Edge Transport in Interacting Quantum Hall Systems

Marcello Porta

Joint work with G. Antinucci, V. Mastropietro

Summary

- Introduction: universality of transport in condensed matter systems. Integer quantum Hall effect, bulk-edge duality.
- Interacting quantum Hall systems on the cylinder.

 Quantization of edge response function from a microscopic model.
- General approach: Wick rotation, RG analysis of correlations, resolution of the scaling limit, Ward identities.
- Conclusions and open problems.

Introduction

Integer quantum Hall effect

- Bulk topological order in condensed matter systems is deeply related to the emergence of gapless edge modes.
- Example. Integer quantum Hall effect [von Klitzing et al. '80] 2d insulators exposed to transv. magnetic field and in-plane electric field.

Integer quantum Hall effect

- Bulk topological order in condensed matter systems is deeply related to the emergence of gapless edge modes.
- Example. Integer quantum Hall effect [von Klitzing et al. '80] 2d insulators exposed to transv. magnetic field and in-plane electric field. Linear response: $J = \sigma E + o(E)$ with $\sigma =$ conductivity matrix:

$$\sigma = \begin{pmatrix} 0 & \frac{n}{2\pi} \\ -\frac{n}{2\pi} & 0 \end{pmatrix} , \qquad \mathbf{n} \in \mathbb{Z}.$$

Noninteracting systems

• Noninteracting fermions on a 2d lattice. Hamiltonian H on $\ell^2(\mathbb{Z}^2; \mathbb{C}^M)$, H(x;y) short-ranged. Example:

 $\Delta = \text{lattice hopping}; \quad V = \text{external potential}; \quad B = \text{magnetic field}.$

Here $H = -\Delta_A + V$, with

$$\Delta_A(x;y) = \Delta(x;y) e^{i\int_{x\to y} d\ell \cdot A(\ell)} \;, \qquad \int_{\partial (\text{plaquette})} d\ell \cdot A(\ell) = \text{Flux}(B)$$

Noninteracting systems

• Noninteracting fermions on a 2d lattice. Hamiltonian H on $\ell^2(\mathbb{Z}^2; \mathbb{C}^M)$, H(x;y) short-ranged. Insulating systems: Fermi energy $\mu \notin \sigma(H)$.

• The state of ∞ -many, noninteracting fermions at T=0 is described by the Fermi projector, $P_{\mu}=\chi(H\leq\mu)$: $\langle O\rangle_{\mu}:=\mathrm{Tr}_{\mathfrak{h}}OP_{\mu}$. We have:

$$|P_{\mu}(x,y)| \le Ce^{-c|x-y|} .$$

Noninteracting systems

• Noninteracting fermions on a 2d lattice. Hamiltonian H on $\ell^2(\mathbb{Z}^2; \mathbb{C}^M)$, H(x;y) short-ranged. Insulating systems: Fermi energy $\mu \notin \sigma(H)$.

• The state of ∞ -many, noninteracting fermions at T=0 is described by the Fermi projector, $P_{\mu} = \chi(H \leq \mu)$: $\langle O \rangle_{\mu} := \text{Tr}_{\mathfrak{h}} O P_{\mu}$. We have:

$$|P_{\mu}(x,y)| \le Ce^{-c|x-y|} .$$

• Assuming the validity of linear response, the transverse conductivity of the system can be expressed via the Fermi projector. One has:

$$\sigma_{12} = \lim_{L \to \infty} \frac{i}{L^2} \text{Tr}_{\mathfrak{h}} \chi (x \in [0, L]^2) P_{\mu} [[\hat{x}_1, P_{\mu}], [\hat{x}_2, P_{\mu}]]$$

• Remarkably, $\sigma_{12} \in \frac{1}{2\pi}\mathbb{Z}$ (Chern number/index thm) Rigorous results:

TKNN '82; Bellissard et al. '94; Avron, Seiler, Simon '94; Aizenman-Graf '98...

Edge states

• Consider now a lattice model on the cylinder Λ_L :

Figure: Dotted lines: Dirichlet b.c.. Identify vertical sides.

 $H = \text{restriction to the cylinder of a gapped Hamiltonian on } \mathbb{Z}^2.$

• Important: in general, H may not have a spectral gap uniformly in L. A nonzero Hall conductivity is related to the emergence of gapless modes on the boundary [Halperin '82] (algebraic decay of correlations).

Edge states

• The gap might be closed by edge modes:

$$(H=\bigoplus_{k\in S^1} \hat{H}(k))$$

Figure: Blue/Red curves: edge modes. Gray: "bulk" spectrum.

• Red curve: eigenvalue branch, with generalized eigenstates:

$$\varphi_x(k) = e^{ikx_1} \xi_{x_2}(k)$$
, with $|\xi_{x_2}(k)| \le Ce^{-c|x_2|}$.

Localized in proximity of the lower edge, extended along the edge.

→ metallic transport along the boundary.

The bulk-edge duality

• Bulk-edge duality: relation between σ_{12} and the edge states of H.

$$\sigma_{12} = \sum_{\omega} \frac{\operatorname{sgn}(v_{\omega})}{2\pi}$$

= sum of chiralities of edge modes

(also equal to edge conductance).

Figure: (a):
$$\sigma_{12} = \frac{1}{2\pi}$$
, (b): $\sigma_{12} = -\frac{1}{2\pi}$, (c): $\sigma_{12} = 0$.

$$b): \sigma_{12} = -\frac{1}{2\pi},$$

$$(c): \sigma_{12}=0.$$

- Argument for bulk-edge duality based on anomaly cancellation: Wen 90, Fröhlich et al. '91...
- Rigorous results for noninteracting systems:

Hatsugai '93; Schulz-Baldes, Kellendonk, Richter '00; Elbau-Graf '02; Elgart, Graf, Schenker '05; Graf, P. '13; Cornean, Moscolari, Teufel '21...

• Quantization of transport and bulk-edge duality from interacting many-body models?

IQHE for interacting systems:

- Hastings-Michalakis 2016: many-body topological approach.
- Giuliani-Mastropietro-P. 2017: analytic QFT method. Ward ids.
- Bachmann-Bols-de Roeck-Fraas 2018: many-body index theorem.

• Quantization of transport and bulk-edge duality from interacting many-body models?

IQHE for interacting systems:

- Hastings-Michalakis 2016: many-body topological approach.
- Giuliani-Mastropietro-P. 2017: analytic QFT method. Ward ids.
- Bachmann-Bols-de Roeck-Fraas 2018: many-body index theorem.
- Our approach also applies to gapless systems, if combined with regularity estimates on correlations (via RG).

For example: universality of transport in graphene.

- Stauber-Peres-Geim 2008: universality of σ_{11} for nonint. graphene.
- GMP 2011: universality against short-range interactions.
- GMP 2021: extension to 3d. Chiral anomaly in Weyl semimetals.

• Quantization of transport and bulk-edge duality from interacting many-body models?

IQHE for interacting systems:

- Hastings-Michalakis 2016: many-body topological approach.
- Giuliani-Mastropietro-P. 2017: analytic QFT method. Ward ids.
- Bachmann-Bols-de Roeck-Fraas 2018: many-body index theorem.
- Our approach also applies to gapless systems, if combined with regularity estimates on correlations (via RG).

For example: universality of transport in graphene.

- Stauber-Peres-Geim 2008: universality of σ_{11} for nonint. graphene.
- GMP 2011: universality against short-range interactions.
- GMP 2021: extension to 3d. Chiral anomaly in Weyl semimetals.
- Today. Interacting edge transport.

Edge transport in many-body quantum systems

- Interacting lattice many-body Fermi system on cylinder Λ_L , $|\Lambda_L| = L^2$.
- Fock space Hamiltonian: $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$ with $(\rho = \text{spin, sublattice...})$

$$\mathcal{H}_{0} = \sum_{x,y} \sum_{\rho,\rho'} a_{x,\rho}^{+} H_{\rho\rho'}(x,y) a_{y,\rho'}^{-} , \quad \mathcal{V} = \sum_{x,y} \sum_{\rho,\rho'} v_{\rho\rho'}(x,y) a_{x,\rho}^{+} a_{y,\rho'}^{+} a_{y,\rho'}^{-} a_{x,\rho}^{-}$$

$$H(x;y), \ v(x;y) \ \text{finite-ranged.} \qquad \text{Transl. inv.: } [H,T_{1}] = [v,T_{1}] = 0.$$

• Hyp.: H has a bulk gap, and supports edge modes at the Fermi level. Gibbs state: $\rho_{\beta,L} = \mathcal{Z}^{-1} e^{-\beta(\mathcal{H} - \mu \mathcal{N})}$, with μ in a bulk spectral gap of H.

Lattice:

Spectrum of H:

Simplest example: Haldane model

• Haldane '88. Graphene-like model, zero-flux magnetic field.

• Free Hamiltonian: nn hopping + nnn hopping + staggered potential.

$$H_0 = t_1 \sum_{\langle x,y \rangle} |x\rangle \langle y| + \sum_{\langle \langle x,y \rangle \rangle} t_2(x,y) |x\rangle \langle y| + W \Big[\sum_{x \in A} |x\rangle \langle x| - \sum_{y \in {\color{blue} B}} |y\rangle \langle y| \Big]$$

Hall conductivity and edge modes

• For generic ϕ , W the spectrum of H_0 on the infinite lattice is gapped. The Hall conductivity on the infinite lattice is:

$$\sigma_{12} = \frac{\nu}{2\pi} \; , \qquad \nu = -1, 0, 1 \; .$$

Topological phase diagram:

Edge modes:

• A phase transition takes place at discont. of ν . The phase diag. is robust against many-body interactions, up to a renormalization of the curves. [Giuliani-Jauslin-Mastropietro-P. '16, '19.]

Edge response function

• Consider a slowly varying perturbation: $(0 < \eta, \theta \ll 1, t \leq 0)$

$$H(\eta t) := H + e^{\eta t} \mu(\theta x)$$
, $\mu(x)$ bump at $x = 0$

• Edge current operator in a strip of width ℓ : $(1 \ll \ell \ll L)$

$$\mathcal{J}_{x_1}^{\ell} = \sum_{x_2 \le \ell} j_{1,(x_1,x_2)} \qquad (j_{1,x} = \text{horiz. current density})$$

Edge response function

• Consider a slowly varying perturbation: $(0 < \eta, \theta \ll 1, t \leq 0)$

$$H(\eta t) := H + e^{\eta t} \mu(\theta x)$$
, $\mu(x)$ bump at $x = 0$

• Edge current operator in a strip of width ℓ : $(1 \ll \ell \ll L)$

$$\mathcal{J}_{x_1}^{\ell} = \sum_{x_2 \le \ell} j_{1,(x_1,x_2)} \qquad (j_{1,x} = \text{horiz. current density})$$

• Let $\rho(t) = \text{time-evolved state}, \ \rho(-\infty) = \rho_{\beta,L}$. Linear resp.: $(\beta, L \to \infty)$

$$\operatorname{Tr} \mathcal{J}_0^{\ell} \rho(0) - \operatorname{Tr} \mathcal{J}_0^{\ell} \rho(-\infty) = \int_{-\pi}^{\pi} \frac{dp}{(2\pi)} \, \hat{\mu}(p,0) G^{\ell}(\eta,\theta p) + \text{h.o.t.}$$

$$G^{\ell}(\eta, p) = -i \lim_{a \to \infty} \lim_{\beta, L \to \infty} \int_{-\infty}^{0} dt \, e^{\eta t} \sum_{y: y_2 \le a} e^{ipy_1} \langle [n_y(t), \mathcal{J}_0^{\ell}] \rangle_{\beta, L}$$

Edge response function

• Consider a slowly varying perturbation: $(0 < \eta, \theta \ll 1, t \leq 0)$

$$H(\eta t) := H + e^{\eta t} \mu(\theta x)$$
, $\mu(x)$ bump at $x = 0$

• Edge current operator in a strip of width ℓ : $(1 \ll \ell \ll L)$

$$\mathcal{J}_{x_1}^{\ell} = \sum_{x_2 \le \ell} j_{1,(x_1,x_2)} \qquad (j_{1,x} = \text{horiz. current density})$$

• Let $\rho(t)=$ time-evolved state, $\rho(-\infty)=\rho_{\beta,L}.$ Linear resp.: $(\beta,L\to\infty)$

$$\operatorname{Tr} \mathcal{J}_0^{\ell} \rho(0) - \operatorname{Tr} \mathcal{J}_0^{\ell} \rho(-\infty) = \int_{-\pi}^{\pi} \frac{dp}{(2\pi)} \,\hat{\mu}(p,0) G^{\ell}(\eta,\theta p) + \text{h.o.t.}$$

$$G^{\ell}(\eta, p) = -i \lim_{a \to \infty} \lim_{\beta, L \to \infty} \int_{-\infty}^{0} dt \, e^{\eta t} \sum_{y: y_2 \le a} e^{ipy_1} \langle [n_y(t), \mathcal{J}_0^{\ell}] \rangle_{\beta, L}$$

Difficulties: control of real-time integral as $\eta \to 0^+$, gapless modes.

Remark: Order of $\eta, p \to 0^+$ limit matters. E.g.: $G^{\ell}(\eta, 0) = 0!$

Multi-channel Luttinger liquid

• Effective 1 + 1 dimensional QFT for edge modes (scaling limit):

$$Z = \int D\psi e^{-S(\psi)}$$

$$S(\psi) = \sum_{\omega} \int_{\mathbb{R}^2} d\underline{x} Z_{\omega} \psi_{\underline{x},\omega}^+(\partial_0 + iv_{\omega}\partial_1) \psi_{\underline{x},\omega}^-$$

$$+ \sum_{\omega,\omega'} \lambda_{\omega,\omega'} Z_{\omega} Z_{\omega'} \int_{\mathbb{R}^2 \times \mathbb{R}^2} d\underline{x} d\underline{y} \, n_{\underline{x},\omega} n_{\underline{y},\omega'} v(\underline{x} - \underline{y}) .$$

 $\psi_{\underline{x},\omega}^{\pm} =$ Grassmann field, $\underline{x} = (x_0, x_1), \quad \omega =$ chirality (edge modes).

- Z_{ω} , v_{ω} chosen to correctly match the scaling of edge correlations.
- Elastic scattering hyp.: if k_F^{ω} is the Fermi momentum of the ω edge state,
 - (*) $k_F^{\omega_1} k_F^{\omega_2} = k_F^{\omega_3} k_F^{\omega_4}$ only for edge modes equal in pairs.

Generic, in absence of special sym. $(k_F^{\omega_1} \equiv k_F^{\omega_1}(\mu), \ \mu = \text{Fermi level}).$

Anomalous Ward identities

• The model is <u>formally</u> covariant under local chiral gauge transformations:

$$\psi_{\underline{x},\omega}^{\pm} \xrightarrow{\text{Jacobian 1}} e^{\pm i\alpha_{\omega}(\underline{x})} \psi_{\underline{x},\omega}^{\pm} \quad \Longrightarrow_{\text{Formally!}} \quad \mathcal{Z}(A_{\omega}) = \mathcal{Z}(A_{\omega} + D_{\omega}\alpha_{\omega})$$

with
$$D_{\omega} = \partial_0 + i v_{\omega} \partial_1$$
. Ward identity: $\langle \hat{n}_{p,\omega} ; \hat{n}_{-p,\omega'} \rangle = 0$. (?)

Anomalous Ward identities

• The model is formally covariant under local chiral gauge transformations:

$$\psi^{\pm}_{\underline{x},\omega} \underset{\text{Jacobian 1}}{\longrightarrow} e^{\pm i\alpha_{\omega}(\underline{x})} \psi^{\pm}_{\underline{x},\omega} \quad \underset{\text{Formally!}}{\Longrightarrow} \quad \mathcal{Z}(A_{\omega}) = \mathcal{Z}(A_{\omega} + D_{\omega}\alpha_{\omega})$$

with
$$D_{\omega} = \partial_0 + i v_{\omega} \partial_1$$
. Ward identity: $\langle \hat{n}_{\underline{p},\omega} ; \hat{n}_{-\underline{p},\omega'} \rangle = 0$. (?)

• The symmetry is broken by unavoidable regularizations, which produce anomalies in the WIs as cutoffs are removed. Correct result:

$$\begin{split} \left\langle \hat{n}_{\underline{p},\omega} ; \hat{n}_{-\underline{p},\omega'} \right\rangle &= T_{\omega,\omega'}(\underline{p}) \frac{1}{Z_{\omega'}^2} \frac{1}{4\pi |v_{\omega'}|} \frac{ip_0 + v_{\omega'}p_1}{-ip_0 + v_{\omega'}p_1} \\ &\left(\frac{1}{T(p)} \right)_{\omega,\omega'} = \delta_{\omega,\omega'} + \frac{ip_0 + v_{\omega}p_1}{-ip_0 + v_{\omega}p_1} \frac{1}{4\pi |v_{\omega}|} \frac{1}{Z_{\omega}} \lambda_{\omega,\omega'} Z_{\omega'} \;. \end{split}$$

• Similar relations can be found for other correlations, e.g. for the vertex function $\langle \hat{n}_{p,\omega} ; \hat{\psi}_{k,\omega'}^- ; \hat{\psi}_{k+p,\omega'}^+ \rangle$.

Anomalous Ward identities

• The model is <u>formally</u> covariant under local chiral gauge transformations:

$$\psi^{\pm}_{\underline{x},\omega} \underset{\text{Jacobian 1}}{\longrightarrow} e^{\pm i\alpha_{\omega}(\underline{x})} \psi^{\pm}_{\underline{x},\omega} \quad \underset{\text{Formally!}}{\Longrightarrow} \quad \mathcal{Z}(A_{\omega}) = \mathcal{Z}(A_{\omega} + D_{\omega}\alpha_{\omega})$$

with
$$D_{\omega} = \partial_0 + i v_{\omega} \partial_1$$
. Ward identity: $\langle \hat{n}_{\underline{p},\omega} ; \hat{n}_{-\underline{p},\omega'} \rangle = 0$. (?)

• The symmetry is broken by unavoidable regularizations, which produce anomalies in the WIs as cutoffs are removed. Correct result:

$$\begin{split} \left\langle \hat{n}_{\underline{p},\omega} ; \hat{n}_{-\underline{p},\omega'} \right\rangle &= T_{\omega,\omega'}(\underline{p}) \frac{1}{Z_{\omega'}^2} \frac{1}{4\pi |v_{\omega'}|} \frac{ip_0 + v_{\omega'}p_1}{-ip_0 + v_{\omega'}p_1} \\ &\left(\frac{1}{T(p)} \right)_{\omega,\omega'} = \delta_{\omega,\omega'} + \frac{ip_0 + v_{\omega}p_1}{-ip_0 + v_{\omega}p_1} \frac{1}{4\pi |v_{\omega}|} \frac{1}{Z_{\omega}} \lambda_{\omega,\omega'} Z_{\omega'} \;. \end{split}$$

- Similar relations can be found for other correlations, e.g. for the vertex function $\langle \hat{n}_{\underline{p},\omega} ; \hat{\psi}_{k,\omega'}^- ; \hat{\psi}_{k+p,\omega'}^+ \rangle$.
- Idea: use the exact relations to characterize scaling limit of lattice model.

Main result: interacting edge transport

• We consider $\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{V}$, transl. inv. in the direction of the edge, with \mathcal{H}_0 displaying arbitrarily many edge modes, under the assumption (*).

Theorem (V. Mastropietro, M. P. - Comm. Math. Phys. 2022)

For $|\lambda|$ small, the $\beta, L \to \infty$ edge conductance is, for $p = (\eta, p)$ and $|p| \ll 1$:

$$G^{\ell}(\underline{p}) = \sum_{\omega} r_{\omega}(\underline{p}) \frac{v_{\omega}p}{-i\eta + v_{\omega}p} \frac{sgn(v_{\omega})}{2\pi} + o(1)$$

where

$$r_{\omega}(\underline{p}) = \left(\left(1 + \frac{1}{4\pi |v|} \Lambda \right) \frac{1}{1 + \frac{1}{4\pi |v|} \omega(p) \Lambda} \right)_{\omega\omega}$$

with: $v_{\omega} \equiv v_{\omega}(\lambda)$, $v = diag(v_{\omega})$, $\Lambda_{\omega\omega'} = O(\lambda)$, $\omega(\underline{p}) = diag(\frac{-i\eta + v_{\omega}p_1}{i\eta + v_{\omega}p_1})$. In particular.

$$\lim_{\ell \to \infty} \lim_{p \to 0} \lim_{\eta \to 0^+} G^{\ell}(\underline{p}) = \sum_{\omega} \frac{sgn(v_{\omega})}{2\pi} .$$

Remarks

- Combined with the universality of the Hall conductivity [GMP17], the result implies the stability of the bulk-edge duality against interactions.
- Previous work on interacting edge modes:
 - Antinucci-Mastropietro-P. 2018: one edge mode. Chiral Luttinger liquid universality class.
 - Mastropietro-P. 2018: two counterpropagating edge modes, spin transport. Helical Luttinger liquid universality class.
- Main technical tools:
 - Rigorous RG analysis of the edge correlations, scaling limit.
 [Gawedzki, Kupiainen, Feldman, Magnen, Rivasseau, Sénéor, Benfatto, Gallavotti, Balaban, Knörrer, Trubowitz, Brydges, Slade...]
 - Lattice Ward identities, implied by lattice conservation laws. Put nontrivial constraints between scaling limit and lattice model.
 - Anomalous Ward identities, for the effective QFT. Implications: exact expressions for correlations, vanishing of the beta function.

Sketch of the proof

Euclidean response function

• The proof starts by a rigorous Wick rotation from real to imaginary times of the transport coefficient.

We have:

$$G^{\ell}(\eta, p) = \lim_{\beta, L \to \infty} \int_0^{\beta} ds \, e^{-i\eta s} \sum_{y \in \Lambda_L} e^{ipy_1} \langle n_y(-is) \, ; \mathcal{J}_0^{\ell} \rangle_{\beta, L}$$

In contrast to real-time correlations, imaginary-time correlations can be estimated efficiently via convergent expansions and multiscale analysis.

• $G^{\ell}(\eta, p)$ extends to a function on $\mathbb{R} \times \mathbb{S}^1$. We are interested in the $(\eta, p) \to (0^+, 0)$ limit. Recall:

$$G^{\ell}(\eta,0) = 0 .$$

That is, the response to a constant perturbation is trivial. Other limit?

• We construct $G^{\ell}(\eta, p)$ via a rigorous RG analysis. The response function is actually discontinuous at zero.

Singular and regular contributions

• A rigorous RG analysis gives the following splitting, setting $p = (\eta, p)$:

$$G^{\ell}(\underline{p}) = \underbrace{\left(\vec{Z}_0, D^{\text{rel}}(\underline{p})\vec{Z}_1\right)}_{\text{scaling limit}} + \underbrace{R^{\ell}(\underline{p})}_{\text{irrelevant terms}}$$

• $(\vec{A}, \vec{B}) = \sum_{\omega} A_{\omega} B_{\omega}$

- (sum over edge modes at $x_2 = 0$)
- $\bullet \ D^{\mathrm{rel}}_{\omega,\omega'}(\underline{p}) = \langle \hat{n}_{\underline{p},\omega} \ ; \hat{n}_{-\underline{p},\omega'} \rangle^{\mathrm{rel}}$
- (discontinuous at $\underline{p} = (0,0)$)
- $Z_{\mu,\omega}$ are model dep. parameters (dressing of current and density)
- $R^{\ell}(\underline{p})$ is continuous at $\underline{p} = \underline{0}$.

Singular and regular contributions

• A rigorous RG analysis gives the following splitting, setting $p = (\eta, p)$:

$$G^{\ell}(\underline{p}) = \underbrace{\left(\vec{Z}_0, D^{\text{rel}}(\underline{p})\vec{Z}_1\right)}_{\text{scaling limit}} + \underbrace{R^{\ell}(\underline{p})}_{\text{irrelevant terms}}$$

- $(\vec{A}, \vec{B}) = \sum_{\omega} A_{\omega} B_{\omega}$ (sum over edge modes at $x_2 = 0$)
- $\bullet \ \ D^{\mathrm{rel}}_{\omega,\omega'}(\underline{p}) = \langle \hat{n}_{p,\omega} \ ; \hat{n}_{-p,\omega'} \rangle^{\mathrm{rel}} \qquad \quad (\text{discontinuous at } \underline{p} = (0,0))$
- $Z_{\mu,\omega}$ are model dep. parameters (dressing of current and density)
- $R^{\ell}(\underline{p})$ is continuous at $\underline{p} = \underline{0}$.
- From $G^{\ell}(\eta,0) = 0$ and continuity of $R^{\ell}(\underline{p})$, we determine $R^{\ell}(\underline{0})$. We get:

$$\lim_{\ell \to \infty} \lim_{p \to 0} \lim_{\eta \to 0^+} G^{\ell}(\underline{p}) = (\vec{Z}_0, \mathcal{A}\vec{Z}_1)$$

with:

$$\mathcal{A} := \lim_{p \to 0} \lim_{p \to 0^+} D^{\mathrm{rel}}(\underline{p}) - \lim_{p \to 0^+} \lim_{p \to 0} D^{\mathrm{rel}}(\underline{p}) \ .$$

Vertex Ward Identities [Neglecting x_2 labels]

• Conservation of lattice current: $\partial_t n_x(t) + \text{div}_x j_x(t) = 0$. Implication:

$$\sum_{\mu=0,1} p_{\mu} \langle \mathbf{T} \, \hat{j}_{\mu,\underline{p}} \, ; \hat{a}_{\underline{k}}^{-} \hat{a}_{\underline{k}+\underline{p}}^{+} \rangle = \langle \mathbf{T} \, \hat{a}_{\underline{k}}^{-} \hat{a}_{\underline{k}}^{+} \rangle - \langle \mathbf{T} \, \hat{a}_{\underline{k}+\underline{p}}^{-} \hat{a}_{\underline{k}+\underline{p}}^{+} \rangle .$$

Vertex Ward Identities [Neglecting x_2 labels]

• Conservation of lattice current: $\partial_t n_x(t) + \text{div}_x j_x(t) = 0$. Implication:

$$\sum_{\mu=0,1} p_{\mu} \langle \mathbf{T} \, \hat{j}_{\mu,\underline{p}} \, ; \hat{a}_{\underline{k}}^{-} \hat{a}_{\underline{k}+\underline{p}}^{+} \rangle = \langle \mathbf{T} \, \hat{a}_{\underline{k}}^{-} \hat{a}_{\underline{k}}^{+} \rangle - \langle \mathbf{T} \, \hat{a}_{\underline{k}+\underline{p}}^{-} \hat{a}_{\underline{k}+\underline{p}}^{+} \rangle .$$

• A similar (anomalous) WI holds for the effective QFT:

$$\langle \hat{n}_{\underline{p},\omega} ; \hat{\psi}_{\underline{k},\omega'}^- ; \hat{\psi}_{\underline{k}+\underline{p},\omega'}^+ \rangle = \frac{T_{\omega,\omega'}(\underline{p})}{Z_{\omega'}(-i\eta + v_{\omega'}p)} \left(\langle \hat{\psi}_{\underline{k},\omega'}^- \hat{\psi}_{\underline{k},\omega'}^+ \rangle - \langle \hat{\psi}_{\underline{k}+\underline{p},\omega'}^- \hat{\psi}_{\underline{k}+\underline{p},\omega'}^+ \rangle \right).$$

• For p small and for $\underline{k}' = \underline{k} - \underline{k}_F^{\omega}$ small, comparison via RG:

$$\langle \mathbf{T}\, \hat{j}_{\mu,\underline{p}}\, ; \hat{a}_{\underline{k}}^{-} \hat{a}_{\underline{k}+\underline{p}}^{+} \rangle \simeq \sum_{\omega'} Z_{\mu,\omega'} \langle \hat{n}_{\underline{p},\omega'}\, ; \hat{\psi}_{\underline{k},\omega}^{-}\, ; \hat{\psi}_{\underline{k}+\underline{p},\omega}^{+} \rangle \;, \quad \langle \mathbf{T}\, \hat{a}_{\underline{k}}^{-} \hat{a}_{\underline{k}}^{+} \rangle \simeq \langle \hat{\psi}_{\underline{k},\omega}^{-} \hat{\psi}_{\underline{k},\omega}^{+} \rangle$$

Vertex Ward Identities [Neglecting x_2 labels]

• Conservation of lattice current: $\partial_t n_x(t) + \text{div}_x j_x(t) = 0$. Implication:

$$\sum_{\mu=0,1} p_{\mu} \langle \mathbf{T} \, \hat{j}_{\mu,\underline{p}} \, ; \hat{a}_{\underline{k}}^{-} \hat{a}_{\underline{k}+\underline{p}}^{+} \rangle = \langle \mathbf{T} \, \hat{a}_{\underline{k}}^{-} \hat{a}_{\underline{k}}^{+} \rangle - \langle \mathbf{T} \, \hat{a}_{\underline{k}+\underline{p}}^{-} \hat{a}_{\underline{k}+\underline{p}}^{+} \rangle \; .$$

• A similar (anomalous) WI holds for the effective QFT:

$$\langle \hat{n}_{\underline{p},\omega} ; \hat{\psi}_{\underline{k},\omega'}^- ; \hat{\psi}_{\underline{k}+\underline{p},\omega'}^+ \rangle = \frac{T_{\omega,\omega'}(\underline{p})}{Z_{\omega'}(-i\eta + v_{\omega'}p)} \left(\langle \hat{\psi}_{\underline{k},\omega'}^- \hat{\psi}_{\underline{k},\omega'}^+ \rangle - \langle \hat{\psi}_{\underline{k}+\underline{p},\omega'}^- \hat{\psi}_{\underline{k}+\underline{p},\omega'}^+ \rangle \right).$$

• For \underline{p} small and for $\underline{k}' = \underline{k} - \underline{k}_F^{\omega}$ small, comparison via RG:

$$\langle \mathbf{T} \, \hat{j}_{\mu,\underline{p}} \; ; \hat{a}_{\underline{k}}^- \hat{a}_{\underline{k}+\underline{p}}^+ \rangle \simeq \sum_{\omega'} Z_{\mu,\omega'} \langle \hat{n}_{\underline{p},\omega'} \; ; \hat{\psi}_{\underline{k},\omega}^- \; ; \hat{\psi}_{\underline{k}+\underline{p},\omega}^+ \rangle \; , \quad \langle \mathbf{T} \, \hat{a}_{\underline{k}}^- \hat{a}_{\underline{k}}^+ \rangle \simeq \langle \hat{\psi}_{\underline{k},\omega}^- \hat{\psi}_{\underline{k},\omega}^+ \rangle$$

Two eqs. for QFT correlations! Impose constraints on ren. parameters:

$$\lim_{p \to 0} \lim_{p \to 0^+} T^T(\underline{p}) \vec{Z}_0 = \vec{Z} , \qquad \lim_{p \to 0^+} \lim_{p \to 0} T^T(\underline{p}) \vec{Z}_1 = v \vec{Z} .$$

Plugging in $G = (\vec{Z}_0, A\vec{Z}_1)$, universality (remarkably) follows.

Conclusions and open problems

- Edge response function for interacting quantum Hall systems.

 The method allows to prove the emergence of the multi-channel Luttinger model as effective QFT, and to prove quantization of transport.
- Validity of linear response from quantum dynamics?
 For gapped systems, Wick rotation and cluster expansion techniques can be used to prove convergence of real-time expansions.
 [Greenblatt, Lange, Marcelli, P. 2022]
 Extension to gapless models?
- Two-terminal conductance? Backscattering should destroy universality, and disorder should restore it. [Kane-Fisher-Polchinski].
- Fractional quantization...?

Conclusions and open problems

- Edge response function for interacting quantum Hall systems. The method allows to prove the emergence of the multi-channel Luttinger model as effective QFT, and to prove quantization of transport.
- Validity of linear response from quantum dynamics? For gapped systems, Wick rotation and cluster expansion techniques can be used to prove convergence of real-time expansions. [Greenblatt, Lange, Marcelli, P. 2022] Extension to gapless models?

- Two-terminal conductance? Backscattering should destroy universality, and disorder should restore it. [Kane-Fisher-Polchinski].
- Fractional quantization...?
- Thank you!

Conclusions

Wick rotation

• Let us consider, for $\eta > 0$:

$$\int_{-\infty}^{0} dt \, e^{t\eta} \, \langle [A(t), B] \rangle_{\beta, L}$$

A and B are extensive, finite-ranged observables: $O = \sum_{X \subset \Lambda_L} O_X$.

• Approximate η by $\eta_{\beta} \in \frac{2\pi}{\beta} \mathbb{N}$, s.t. $|\eta - \eta_{\beta}| \leq \frac{2\pi}{\beta}$. Thus,

$$\left| \int_{-\infty}^{0} dt \, e^{t\eta} \, \langle [A(t), B] \rangle_{\beta, L} - \int_{-\infty}^{0} dt \, e^{t\eta_{\beta}} \, \langle [A(t), B] \rangle_{\beta, L} \right|$$

$$\leq \int_{-\infty}^{0} dt \, |e^{t\eta} - e^{t\eta_{\beta}}| \| [A(t), B] \|$$

$$\leq \frac{C}{\beta} \int_{-\infty}^{0} dt \, e^{t\eta} L^{2} t^{2+1} \to 0 \quad \text{as } \beta \to \infty.$$

The last inequality follows from the Lieb-Robinson bound:

$$||[A_X(t), B_Y]|| < C_{AB}e^{vt - c\operatorname{dist}(X,Y)}$$

Wick rotation

• We analytically continue to imaginary times. We have, by KMS:

$$\int_{-\infty}^{0} dt \, e^{t\eta_{\beta}} \, \langle [A(t), B] \rangle = \int_{-\infty}^{0} dt \, \left(e^{t\eta_{\beta}} \, \langle A(t)B \rangle - e^{(t-i\beta)\eta_{\beta}} \langle A(t-i\beta)B \rangle \right)$$

$$= i \int_{0}^{\beta} dt \, e^{-it\eta_{\beta}} \langle A(-it)B \rangle_{\beta,L}$$

$$-T$$

$$-i\beta$$

• Errors (dotted red) estimated via bounds on Euclidean correlations:

$$|\langle A(T-it)B\rangle_{\beta,L}| \le \langle A(-it)A(-it)^*\rangle_{\beta,L}^{1/2}\langle B^*B\rangle_{\beta,L}^{1/2}$$

Grassmann QFT

• Grassmann representation of the Euclidean QFT:

$$\mathcal{Z}_{\beta,L} = \mathbb{E}_g(e^{V(\psi)})$$

where:

- $\psi \equiv \psi_{\mathbf{x}}^{\pm}$ is a complex Grassmann field, for $\mathbf{x} = (x_0, x) \in [0, \beta) \times \Lambda_L$
- \mathbb{E}_q is a Gaussian integration, with propagator:

$$\mathbb{E}_g(\psi_{\mathbf{x}}^+\psi_{\mathbf{y}}^-) = \frac{1}{\beta} \sum_{k_0 \in \frac{2\pi}{\beta}(\mathbb{Z} + \frac{1}{2})} e^{ik_0(x_0 - y_0)} \frac{1}{-ik_0 + H - \mu}(x, y) =: g(\mathbf{x}, \mathbf{y}) .$$

• $V(\psi)$ is a quartic interaction:

$$V(\psi) = \lambda \int_{[0,\beta)^2} dx_0 dy_0 \sum_{x,y \in \Lambda_L} \psi_{\mathbf{x}}^+ \psi_{\mathbf{x}}^- \psi_{\mathbf{y}}^+ \psi_{\mathbf{y}}^- \delta(x_0 - y_0) v(x - y) .$$

Reduction to an effective 1d model

• Integration of bulk degrees of freedom. Write $g = g_1 + g_2$, and correspondingly $\psi = \psi_1 + \psi_2$. g_2 : energies away from μ .

Reduction to an effective 1d model

- Integration of bulk degrees of freedom. Write $g = g_1 + g_2$, and correspondingly $\psi = \psi_1 + \psi_2$. g_2 : energies away from μ .
- ψ_2 is integrated out via convergent exp.: [Brydges-Battle-Federbush]

$$\mathbb{E}_g \big(e^{V(\psi)} \big) = \mathbb{E}_{g_1} \mathbb{E}_{g_2} \big(e^{V(\psi_1 + \psi_2)} \big) = \mathbb{E}_{g_1} \big(e^{V_{\text{eff}}(\psi_1)} \big) \;.$$

The field ψ_1 can be parametrized in terms of a truly 1+1 dim. field:

$$\psi_{1,\underline{k}}(x_2) = \sum_{\omega} \xi_{k_1}^{\omega}(x_2) \varphi_{\omega,\underline{k}},$$

where $\xi_{k_1}^{\omega}(x_2)$ is the eigenstate of the ω -edge mode and:

$$\mathbb{E}_{\varphi}(\varphi_{\omega,\underline{k}}^{+}\varphi_{\omega',\underline{k}}^{-}) = \delta_{\omega,\omega'}\hat{g}_{\omega}(\underline{k})$$
$$\hat{g}_{\omega}(\underline{k}) = \frac{\chi(|\varepsilon_{\omega}(k_{1}) - \mu| \leq \delta)}{-ik_{0} + \varepsilon_{\omega}(k_{1}) - \mu}$$

Massless propagator: close to k_F^{ω} , $\varepsilon_{\omega}(k_1) - \mu \simeq v_{\omega}(k_1 - k_F^{\omega})$.

Multiscale integration

• We end up with a (complicated, but explicit) 1d effective theory:

$$\mathbb{E}_g(e^{V(\psi)}) = \int \nu(d\varphi)e^{V(\varphi)}$$

where $\nu = \prod_{\omega} \nu_{\omega}$ and ν_{ω} has propagator $g_{\omega}(\underline{k})$.

• The massless 1d field is decomposed in scales:

$$\varphi_{\omega} = \sum_{h=h_{\beta}}^{0} \varphi_{\omega}^{(h)} \qquad \qquad g_{\omega}^{(h)}(\underline{k}) \simeq \frac{1}{Z_{\omega,h}} \frac{\chi(\|\underline{k} - \underline{k}_{F}^{\omega}\| \sim 2^{h})}{-ik_{0} + v_{\omega,h}(k_{1} - k_{F}^{\omega})}$$

and integrated iteratively:

(Gallavotti-Nicolò tree expansion)

$$\mathbb{E}_{\varphi^{(h_{\beta})}+\ldots+\varphi^{(0)}}\left(e^{\mathcal{V}\left(\varphi^{(h_{\beta})}+\ldots+\varphi^{(0)}\right)}\right)=\mathcal{Z}_{h}\mathbb{E}_{\varphi^{(h_{\beta})}+\ldots+\varphi^{(h)}}\left(e^{\mathcal{V}^{(h)}\left(\sqrt{Z_{h}}\varphi^{(\leq h)}\right)}\right)$$

where $(\mathcal{V}^{(h)}, Z_h, v_h)$ solve a discrete recursion equation. In particular:

$$\mathcal{V}_{4}^{(h)}(\xi) = \sum_{\omega,\omega'} \lambda_{\omega,\omega',h} \int dx_0 \sum_{x_1} \xi_{\underline{x},\omega}^+ \xi_{\underline{x},\omega}^- \xi_{\underline{x},\omega'}^+ \xi_{\underline{x},\omega'}^-$$

RG flow

• The marginal direction associated to $Z_{h,\omega}$, $v_{h,\omega}$ and to the effective couplings $\lambda_{h,\omega,\omega'}$ is controlled thanks to a key aspect of integrability:

$$\lambda_{h,\omega,\omega'} = \lambda_{h+1,\omega,\omega'} + \beta_{h+1,\omega,\omega'}^{\lambda} \qquad \beta_{h+1,\omega,\omega'}^{\lambda} = O(\lambda_{h+1}^2 2^{\theta h})$$

(asymptotic) vanishing of the beta function.

Proof based on a generalization of the method of [Benfatto-Mastropietro]

• Flow of the running coupling constants, as $h \to -\infty$:

$$\lambda_{h,\omega,\omega'} = C_{\omega,\omega'}\lambda + O(\lambda^2) , \qquad Z_{h,\omega} \sim 2^{-h\eta_{\omega}\lambda^2} , \qquad v_{h,\omega} - v_{\omega} = O(\lambda^2) .$$