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Based on work with A. Giuliani (on arXiv in a few days).
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Probability measure on ; = (SN"1)A:, A, = {0,1,---, L — 1}¢
the d-dimensional torus. Will suppose N > 2.

Parameters : inverse temperature 8 =1/ T > 0, magnetic field
h > 0.
Given by :
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vy the uniform measure on SV-1.
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Has O(N — 1) symmetry when h > 0, and O(N) symmetry when
h=0.

Phase transition (symmetry breaking/long range order/spontaneous
magnetization) in dimensions d > 3. But an O(N — 1) symmetry
survives.



Infinite volume measures

Denote
= | : = i
HB,h LLmOOML,B,ha ua hg})uﬁ,h

Limits have to be taken along suitable subsequences to have some
form of ergodicity.



The spin wave picture

The Boltzmann weight is proportional to
s 2
exp (5D 15— SP).
inj

Locally,

—
One has |S;—S;?> = |v|?+|w|? ~ |v|2+O(|v|*)
for small |v|. — locally a Gaussian in the tangent
space (of dimension N — 1).
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The spin wave picture

At small T one expects small gradients. — locally a Gaussian free
field with spin dimension N — 1.

Correlation functions (at least of gradient observable) should
behave at first order like a Gaussian Free Field with spin dimension
N — 1. Higher order are given by formal expansion in T.

One way to make sense of this : expand correlation functions in
Taylor series around T = 0, hope it is valid and check the value of
the coefficients.



Formal low temperature expansion : XY example

When N = 2, 15 is the image of the uniform measure on (—m, 7] by
Si(6) = (sin(0;), cos(#;)). In particular, S; - S; = cos(6; — 6;).
Expanding the cos yields
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where ¢ = \//36.



Formal low temperature expansion : XY example

Looking at the last line
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Formal low temperature expansion : XY example

Looking at the last line

_ 1)k
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in~j i~~j k>2 in~j

Constant - Gaussian 4+ Perturbation

Setting Wr =3~ (21)k Tk= 1ZINJ( — #;)?*, (and ignoring the
fact that ¢; € (—+/Bm, /B7]), one can perform the Gaussian integral
to obtain a (formal) power series in T.



Formal low temperature expansion : XY example

Looking at the last line

_1)k
BY 1= 33 0 6P+ g ((28! T (6= )

in~j i~~j in~j

Constant - Gaussian 4+ Perturbation

Problem : the series is not convergent as the Gaussian propagator
(covariances) decay too slowly :

Gy = |i —j*~7.
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Asymptotic expansions : existing results

Gawedzki and Kupiainen, 1980 : asymptotic expansion of free
energy/correlation in scalar T(V#)* model via block-spin
renormalization.

Bricmont, Fontaine, Lebowitz, Lieb, and Spencer 1981 :
asymptotic expansion of free energy/correlation in small T XY
model (spin O(2)) in d > 1 via Infrared bound.

Balaban, 199* : asymptotic expansion of free
energy/correlation in small T spin O(N) models in d > 3 via
multi-scale expansion (renormalization group style).

Garban and Sepulveda, 2021 : in d = 2 Villain model, bounds
on the (super-polynomial) correction to Gaussian behaviour.



Expansions via Infrared bounds : the

BFLLS procedure (d > 3)



Preparation 1 : Gaussian Integration by Parts

Let A be an n x n covariance matrix and E4 the associated
Gaussian expectation. Then, for any m > 0,

n
En(1F () ZAlkEA OF(p)) +m* > ATKEa(kF(9)),
k=1 k=1

where A™ = (A1 + m?)~L.



Preparation 2 : Infrared bound

Theorem (Frohlich, Simon, and Spencer, 1976)
For any h, 3 > 0, and any f with finite support,

Hg,h

Moreover,
1s.n(SY)? > 1 — NTGoo.

G the Green function of the Laplacian on Z¢.

(er(Sx_Mﬂ,h(SX))'f(x)) < e%(f,Gf)‘



Preparation 2 : Infrared bound

From this, one deduces :

Theorem
There exists C < oo independent of T < 1 such that

Mﬁ<eﬁ|55|) <C, Mﬁ(e\/ﬁ(l—sév)) <C.



Preparation 2 : Infrared bound

From this, one deduces :

Theorem
There exists C < oo independent of T < 1 such that

Mﬁ(e\/ﬁl%‘l) <C, s (e\/B(l—SéV)) <C.

Which, after some manipulations, gives (in the case of XY) that
¢ = /B0 has moments of all order bounded uniformly in T > 0.



The procedure

Suppose we want to compute fug( cos(6g — e, )) to order 2. One
first expands

(—1)X T 2k
p(cos(fo — be,)) = Z(2k)| 116 (B0 — ey ) ™)

k>0

=1- gﬂﬂ((ﬁbo — ¢e,)?) +

2

orhs((90 — 6)) + O(T?),

by the previous uniform bound on moments.



The procedure

Then, (formally and forgetting ¢ € (—/B7, /7))

e VT
o) = ‘2o i)

1)k _
(recall Wr =325 i TH71 25 (01 — 95)%%). So, using
(regularized) Gaussian Integration by Parts,

115((¢0 — dey)?) = Egm((0 — 9ey)?)
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+ rrl2 Z Egm ((Px(SOO - 8061)):“5(((1)0 - ¢61)¢X)

for any m > 0. Massive propagator gives convergence.
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eWT
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Then, (formally and forgetting ¢ € (—/B7, /7))

eWT
o) = ‘2o i)

1)k _
(recall Wr =325 i TH71 25 (01 — 95)%%). So, using
(regularized) Gaussian Integration by Parts,

115((¢0 — dey)?) = Egm((0 — 9ey)?)
+ > Ecn(9x(0 — ©er)) 115((d0 — ey )0 Wr)

+ m? Z Egm (0x(90 — per)) 115((¢0 — dey ) bx)

for any m > 0. Massive propagator gives convergence.



The procedure

Studying W,

_ (=D* - 2k+1
OWr =D oy T 2u(0x = b
k>1 ' 13

So,
Z Egm (ox(p0 = ¢er)) 115((d0 — ey )OxWT) =
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The procedure

Studying W,

_ (=D* - 2k+1
OWr =D oy T 2u(0x = b
k>1 ' 13

So,
Z Egm (ox(p0 = ¢er)) 115((d0 — ey )OxWT) =

_ZakT ZEGW SOX Yo— Qpel Z,Uﬁ ¢0 ¢e1))(¢x ¢x+§)2k+1)

k>1

= Z ak Tk Z Z EG’" SOXJre)(‘PO - 9%1))

k>1

X Hp ((¢O — ey )(x — ¢x+e)2k+1).
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Removing the mass

Question : How to chose m?
The main estimate is |G — Gj| < cm.
Other key estimates are
Z Ecm(popx) = m™=, Z |[Em((v0 — pe)ex)| < em™,

ZIEGm (90 — ve)(¥x — Pxter))| < c|log m].



Removing the mass

Using these give

((¢0 ¢e1 )2) = Egm (( 9091)2)
+> 3 T* Z Z Ecn (VepVito)us (Vi o(Vee)?T)

k>1
+m? Z Egm QOX(SOO - 90e1))ﬂﬁ((¢0 — Qe; )bx)

+ error(0).



Removing the mass

Using these give
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k>1
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+ error(m).



Removing the mass

Using these give
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Removing the mass

Using these give

Nﬁ((¢0 - ¢e1 )2) = EG((SOO — Pey )2)
) AT Y Eam(VEeVeie) s (Vi ¢(Vip) > )
k=1 X e

+ error(m + m*m~t 4 T log(m))).



Removing the mass

Using these give

15((d0 — de;)?) = Ec (w0 — pe1))
) AT D Ean(VieVete) us (Ve o(Vie)* )
k=1 X e

+ error(m + m*m~ + T" | log(m)]).

Choosing m = e~(°€5)* does the job!
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Limitations

Can handle only “gradient” correlations.
Need a “gradient” perturbation of Gaussian.

A fix : one can treat non-gradient correlations by using quantitative
bounds on the decay of correlations : e.g.

clog|x|

Blx|

using a bound deduced from Reflection-Positivity and the Infrared.

[na(cos(60))? — pa(cos(fo — 6x))| <




Expansions via Infrared bounds :
N > 2 case
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Preparation 3 : (u, #)-coordinates

Generalization of cylindrical coordinates :

(St SNy = (vt N2 1 — |ulsind, /1 — |uf? cos §),

ueRN=2 |yl <1, 0 € (—n,7]. S uniform on SN~1 equivalent to 6
uniform on (=, 7] and u uniform on {v € RN=2: |v| <1}
Rescale them as :

i=+/Bu, ¢=+/B0.

In these coordinates,

BY S-S =

in~j

= i G+ B/1 - T2\ /1 — Tii? cos(VTo; — VT;).

in~j



Preparation 4 : A priori decay of correlations

As in the XY case, by Infrared and Reflection Positivity,
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Preparation 4 : A priori decay of correlations

As in the XY case, by Infrared and Reflection Positivity,

clog|i Jl

log i — J|
, SN gy < CO8 1T JI

Sksk <
1a(5i57) < Bli —
1<k<N-1

Warning : not a decay for ¢!

Still, one can get

with error as small as we want as a function of T but independent
of |i — j|. The same type of bounds hold for general correlations.



New procedure : example
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Change of variable

Try to expand the magnetization 15(S{') to first order. First,

15(S0") = g (y/1 = Tliio|? cos(v/ T )

T T
=1 sl ~ 5 ua(d) + O(T?)

T(N—2)

=1 T2 (@)7) — Lus@) + 0(T).
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Change of variable

Moreover, using the remaining O(N — 1) symmetry,

ps((5)%) = ns((v/855)?)
= Bus((S )
= p5((1 = Tldo|*)(+/Bsinbo)?)
= ug(¢5) + O(T).

So,
T(N-1)

2

ps(S) =1- 1s(d5) + O(T?).



Integration by part formula

For F function of ¢, F function of i, and m > 0
p5(poFF) = Z G pp(9yFF) +m Z G (px FF)+

+ZZEGm gDoVyQO MB(FI[VX¢_pxPx+efSin(\FTvigb)])

where p, = /1 — |ux|?, and the constraint ¢ € (—+/Bm, /B7] has

been ignored.



Controlling the error terms

Back to the example, choosing m appropriately (i.e. : suitable
power of T)

ps(88) = Gg + m* > Gfipus(dxcbo)+

+D > Een(poViye) s (90[Vid — pxprrer/Bsin(vVTV50)))

Dealt with as before.
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Controlling the error terms

Back to the example, choosing m appropriately (i.e. : suitable
power of T)

ps(85) = Go + m* > G pus(dxcbo)+

X

+ )3 Eam(00Vee) 1s(0[Vid — pxpxie/Bsin(vVTVER)])

Combine decay of propagator with decay of correlations to control
truncation (as power series in T).
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General procedure

Write correlation in (d, ¢) variables and keep only relevant terms.
Integrate out the ¢ part using a well chosen regularization m.
Remove the regularization and control truncation of power series.

Use the leftover O(N — 1) symmetry to convert part of the s back

to ¢.

Iterate.



Ongoing

Put the paper with d > 3 on arXiv (soon).



Ongoing

Put the paper with d > 3 on arXiv (soon).

Treat gradient observables in d = 2 (a bit less soon).



Thank Youl



