoticed since the
skyrmion is directly touching the sample boundaries, thus it
can easily transition towards the uniform state. Snapshots of
these transitions for an R = 8 nm hexagon and energy bands
from the simulations are shown in Sec. S12 of Ref. [36].

Regarding the collapse mechanism, we summarize the en-
ergy barrier calculations in Fig. 12, for the two boundary con-
ditions. In this case, we notice the barriers of hexagons with
free boundaries [Fig. 12(a)] are smaller in magnitude than the
corresponding barriers from the system with ferromagnetic
boundaries [Fig. 12(b)]. Additionally, in Fig. 12(a) at R =
6 nm and below Bz = 0.5 T the algorithm finds a different
energy path, which is mediated by the boundary and is not
allowed when the system has fixed spins at the boundary. The
change in the curve around 0.8 T for circumradius above 6 nm
indicate the collapse of the skyrmion through a singularity
[32], which is not present at larger magnetic fields or in small
sample sizes since the singularity is defined in a few atomic
spaces. For the hexagon with the ferromagnetic rim there
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Restoring the topological protection
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3

defines a non-trivial admissible class

where

Es(m) ' �

Z

R2

|m?|
2
d
2
r +

�

4⇡

Z

R2

Z

R2

r ·m? (r) ·r ·m?(r0)

|r� r0|
d
2
rd

2
r
0

�
�

8⇡

Z

R2

Z

R2

(mk(r)�mk(r
0))2

|r� r0|3
d
2
r d

2
r
0

⌘�(r) = ⌘(��1dist(r,⌦)) � ! 0

E(m) =

Z

R2

⌘
2
�

�
|rm|

2 + (Q� 1)|m?|
2 + (mkr ·m? �m? ·rmk)

 
d
2
r

+
�

4⇡

Z

R2

Z

R2

r · (⌘�m?)(r)r · (⌘�m?)(r0)

|r� r0|
d
2
r d

2
r
0

�
�

8⇡

Z

R2

Z

R2

(⌘�(r)mk(r)� ⌘�(r0)mk(r
0))2

|r� r0|3
d
2
r d

2
r
0

E0(m) :=

Z

⌦

�
rm|

2 + ↵|m?|
2
�
d
2
r + �

Z

⌦

�
mkr ·m? �m? ·rmk

�
d
2
r

+�

Z

@⌦

⇣
(m? · n)2 �m

2
k

⌘
dH

1(r)

N (m) =
1

4⇡

Z

R2

m · (@1m⇥ @2m) d2r 2 Z

N (m) =
1

4⇡

Z

⌦
m · (@1m⇥ @2m) d2r

A :=
n
m 2 H̊

1(R2; S2) : N (m) = 1, m+ ẑ 2 L
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Micromagnetics of the film edge
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No! - the dipolar energy is generically undefined (e.g., for               )

m : R2
! S2 m = (m?,mk) m? 2 R2

mk 2 R

mk ! �1 as |r| ! 1 |m?|
2 = 1�m

2
k

Q > 1 || <

p
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=> regularize the edge with a smooth cutoff: 
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where C  is a positive proportionality constant called capacitance.  Physically, 
capacitance is a measure of the capacity of storing electric charge for a given potential 
difference . The SI unit of capacitance is the farad ( : V∆ F)
 

1 F 1 farad  1 coulomb volt = 1 C V= =  
 
A typical capacitance is in the picofarad ( ) to millifarad range, 
( ). 

121 pF 10 F−=
3 61 mF 10 F=1000 F; 1 F 10 Fµ µ− −= =

 
Figure 5.1.3(a) shows the symbol which is used to represent capacitors in circuits. For a 
polarized fixed capacitor which has a definite polarity, Figure 5.1.3(b) is sometimes used.   
 

(a)  (b) 
 

Figure 5.1.3 Capacitor symbols. 
 
5.2 Calculation of Capacitance 
 
Let’s see how capacitance can be computed in systems with simple geometry. 
 

Example 5.1: Parallel-Plate Capacitor 
 

Consider two metallic plates of equal area A separated by a distance d, as shown in 
Figure 5.2.1 below. The top plate carries a charge +Q while the bottom plate carries a 
charge –Q. The charging of the plates can be accomplished by means of a battery which 
produces a potential difference. Find the capacitance of the system. 
 

 
 

Figure 5.2.1    The electric field between the plates of a parallel-plate capacitor 
 
Solution:  
 
To find the capacitance C, we first need to know the electric field between the plates. A 
real capacitor is finite in size. Thus, the electric field lines at the edge of the plates are not 
straight lines, and the field is not contained entirely between the plates.  This is known as 
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Slastikov, 2018;  Morini et al., 2023+; Di Fratta, M and Slastikov, 2023+



Micromagnetics of the film edge (cont.)

two-dimensional energy with a regularized edge:

make the size of        depend on 𝛿 = 𝛿ε, with a new parameter ε≪1, rescale:
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then after an integration by parts
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Micromagnetics of the film edge (cont.)

rescaled two-dimensional energy with a regularized edge:

in the limit              with               we get                           ,  where
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compare with Kohn and Slastikov, 2006

if                           => Dirichlet b.c. (after renormalization)
Di Fratta, M and Slastikov, 2023+
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Skyrmions under confinement

minimize
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Theorem 3. There exists 0 > 0 depending only on ⌦ such that for all
0 <  < 0 there exists a minimizer of E over A.

5

note that there is no minimizer for 𝜅 = 0  =>  limit as 𝜅 ⟶ 0 is singular!
expecting the minimizer to concentrate on a shrinking BP profile
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Topology for the Γ-limit

expecting the above definition to be satisfied by the minimizers of the

rigidity estimate
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Definition 4. Let

fA0 := {R0 2 SO(3) : R0ẑ = ẑ}⇥ (0,1)⇥ ⌦.

We then say that a sequence mn 2 An BP-converges to (R0, r0, a0) 2 fA0 as
n ! 0 if and only if the following holds: There exist Rn 2 SO(3), ⇢n > 0,
an 2 ⌦ such that for �n := Rn�(⇢�1

n
(•� an)) 2 B we have

lim sup
n!1

�2
n

Z

R2

|r(mn � �n)|
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an.
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Limit energy

anisotropy can be added as a continuous perturbation:

Definition 5. For (R0, r0, a0) 2 fA0 let

E0(R0, r0, a0) := r20T (a0)� 2r0
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0
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Theorem 6. The �-limit as  ! 0 of the functionals E�8⇡
2 restricted to A

with respect to the BP-convergence is given by E0 restricted to A0 in the sense
that we have the following:

(i) For every sequence of n ! 0 andmn 2 An with lim infn!1

En(mn)�8⇡
2
n

<

0 there exists a subsequence (not relabeled) and (R0, r0, a0) 2 A0 such
that mn BP-converges to (R0, r0, a0).

(ii) Let n ! 0, let mn 2 An BP-converge to (R0, r0, a0) 2 A0 and let

lim inf
n!1

En(mn)� 8⇡

2
n

< 0.

Then we have

lim inf
n!1

En(mn)� 8⇡

2
n

� E0(R0, r0, a0).

(iii) For every (R0, r0, a0) 2 A0 and every sequence of n ! 0 there exist
mn 2 An BP-converging to (R0, r0, a0) such that

lim sup
n!1

En(mn)� 8⇡

2
n

 E0(R0, r0, a0).
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Convergence 

of minimizers

=> for 𝜅 ≪ 1 every minimizer is close to a Néel skyrmion of radius 𝜅r0 centered at a0

Theorem 7. Let n ! 0 as n ! 1 and let mn be minimizers of En over
A. Then there exists a subsequence (not relabeled) and a0 2 argmina2⌦ T (a)
such that with

r0 :=
4⇡

T (a0)
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⇣
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Application: disks

Proposition 8. For ⌦ = B`(0) and z0 2 ⌦, the map achieving T (z0) is given
by

uz0(z) =

(
2z

`2�z̄0z
if z 2 B`(0),

2
z̄�z̄0

if z 2 C \B`(0).

Its energy is given by

T (z0) =
16⇡`2

(`2 � |z0|2)2
,

which is minimized by z0 = 0 with T (0) = 16⇡
`2 . The rescaled skyrmion radius

is r0 =
`2

4 and the corresponding limiting energy is E0

⇣
id, `

2

4 , 0
⌘
= �⇡`2.

Proposition 9. For ` > 0, ⌦` = R⇥ (�`/2, `/2), and y0 2 (�`/2, `/2), the
map achieving T (iy0) is given by

uy0(z) =

(
⇡
` tanh

�
⇡
2`(z + iy0)

�
�

⇡
` coth

�
⇡
2`(z̄ + iy0)

�
+ 2

z̄+iy0
if z 2 ⌦`,

2
z̄+iy0

if z 2 C \ ⌦`.

Its energy is given by

T (iy0) =
4⇡3

`2 cos2
�⇡y0

`

� ,

which is minimized by y0 = 0 with T (0) = 4⇡3

`2 . The rescaled skyrmion radius

is r0 =
`2

⇡2 and the corresponding limiting energy is E0

⇣
id, `2

⇡2 , 0
⌘
= �

4`2

⇡ .
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Application: strip
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skyrmion goes to the midline

m : R2
! S2 m = (m?,mk) m? 2 R2 mk 2 R

mk ! �1 as |r| ! 1 |m?|
2 = 1�m2

k

Q > 1 || <
p
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E(m) = Eex(m) + Ea(m) + EZ(m) + EDMI(m) + Es(m)

Eex(m) =

Z

R2

|rm|
2d2r, Ea(m) = Q

Z

R2

|m?|
2d2r, EZ(m) = �2h

Z

R2

(1 +mk)d
2r,

EDMI(m) = 

Z

R2

�
mkr ·m? �m? ·rmk

�
d2r,

1



Summary

• starting with thin film micromagnetics, obtained the minimal variational model 
describing a single skyrmion under confinement


• established existence of topologically non-trivial energy minimizing 
magnetization configurations


• characterized the behavior of degree 1 configurations in the conformal limit


• every degree 1 minimizer in the low DMI regime is close to a single Néel BP 
profile that is repelled from the sample boundary


• solved for the energy minimizers of the limit problem in several geometries


• note a close analogy with the theory of Ginzburg-Landau vortices  (but only 
one vortex/skyrmion up to now)


