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Summary

e Introduction: universality of transport in condensed matter systems.
Integer quantum Hall effect, bulk-edge duality.

e Interacting quantum Hall systems on the cylinder.
Quantization of edge response function from a microscopic model.

e General approach: Wick rotation, RG analysis of correlations, resolution
of the scaling limit, Ward identities.

e Conclusions and open problems.
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Introduction

Integer quantum Hall effect

e Bulk topological order in condensed matter systems is deeply related to
the emergence of gapless edge modes.

e Example. Integer quantum Hall effect [von Klitzing et al. '80)

2d insulators exposed to transv. magnetic field and in-plane electric field.
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Introduction

Integer quantum Hall effect

e Bulk topological order in condensed matter systems is deeply related to
the emergence of gapless edge modes.

e Example. Integer quantum Hall effect [von Klitzing et al. '80)
2d insulators exposed to transv. magnetic field and in-plane electric field.

Linear response: J = oE + o(E) with ¢ = conductivity matrix:
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Introduction

Noninteracting systems

e Noninteracting fermions on a 2d lattice. Hamiltonian H on ¢2(Z?; CM),
H(x;y) short-ranged. Example:

©

B

A = lattice hopping; V = external potential; B = magnetic field.
Here H = —A 4 + V, with

Balaiy) = Alzig)e e 40 [ dt - A(£) = Flux(B)
d(plaquette)
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_ ntoduction
Noninteracting systems
e Noninteracting fermions on a 2d lattice. Hamiltonian H on ¢?(Z?; (CM),
H(x;y) short-ranged. Insulating systems: Fermi energy p ¢ o(H).

1 >
T >
g

1 (H)

e The state of co-many, noninteracting fermions at 7' = 0 is described by
the Fermi projector, P, = x(H < p):  (O), :=TryOP,. We have:

[Pz, y)] < Ceel>vl.
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Noninteracting systems
e Noninteracting fermions on a 2d lattice. Hamiltonian H on ¢?(Z?; (CM),
H(x;y) short-ranged. Insulating systems: Fermi energy p ¢ o(H).

H ;O'(H)

e The state of co-many, noninteracting fermions at 7' = 0 is described by
the Fermi projector, P, = x(H < p):  (O), :=TryOP,. We have:

|Pu(z,y)| < Cemelemvl,
e Assuming the validity of linear response, the transverse conductivity of
the system can be expressed via the Fermi projector. One has:
i

73 Trox (@ € [0, L)) Pul[1, P, [2, P

012 = lim
L—oo

o Remarkably, 15 € 5~7Z (Chern number/index thm) Rigorous results:

TKNN ’82; Bellissard et al. ’94; Avron, Seiler, Simon '94; Aizenman-Graf '98...
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Edge states

e Consider now a lattice model on the cylinder Ap:

Figure: Dotted lines: Dirichlet b.c.. Identify vertical sides.

H = restriction to the cylinder of a gapped Hamiltonian on Z2.

e Important: in general, H may not have a spectral gap uniformly in L.
A nonzero Hall conductivity is related to the emergence of gapless modes
on the boundary [Halperin ’82] (algebraic decay of correlations).

Marcello Porta S/ Edge Transport February 8, 2023 4 /19



Edge states

Figure: Blue/Red curves: edge modes. Gray: “bulk” spectrum.
e Red curve: eigenvalue branch, with generalized eigenstates:
po(k) = e*™1g,,(k),  with |&, (k)| < Ce ezl

Localized in proximity of the lower edge, extended along the edge.

~ metallic transport along the boundary.
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The bulk-edge duality

e Bulk-edge duality: relation between 015 and the edge states of H.

sgn(vy,)
o= 3 )
" 2

= sum of chiralities of edge modes (also equal to edge conductance).

Figure: (a) : 012 = 5, (b) 012 = — 5, (¢): 012 = 0.

e Argument for bulk-edge duality based on anomaly cancellation:
Wen 90, Frohlich et al. "91...

e Rigorous results for noninteracting systems:
Hatsugai '93; Schulz-Baldes, Kellendonk, Richter '00; Elbau-Graf '02;
Elgart, Graf, Schenker 05; Graf, P. ’13; Cornean, Moscolari, Teufel ’21...
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Many-body systems

e Quantization of transport and bulk-edge duality from interacting
many-body models?

IQHE for interacting systems:
e Hastings-Michalakis 2016: many-body topological approach.
o Giuliani-Mastropietro-P. 2017: analytic QFT method. Ward ids.

e Bachmann-Bols-de Roeck-Fraas 2018: many-body index theorem.
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Many-body systems

e Quantization of transport and bulk-edge duality from interacting
many-body models?

IQHE for interacting systems:
e Hastings-Michalakis 2016: many-body topological approach.
o Giuliani-Mastropietro-P. 2017: analytic QFT method. Ward ids.

e Bachmann-Bols-de Roeck-Fraas 2018: many-body index theorem.

e Our approach also applies to gapless systems, if combined with regularity
estimates on correlations (via RG).

For example: universality of transport in graphene.
e Stauber-Peres-Geim 2008: universality of o1; for nonint. graphene.
e GMP 2011: universality against short-range interactions.

o GMP 2021: extension to 3d. Chiral anomaly in Weyl semimetals.
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Many-body systems

e Quantization of transport and bulk-edge duality from interacting
many-body models?

IQHE for interacting systems:
e Hastings-Michalakis 2016: many-body topological approach.
o Giuliani-Mastropietro-P. 2017: analytic QFT method. Ward ids.

e Bachmann-Bols-de Roeck-Fraas 2018: many-body index theorem.

e Our approach also applies to gapless systems, if combined with regularity
estimates on correlations (via RG).

For example: universality of transport in graphene.
e Stauber-Peres-Geim 2008: universality of o1; for nonint. graphene.
e GMP 2011: universality against short-range interactions.

o GMP 2021: extension to 3d. Chiral anomaly in Weyl semimetals.

e Today. Interacting edge transport.
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Interacting edge transport

Edge transport in
many-body quantum systems
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Interacting edge transport

Many-body systems

e Interacting lattice many-body Fermi system on cylinder Ay, |Ar| = L%

e Fock space Hamiltonian: H = Hg + AV with (p = spin, sublattice...)

— + — _ + o+ — —
Ho = § : § :am,pHﬁP’ (@ y)ay V= Z§ :UPP’ (#, Y)ag oy pay 0z,

z,y p,p’ z,y p,p’
H(x;y), v(z;y) finite-ranged. Transl. inv.: [H,T1] = [v,T1] = 0.

e Hyp.: H has a bulk gap, and supports edge modes at the Fermi level.
Gibbs state: pg,r, = Zle=BM=uN) with p in a bulk spectral gap of H.

Lattice: Spectrum of H:

Marcello Porta (¢ Edge Transport February 8, 2023 8/19



Interacting edge transport

Simplest example: Haldane model

e Haldane ’88. Graphene-like model, zero-flux magnetic field.

e Free Hamiltonian: nn hopping + nnn hopping + staggered potential.

Ho=t: 3 1)l + Y ta(ey)ladyl + W[ la)al = 3 ) o]

(z,y) (=y)) €A yeB
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Interacting edge transport

Hall conductivity and edge modes

e For generic ¢, W the spectrum of Hj on the infinite lattice is gapped.
The Hall conductivity on the infinite lattice is:

v
Jg12 = — V:—l,o,l.
2m

Topological phase diagram: Edge modes:

—3v3t2

- —n/2 0 /2 x

e A phase transition takes place at discont. of v. The phase diag. is robust
against many-body interactions, up to a renormalization of the curves.
[Giuliani-Jauslin-Mastropietro-P. ’16, '19.]
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Interacting edge transport

Edge response function

e Consider a slowly varying perturbation: (0 < 7,0 <1, t <0)
H(nt) :== H + " p(0z) , w(z) bump at x =0

e Edge current operator in a strip of width ¢: (1l L)
JE = Z 1,21 ,09) (j1, = horiz. current density)
zo <l
(0, L) (L, L)
(0,0)

0,00 = (L,0)
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Interacting edge transport

Edge response function
e Consider a slowly varying perturbation: (0 < 7,0 <1, t <0)
H(nt) :== H + " p(0z) , p(x) bump at x =0
e Edge current operator in a strip of width ¢: (1l L)

JE = Z 1,21 ,09) (j1, = horiz. current density)
zo <l

o Let p(t) = time-evolved state, p(—o0) = pg,r. Linear resp.: (8, L — 00)

T d .
Te T50(0) = T Tipl—ox) = | G iln. 006" (0.09) + o
14 0 E 4
_ P . t ipy1
G lpp) = =i lim  fm [ die! < (0, B
Yyy25a
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Interacting edge transport

Edge response function
e Consider a slowly varying perturbation: (0 < 7,0 <1, t <0)
H(nt) :== H + " p(0z) , p(x) bump at x =0
e Edge current operator in a strip of width ¢: (1l L)

JE = Z 1,21 ,09) (j1, = horiz. current density)
zo <l

o Let p(t) = time-evolved state, p(—o0) = pg,r. Linear resp.: (8, L — 00)

T d .
Te T50(0) = T Tipl—ox) = | G iln. 006" (0.09) + o
14 0 E 4
_ P . t ipy1
G lpp) = =i lim  fm [ die! < (0, B
Yyy25a

Difficulties: control of real-time integral as n — 07, gapless modes.

Remark: Order of ,p — 07 limit matters. E.g.: G(n,0) = 0!

Marcello Porta s Edge Transport February 8, 2023 11 /19



Interacting edge transport

Multi-channel Luttinger liquid

o Effective 1 4 1 dimensional QFT for edge modes (scaling limit):

Z = /D¢e—5<¢)

Sw) = X [ ezt + o

+ Z /\w,w’Zwa’ / didgng,wny,w/v(i - ﬂ) .
o R2 xRR2 -

+

z,w

= Grassmann field, z = (zg,z1), w = chirality (edge modes).

e Z,, v, chosen to correctly match the scaling of edge correlations.

o Elastic scattering hyp.: if k% is the Fermi momentum of the w edge state,
(%) kRt — k32 = k32 — kR' only for edge modes equal in pairs.

Generic, in absence of special sym. (k' = k%' (), p = Fermi level).
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Interacting edge transport

Anomalous Ward identities

e The model is formally covariant under local chiral gauge transformations:

+ . eim‘“@d);w — Z(AL) = Z(A, + Dyay,)

W Jacobian 1 Formally!

with D, = 0p + iv,01. Ward identity: (ﬁg,w ;ﬁ,g,wr) =0. (7)
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Interacting edge transport

Anomalous Ward identities

e The model is formally covariant under local chiral gauge transformations:

;’w N eiiaw(@w;ﬁw — Z(Aw> - Z(Aw + Do)

Jacobian 1 =’ Formally!

with D, = 0y + iv,0:. Ward identity: <TALBM ;TALE,WQ =0. (7)

e The symmetry is broken by unavoidable regularizations, which produce
anomalies in the WIs as cutoffs are removed. Correct result:

11 ipytuenm

Z2, 4 |vgyr | —ipo + vwrpr

1 i1po + VuP1 1 1
=7 = 5 ’ 7)\ UJ/ .
(T(g))w,w/ ww' + —ipo + vup1 4m|v,| 2, T

e Similar relations can be found for other correlations, e.g. for the vertex
4 N e
function  (fip,w ;¥ o ’wEJrg,w’)'

(ﬁg,w ;ﬁfg,w» =T w (]2)
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Interacting edge transport

Anomalous Ward identities

e The model is formally covariant under local chiral gauge transformations:

+ N 6ﬂ%(§)¢iw S Z(Ay) = Z(Au + Dyau,)

L% Jacobian 1 = Formally!

with D, = 0y + iv,0:. Ward identity: <TALBM ;TALE,WQ =0. (7)

e The symmetry is broken by unavoidable regularizations, which produce
anomalies in the WIs as cutoffs are removed. Correct result:

11 ipytuenm

Z2, 4 |vgyr | —ipo + vwrpr

1 i1po + VuP1 1 1
=7 = 5 ’ 7)\ UJ/ .
(T(g))w,w/ ww' + —ipo + vup1 4m|v,| 2, T

e Similar relations can be found for other correlations, e.g. for the vertex
4 N e
function  (fip,w ;¥ o ’wEJrg,w’)'

(ﬁg,w ;ﬁfg,w» =T w (]2)

e Idea: use the exact relations to characterize scaling limit of lattice model.
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Interacting edge transport

Main result: interacting edge transport

o We consider H = Ho + AV, transl. inv. in the direction of the edge, with
Ho displaying arbitrarily many edge modes, under the assumption (x).

Theorem (V. Mastropietro, M. P. - Comm. Math. Phys. 2022)

For |\| small, the 8, L — oo edge conductance is, for p = (n,p) and |p| < 1:

G(p) = 3 o) =2 2% | )

= —in+vyp 27
where
ro(@ = (14 o A) )
- 4 |v| 1+ﬁw(B)A ww

b . = — 4K _ — 7B —in+vep1
with: v, =v,(A), v=diagv,), Aww =O0(N), w(p)= dzag( inﬂvaf )
In particular,

lim lim lim G*(p) = Z sgn(ve) .

£—00 p—0 n—0+ = 2T
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Interacting edge transport

Remarks

e Combined with the universality of the Hall conductivity [GMP17], the
result implies the stability of the bulk-edge duality against interactions.

e Previous work on interacting edge modes:
e Antinucci-Mastropietro-P. 2018: one edge mode. Chiral Luttinger
liquid universality class.

e Mastropietro-P. 2018: two counterpropagating edge modes, spin
transport. Helical Luttinger liquid universality class.

e Main technical tools:
e Rigorous RG analysis of the edge correlations, scaling limit.
[Gawedzki, Kupiainen, Feldman, Magnen, Rivasseau, Sénéor, Benfatto,

Gallavotti, Balaban, Knérrer, Trubowitz, Brydges, Slade...]

o Lattice Ward identities, implied by lattice conservation laws.
Put nontrivial constraints between scaling limit and lattice model.

o Anomalous Ward identities, for the effective QFT. Implications:
exact expressions for correlations, vanishing of the beta function.
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Sketch of the proof

Sketch of the proof
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Sketch of the proof

Euclidean response function

e The proof starts by a rigorous Wick rotation from real to imaginary
times of the transport coefficient.

We have:

B
G'(n,p) = lim dse " Z eV (ny(—is); j0>

B,L—oc0 0 yens
In contrast to real-time correlations, imaginary-time correlations can be
estimated efficiently via convergent expansions and multiscale analysis.
e G*(n,p) extends to a function on R x S!.
We are interested in the (7,p) — (07,0) limit. Recall:
G'(n,0)=0.
That is, the response to a constant perturbation is trivial. Other limit?

e We construct G*(n, p) via a rigorous RG analysis. The response function
is actually discontinuous at zero.
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Sketch of the proof

Singular and regular contributions

e A rigorous RG analysis gives the following splitting, setting p = (1, p):
G'(p) = (Zo, D™'(p)Z:) + RYp)
—_———— ——

scaling limit irrelevant terms
o (A B)= > AwBu (sum over edge modes at zo = 0)
o DI (p) = (fipw s p )™ (discontinuous at p = (0,0))

o Z, . are model dep. parameters (dressing of current and density)

o R(p) is continuous at p = 0.
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Sketch of the proof

Singular and regular contributions

e A rigorous RG analysis gives the following splitting, setting p = (1, p):
G'(p) = (Zo, D™'(p)Z:) + RYp)
—_———— ——

scaling limit irrelevant terms
o (A B)= > AwBu (sum over edge modes at zo = 0)
o DI (p) = (fipw s p )™ (discontinuous at p = (0,0))

o Z, . are model dep. parameters (dressing of current and density)

RY(p) is continuous at p = 0.

e From G'(1,0) = 0 and continuity of R*(p), we determine R‘(0). We get:

lim lim lim G*(p) = (Zo, AZ1)

{—00 p—0n—0+

with:

A:=lim lim Drel( ) — lim lim D“ﬂ( ).
p—0n—0t = n—0+ p—0 -
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Sketch of the proof

Vertex Ward Identities [Neglecting xo labels]

e Conservation of lattice current: dyny(t) + divyj. () = 0. Implication:

Z p“<Tj”vB ?%5@@ = <T &E_&g> o <T &g+gdg+g> :
pn=0,1
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Sketch of the proof

Vertex Ward Identities [Neglecting xo labels]

e Conservation of lattice current: dyny(t) + divyj. () = 0. Implication:

Z p,u<Tju,£ ;dﬁ_d;_-ﬂ) (T &I;&-]:> —(T CE@&EJFQ .
pn=0,1

e A similar (anomalous) WI holds for the effective QFT:

) . Lo (p)
<n£,w ;w&w/ ;qugq_gwf) = 7

m(@/}k w’ +,w'> - (7;/;&_+£,w/1/;§+£,w,)) .

e For p small and for K =k— k% small, comparison via RG:

<T.7up ,ak ak+p ZZu w’(np W’ 71/)kw 711Z)]g+p) ), (Ta Qg ak> (d}k Uﬂ/)k )
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Sketch of the proof

Vertex Ward Identities [Neglecting xo labels]

e Conservation of lattice current: dyny(t) + divyj. () = 0. Implication:

Z p,u<Tju,£ ;dﬁ_d;_-ﬂ) (T &I;&-]:> —(T CE@&EJFQ .
pn=0,1

e A similar (anomalous) WI holds for the effective QFT:

) . Lo (p)
<n£,w ;w&w/ ;qugq_gwf) = 7

m(@/}k w’ +,w'> - (7;/;&_+£,w/1/;§+£,w,)) .

e For p small and for K =k— k% small, comparison via RG:
<T.7up ,ak ak+p ZZu w’(np W’ 71/)kw 711Z)]g+p) ), (Ta Qg ak> (d}k Uﬂ/)k )

Two egs. for QFT correlations! Impose constraints on ren. parameters:

lim lim 77 (p)Zy = Z lim lim 77 (p)Z) = vZ .
A
Plugging in G = (Zo, AZ1), universality (remarkably) follows. u
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Conclusions

Conclusions and open problems

e Fdge response function for interacting quantum Hall systems.
The method allows to prove the emergence of the multi-channel Luttinger
model as effective QFT, and to prove quantization of transport.

e Validity of linear response from quantum dynamics?
For gapped systems, Wick rotation and cluster expansion techniques can
be used to prove convergence of real-time expansions.
[Greenblatt, Lange, Marcelli, P. 2022]
Extension to gapless models?

e Two-terminal conductance? Backscattering should destroy universality,
and disorder should restore it. [Kane-Fisher-Polchinski].

e Fractional quantization...?
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Conclusions

Conclusions and open problems

e Fdge response function for interacting quantum Hall systems.
The method allows to prove the emergence of the multi-channel Luttinger
model as effective QFT, and to prove quantization of transport.

e Validity of linear response from quantum dynamics?
For gapped systems, Wick rotation and cluster expansion techniques can
be used to prove convergence of real-time expansions.
[Greenblatt, Lange, Marcelli, P. 2022]
Extension to gapless models?

e Two-terminal conductance? Backscattering should destroy universality,
and disorder should restore it. [Kane-Fisher-Polchinski].

e Fractional quantization...?

e Thank you!
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Conclusions

Wick rotation
e Let us consider, for n > 0:

0
/ dt et ([A(t), B))s.p

— 00

A and B are extensive, finite-ranged observables: O =3} -, Ox

e Approximate n by 73 € %’TN, s.t. |n—mgl < %” Thus,

0

0
‘ /_ dt et ([A(t), B))p.L — / dt e ([A(t), Bl)s,r

— 00

g/ dt|e" — e [[|[A(t), Bl

— 00
C 0
< —/ dte"L**T =0 as 8 — oo.
B J s

The last inequality follows from the Lieb-Robinson bound:

||[Ax(t),By]|| < CABevt—cdist(X,Y)
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Conclusions

Wick rotation

e We analytically continue to imaginary times. We have, by KMS:

— 00

e Errors (dotted red) estimated via bounds on Euclidean correlations:

/ dte™s ([A(t) , B))

=T

—00

B ,
z/ dt e "8 (A(—it)B) g1,
0

z

C

(A(T —it)B)s.1| < <A(_¢t)A(_¢t)*>};{§<B*B> S
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Conclusions

Grassmann QFT

e Grassmann representation of the Euclidean QFT:
Zpp =Ey(e"Y)

where:
o 9 =T is a complex Grassmann field, for x = (zg,x) € [0, 8) x Af
o [, is a Gaussian integration, with propagator:

1

m(%y) = g9(x,y) .

1 )
By(wy) =5 >, et

k0€%§(2+%)

o V(1) is a quartic interaction:

Vi = [ deodi 3 ety o e ).

z,yE€AL
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Conclusions

Reduction to an effective 1d model

e Integration of bulk degrees of freedom. Write g = g1 + g2, and
correspondingly 1 = 1 + 1s. go : energies away from p.
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Conclusions

Reduction to an effective 1d model

e Integration of bulk degrees of freedom. Write g = g1 + g2, and
correspondingly ¥ = 1)1 + 1o go : energies away from p.

e 1)y is integrated out via convergent exp.:  [Brydges-Battle-Federbush]
E, (ev(d’)) =E,E,, (eV(d}lJrl/’z)) =E,, (eVeff(dh)) )

The field ¥ can be parametrized in terms of a truly 1 + 1 dim. field:

V1k(22) Z§k1 T2)Pu ks

where i (z2) is the eigenstate of the w-edge mode and:

E?(@:@@;@&) = 6w,w/gw (E)

) X(lew (k1) —pf < )
gw(k) - —iko + €w(kl)

Massless propagator: close to k%, ey, (k1) — p =~ vw(kl — k).
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Conclusions

Multiscale integration

e We end up with a (complicated, but explicit) 1d effective theory:
(V%) = [ vldg)e
where v = [[ v, and v, has propagator g (k).

e The massless 1d field is decomposed in scales:

1 x(k— k3| ~ 2"
(h) (M) () ~
Z P 9" (k) Zo i —iko + Vo (k1 — K2

h=hg
and integrated iteratively: (Gallavotti-Nicolo tree expansion)
V() 4. 1o®)\ VO (Zrp <
E@(h5)+...+gp(0) (e ( ) - ZhE¢(hB)+.,.+@(h) € ( " )

where (V(h), Zy,vp) solve a discrete recursion equation. In particular:

vih) (f) - Z )‘w,w’,h/d‘ro Zg wSz. wfg—c’_w gm W’
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Conclusions

RG flow

physical Bhysical manifold
= Psicat
;a ftical e : Y, HO=Heh

{
[ R
| R

first
| renormalized
‘manifold

R

e The marginal direction associated to Zj, ., vp,., and to the effective
couplings Ap, ., . is controlled thanks to a key aspect of integrability:

Ah,w,w/ = >\h+1,w,w/ + ﬂl)L\+1,w,w’ 5l>z\+1,w,w' = O()‘%H-lQGh)
(asymptotic) vanishing of the beta function.
Proof based on a generalization of the method of [Benfatto-Mastropietro]

e Flow of the running coupling constants, as h — —oc:

Ah,w,w’ = Cw,w’/\ =+ O(/\Q) ) Zn, hw ™ 27 o\ , Vh,w — Vw = O(/\2) :
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