Universality in Condensed Matter and Statistical Mechanics

Universality of the magnetization ripple: A singular SPDE-perspective

Radu Ignat, Tobias Ried, Pavlos Tsatsoulis, in CPAM '22+

Max Planck Institute for Mathematics in the Sciences, Leipzig SBAI Department, Sapienza U. Rome

version February 7th 2023

Randomness in ferromagnets on mesoscopic level

Thermal noise due to Quenched noise due to

positive temperature material inhomogeneities

statistical mechanics: reduced model:

space-time white noise spatial white noise

Example: thermal switching Example: magnetization ripple

in small elements in films (Harte '68, Hoffmann '68)

A model for the ripple in thin-film ferromagnets

Magnetization m is of unit length $|m|^2 = 1$, in-plane (m_1, m_2) , constant in thickness direction $m(x_1, x_2)$.

Short range attraction via penalization of $\nabla m \in L^2$, long-range repulsion via penalization of $\nabla \cdot m \in \dot{H}^{-\frac{1}{2}}$.

Crystalline anisotropy: m couples to lattice, $m \approx (1,0)$ effectively experiences random field $(0,\xi)$; geometric approximation $m \approx (1-\frac{1}{2}u^2,u)$, anisotropic rescaling of x_1,x_2 :

$$\int dx_1 dx_2 (\partial_1 u)^2 + (|\partial_1|^{-\frac{1}{2}} (-\partial_1 \frac{1}{2} u^2 + \partial_2 u))^2 - 2\xi u$$
 Impose (artificial) periodicity $\mathbb{R}^2 \rightsquigarrow [0,1)^2$

Model validated by experiment

small grains, random easy axis

random external transversal field

Experiments

u via gray scale

Simulation

of reduced model

Steiner, Schäfer, Wieczoreck, McCord, O., Phys. Rev. B '12

Three issues with the model

As $\xi \to$ white noise (\iff grain size \ll ripple scales),

Problem 1: $\min E \to -\infty$.

Fix 1: $E_{ren} := E - E(v)$ where v solves linearized problem.

Problem 2: coercivity of E_{ren} unclear.

Fix 2: super-quadratic coercivity from Burger's nonlinearity.

Problem 3: term in E_{ren} features a singular product.

Fix 3: stochastic construction à la rough paths.

Goal "universality": Define random variational problem that is the suitable limit under any reasonable approximation of white noise.

Problem 1: $\min E \downarrow -\infty$

Consider linearized problem

$$E_{lin}(v) := \int_{[0,1)^2} dx \Big((\partial_1 v)^2 + (|\partial_1|^{-\frac{1}{2}} \partial_2 v)^2 - 2\xi v \Big).$$

Claim: As $\xi \to$ white noise, $\mathbb{E} \min E_{lin} \downarrow -\infty$.

In terms of Fourier series \mathcal{F} and wave number $k \in 2\pi \mathbb{Z}^2$, $k_1 \neq 0$:

$$(k_1^2 + |k_1|^{-1}k_2^2)\mathcal{F}v(k) = \mathcal{F}\xi(k).$$

Energy of minimizer:
$$-\sum_{k} (k_1^2 + |k_1|^{-1}k_2^2)^{-1} |\mathcal{F}\xi(k)|^2$$
.

Its expected value \mathbb{E} in case of white noise:

$$-\sum_{k} (k_1^2 + |k_1|^{-1}k_2^2)^{-1} = -\infty.$$

Fix 1: renormalize energy

Recall: As $\xi \to$ white noise, $\mathbb{E} \min E_{lin} \downarrow -\infty$.

Let v be the minimizer of E_{lin} .

Consider renormalized $E_{ren}(w) := E(v + w) - E(v)$.

 E_{ren} is of multi-linear form:

$$B(w, w)$$
 + linear
+ $C(w, w, w)$ + $3C(v, w, w)$ + $3C(v, v, w)$
+ $Q(v + w, v + w, v + w, v + w) - Q(v, v, v, v)$,

coercivity unclear.

Problem 2: coercivity?

Fix 2: conservative term in Burgers is coercive

Have more specific structure:

$$E(u) = B(Tu + \Gamma(u, u), Tu + \Gamma(u, u)) + \text{linear},$$

and super-quadratic coercivity:

$$B(Tw + \Gamma(w, w), Tw + \Gamma(w, w)) \gtrsim (B(Tw, Tw))^{\frac{3}{2}}$$
.

Assumes form

$$\int (\partial_1 u)^2 + (|\partial_1|^{-\frac{1}{2}} (\partial_2 u - \partial_1 \frac{1}{2} u^2))^2 \gtrsim \left(\int (\partial_1 u)^2 + (|\partial_1|^{-\frac{1}{2}} \partial_2 u)^2 \right)^{\frac{3}{2}},$$

relies on if $\partial_2 u - \partial_1 \frac{1}{2} u^2 = \rho$ then not only (à la Horwarth-Karman-Monin)

$$\frac{d}{dx_2} \int dx_1 \frac{1}{2} (u(\cdot + h) - u)^2 - \frac{d}{dh} \int dx_1 \frac{1}{6} (u(\cdot + h) - u)^3 = \int dx_1 (u(\cdot + h) - u) \rho$$

but also with coercive cubic term

$$\frac{d}{dx_2} \int dx_1 \frac{1}{2} (u(\cdot + h) - u)_+^2 - \frac{d}{dh} \int dx_1 \frac{1}{6} (u(\cdot + h) - u)_+^3 = \int dx_1 (u(\cdot + h) - u)_+ \rho$$

Goldman&Josien&O. '15, Golse&Perthame '11

Problem 3: (borderline) singular product

 $E_{ren}(w)$ contains the term $4 \int w \, v \, R_1 \partial_2 v$, where $R_1 = \text{sign} k_1$ is Hilbert transform in x_1 .

Recall linear (elliptic) operator $(-\partial_1^2) + |\partial_1|^{-1}(-\partial_2^2)$, Carnot-Carathéodory distance $|x_1 - y_1| + |x_2 - y_2|^{\frac{2}{3}}$ and effective dimension $1 + \frac{3}{2} = \frac{5}{2}.$

Hölder exp. of white noise ξ given by $-\frac{1}{2} \times \frac{5}{2} - = -\frac{5}{4} -$, Hölder exponent of v given by $2 - \frac{5}{4} - = \frac{3}{4} -$, Hölder exponent of $R_1 \partial_2 v$ given by $-\frac{3}{2} + \frac{3}{4} - = -\frac{3}{4} -$.

Product F=v $R_1\partial_2 v$ is singular – no canonical meaning. No problem in absence of R_1 : $v\partial_2 v=\partial_2\frac{1}{2}v^2$

Fix 3: stochastic construction of singular product

Recall: $E_{ren}(w)$ contains $\int w F$ with singular product $F = vR_1\partial_2 v$.

Suppose law of ξ is invariant under shift & reflection, and satisfies Spectral Gap (SG) inequality.

Then $\exists ! \ C^{\frac{3}{4}-} \times C^{-\frac{3}{4}-}$ -valued random variable (v,F) with $((-\partial_1^2) + |\partial_1|^{-1}(-\partial_2^2))v = \xi$ distributionally and $F = \lim_{\epsilon \downarrow 0} v \, R_1 \partial_2 v_\epsilon$ in $C^{-\frac{3}{4}-}$, both almost surely.

For weakly convergent laws of ξ with uniform SG, the law of (v, F) converges weakly.

(v, F) analogous to (Brownian motion, $\frac{d}{dt}$ iterated integral) in Lyons' rough paths, very simple version of Hairer's model

Fix 3: Γ-topology

Extend definition of $E_{ren}(w) = E(v+w) - E(v)$ by replacing $\int w \, v \, R_1 \partial_2 v$ with $\int w \, F$.

This leads to the map $(v, F) \mapsto \{w \mapsto E_{ren}(w)\}.$

Then $C^{\frac{3}{4}-} \times C^{-\frac{3}{4}-} \ni (v,F) \mapsto \{w \mapsto E_{ren}(w)\}$ is continuous w. r. t. Γ -convergence, based on $L^2 \ni w$ topology. Moreover, for $(v,F) \in C^{\frac{3}{4}-} \times C^{-\frac{3}{4}-}$.

sub-level sets $\{E_{ren}(w) \leq M\} \subset L^2$ are compact.

topology inspired by Dal Maso & Modica '86 on stochastic homogenization of variational problems

analogies with Gubinelli & Barashkov '22 variational approach to Euclidean QFT (Φ_2^4)

Goal achieved: universality of the ripple

 $(v,F)\mapsto \{w\mapsto E_{ren}(w)\}$ is continuous w. r. t. Hölder and Γ topology. $\{E_{ren}(w)\leq M\}$ compact.

(law of ξ) \mapsto (law of (v, F)) is continuous under weak convergence. Need uniform SG constant.

 \Longrightarrow (law of ξ) \mapsto (law of E_{ren}) is continuous under weak convergence.

Any approximation of white noise with uniform SG has same limit

as a variational problem that admits minimizers.

Next step: $[0,1)^2 \rightsquigarrow \mathbb{R}^2$, gain scaling