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Randomness in ferromagnets on mesoscopic level

Thermal noise due to

positive temperature

statistical mechanics:

space-time white noise

Example: thermal switching

in small elements

Quenched noise due to

material inhomogeneities

reduced model:

spatial white noise

Example: magnetization ripple

in films (Harte ’68, Hoffmann ’68)

 singular Stochastic Partial Differential Equations
“singular” = noise too rough for naive treatment of nonlinearity



A model for the ripple in thin-film ferromagnets

Magnetization m is of unit length |m|2 = 1,

in-plane (m1,m2), constant in thickness direction m(x1, x2).

Short range attraction via penalization of ∇m ∈ L2,

long-range repulsion via penalization of ∇ ·m ∈ Ḣ−1
2.

Crystalline anisotropy: m couples to lattice,

m ≈ (1,0) effectively experiences random field (0, ξ);

geometric approximation m ≈ (1− 1
2u

2, u),

anisotropic rescaling of x1, x2:
ˆ

dx1dx2(∂1u)
2 + (|∂1|

−1
2(−∂1

1
2u

2 + ∂2u))
2−2ξu

Impose (artificial) periodicity R
2  [0,1)2



Model validated by experiment

small grains,

random easy axis

random external

transversal field

Experiments

u via gray scale

Simulation
of reduced model

Steiner, Schäfer, Wieczoreck, McCord, O., Phys. Rev. B ’12



Three issues with the model

As ξ → white noise (⇐⇒ grain size ≪ ripple scales),

Problem 1: minE → −∞.

Fix 1: Eren := E − E(v) where v solves linearized problem.

Problem 2: coercivity of Eren unclear.

Fix 2: super-quadratic coercivity from Burger’s nonlinearity.

Problem 3: term in Eren features a singular product.

Fix 3: stochastic construction à la rough paths.

Goal “universality”: Define random variational problem

that is the suitable limit under

any reasonable approximation of white noise.



Problem 1: minE ↓ −∞

Consider linearized problem

Elin(v) :=
´

[0,1)2 dx
(

(∂1v)
2 + (|∂1|

−1
2∂2v)

2−2ξv
)

.

Claim: As ξ → white noise, EminElin ↓ −∞.

In terms of Fourier series F and wave number k ∈ 2πZ2, k1 6= 0:

(k21 + |k1|
−1k22)Fv(k) = Fξ(k).

Energy of minimizer: −
∑

k

(k21 + |k1|
−1k22)

−1|Fξ(k)|2.

Its expected value E in case of white noise:

−
∑

k

(k21 + |k1|
−1k22)

−1 = −∞.



Fix 1: renormalize energy

Recall: As ξ → white noise, EminElin ↓ −∞.

Let v be the minimizer of Elin.

Consider renormalized Eren(w) := E(v + w)−E(v).

Eren is of multi-linear form:

B(w,w) + linear

+ C(w,w,w) + 3C(v, w,w) + 3C(v, v, w)

+ Q(v + w, v + w, v + w, v + w)−Q(v, v, v, v),

– coercivity unclear.

Problem 2: coercivity?



Fix 2: conservative term in Burgers is coercive

Have more specific structure:

E(u) = B(Tu+Γ(u, u), Tu+Γ(u, u)) + linear,

and super-quadratic coercivity:

B(Tw +Γ(w,w), Tw +Γ(w,w)) &
(

B(Tw, Tw)
)
3
2−.

Assumes form
´

(∂1u)
2 + (|∂1|

−1
2(∂2u−∂1

1
2u

2))2 &
(

´

(∂1u)
2 + (|∂1|

−1
2∂2u)

2
)
3
2−,

relies on if ∂2u−∂1
1
2u

2 = ρ then not only (à la Horwarth-Karman-Monin)
d

dx2

´

dx1
1
2(u(·+h)-u)2− d

dh

´

dx1
1
6(u(·+h)-u)3 =

´

dx1(u(·+h)-u)ρ

but also with coercive cubic term
d

dx2

´

dx1
1
2(u(·+h)-u)2+− d

dh

´

dx1
1
6(u(·+h)-u)3+ =

´

dx1(u(·+h)-u)+ρ

Goldman&Josien&O. ’15, Golse&Perthame ’11



Problem 3: (borderline) singular product

Eren(w) contains the term 4
´

w vR1∂2v,

where R1 = signk1 is Hilbert transform in x1.

Recall linear (elliptic) operator (−∂21) + |∂1|
−1(−∂22),

Carnot-Carathéodory distance |x1 − y1|+ |x2 − y2|
2
3

and effective dimension 1 + 3
2 = 5

2.

Hölder exp. of white noise ξ given by −1
2 × 5

2− = −5
4−,

Hölder exponent of v given by 2− 5
4− = 3

4−,

Hölder exponent of R1∂2v given by − 3
2 + 3

4− = −3
4−.

Product F = v R1∂2v is singular – no canonical meaning.

No problem in absence of R1: v∂2v = ∂2
1
2v

2



Fix 3: stochastic construction of singular product

Recall: Eren(w) contains
´

wF with singular product F = vR1∂2v.

Suppose law of ξ is invariant under shift & reflection,

and satisfies Spectral Gap (SG) inequality.

Then ∃! C
3
4− × C−3

4−-valued random variable (v, F)

with
(

(−∂21) + |∂1|
−1(−∂22)

)

v = ξ distributionally

and F = limǫ↓0 v R1∂2vǫ in C−3
4−, both almost surely.

For weakly convergent laws of ξ with uniform SG,

the law of (v, F ) converges weakly.

(v, F ) analogous to (Brownian motion, d
dt
iterated integral)

in Lyons’ rough paths, very simple version of Hairer’s model



Fix 3: Γ-topology

Extend definition of Eren(w) = E(v + w)− E(v)

by replacing
´

w vR1∂2v with
´

wF .

This leads to the map (v, F) 7→ {w 7→ Eren(w)}.

Then C
3
4− × C−3

4− ∋ (v, F) 7→ {w 7→ Eren(w)} is

continuous w. r. t. Γ-convergence, based on L2 ∋ w topology.

Moreover, for (v, F) ∈ C
3
4− × C−3

4−,

sub-level sets {Eren(w) ≤ M} ⊂ L2 are compact.

topology inspired by Dal Maso & Modica ’86
on stochastic homogenization of variational problems

analogies with Gubinelli & Barashkov ’22
variational approach to Euclidean QFT (Φ4

2)



Goal achieved: universality of the ripple

(v, F) 7→ {w 7→ Eren(w)} is continuous

w. r. t. Hölder and Γ topology. {Eren(w) ≤ M} compact.

(law of ξ) 7→ (law of (v, F)) is continuous

under weak convergence. Need uniform SG constant.

=⇒ (law of ξ) 7→ (law of Eren) is continuous

under weak convergence.

Any approximation of white noise with uniform SG

has same limit

as a variational problem that admits minimizers.

Next step: [0,1)2  R
2, gain scaling


