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Introduction

Models from Materials Sciences typically involve several scales
Many phenomena and many models
Phenomena are universal



Dislocations
Dislocations are

point-like defects if d = 2,
loop-like defects if d = 3

Dislocations are characterized by the Burgers vector, the defect of
closed paths.
Dislocations are topological defects, they cannot be created or
destroyed by moving a finite number of particles within an infinite
configuration.



Importance of dislocations

Dislocations are the microscopic explanation of plastic behaviour (not
relevant for this talk)

Grain boundaries in polycrystals can be interpreted as dislocations (relevant
for this talk).



Motivation for the Ariza-Oritz model

Natural representation of dislocations, grains and temperature
Mathematical structure simple enough to allow rigorous analysis
Could lead to quantitative explanation of scars (below).

Fig. 6.1 (Bordachev-Hardin-Saff, p 296) Scar configuration



The Ariza-Ortiz model

Reference configuration: Triangular (d = 2) or fcc (d = 3) lattice

L = {n1b1 + . . . + ndbd : n ∈ Zd}

where bi are the basis vectors.
Nearest neighbors: x ∼ y if x , y ∈ L and |x − y | = 1,

Displacement: u(x) ∈ Rd , x ∈ L,

Slip: σ(x , y), x ∼ y ,

Energy:

HAO(u, σ) = 1
2

∑
x∼y

[(u(y) − u(x) − σ(x , y)) · (y − x)]2.

Invariance wrt linearized rotation: HAO(u + φ, σ) = HAO(u, σ) if
φ(x) = Sx and S ∈ Rd×d

skew, ie. S∗ = −S.



Point particle configurations

C = {x + u(x) : x ∈ L}

Example: Dislocation dipole

Left: Unrelaxed dislocation dipole. Right: Relaxed dipole.
σ(x , x ′) = (1, 0) if (x , x ′) is a non-horizontal nearest neighbor pair between
the dislocations and 0 else,



Random dislocation configurations

Recall gauge invariance

HAO(u + v , σ + dv) = HAO(u, σ) for all v : L → L.

Slips σ and σ′ are gauge equivalent if σ − σ′ = dv for some v .
S are representatives of non-equivalent slip fields.
Boltzmann-Gibbs distribution

Pβ(u, σ) = 1
Z (β) exp(−β (HAO(u, σ) + w(dσ)))

Partition sum

Z (β) =
∑
σ∈S

exp(−β w(dσ))
∫

exp(−β HAO(u, σ)) du.

Exterior derivative

dσ(x , y , z) = σ(x , y) + σ(y , z) + σ(z , x).



Long-range order and orientational order

Mermin-Wagner Theorem: Long-range order in 3 dimensions, orientational
order in two dimensions.

Orientational order is weaker than LRO.
Long-range order means that positions are ordered. Observables that
can measure LRO:

cβ(v0; x , y) = Eβ(cos([u(y) − u(x)] · v0)).

Orienational order means that angles are ordered. Observables that
can measure OO:

cβ(v0, h; x , y) = Eβ(cos([u(x + h) − u(x) − u(y + h) + u(y)] · v0)).



Existence of order at low temperatures

Theorem
There are positive constants C , β0 such that

cβ(x , y ; v0) ≥ e−C/β
(
1 + O

( log |x−y |
|x−y |

))
, |x − y | ≫ 1

if v0 ∈ L∗ and β > β0.

The corresponding result in two dimensions is much harder and only
conjectured.



Previous work

Fröhlich and Spencer (CMP 1982) obtained similar results for the
rotator models in three dimensions.
In the two dimensional case (Fröhlich-Spencer 1981) only orientational
order is present. It is the first rigorous mathematical treatment of the
Kosterlitz-Thouless transition (Nobel prize 2016).

The key difference between earlier results by Fröhlich and Spencer and the
current results is the invariance with respect to linearized rotations.



Decompose energy into elastic and dislocation energy

Recall
HAO(u, σ) = 1

2⟨du − σ, B(du − σ)⟩.

Let q ∈ Ω∗
2 be the Burgers field such that dq = 0 and

σq = argmin{H(0, σ) : dσ = q}, uq = argminuH(u, σq),

then
HAO(u, σ) = HAO(u − uq, 0) + HAO(0, σq).

Hence Pβ is a product distribution:

Pβ(u, σ) = exp(−β H(u − uq, 0))
Zel(β) × exp(−β (H(0, σq) + w(dσ)))

Zdisl(β) .



Elastic fluctuations (spin waves)

Recall
c = Eβ(exp(i⟨u, g⟩))

for some g ∈ Ω0.
Choose d∗h = g , then

Eβ(exp(i⟨u, g⟩)) = Eβ(exp(i⟨u, d∗h⟩)) = Eβ(exp(i⟨du, h⟩))
= Eβ(exp(i⟨u − uq, g⟩)) × Eβ(exp(−i⟨σq, h⟩)

Fourier coefficient of a continuous and a discrete Gaussian measure.
Recall:∫

exp(−⟨x , Ax⟩) cos(⟨k, x⟩) dx =
(

π

|A|

) 1
2

exp(−π2⟨k, A−1k⟩).

In our setting: A−1 is the Green’s function. In three dimensions
A−1(x , y) = O(|x − y |−1).



Dislocation fluctuations (vortex waves)

Cut a a long story short

The field σq satisfies

d∗Bσq = 0,

dσq = q

Continuum analogue:

∇ · (σ + σT ) = 0,

curl σ = q

Hodge decomposition: σ = du + d∗V , (σ = ∇u + curl V ).
V = d∆−1q
HAO(0, σq) = 1

2⟨Gq, BGq⟩ with G = (1 − dA−1d∗B)d∗∆−1.

Need that
A−1d∗B2dA−1(x , x ′) = o(1), |x − x ′| ≫ 1,

this holds if A−1 = O(|x |−1)



Cluster expansion

We are interested in Zβ(h)
Zβ(0) with

Zβ(h) =
∑

d2q=0
exp(i⟨σq, h⟩) exp(−β(w(q) + HAO(0, σq))) =

∑
d2q=0

K (q, h).

The dislocation configuration q can be decomposed into disjoint loops:

K (q, h) =
n∏

j=1
K (qj , h).

Thus
Zβ(h) = 1 +

∞∑
n=1

1
n!

∑
q1,...,qn

n∏
j=1

K (qj , h).

Now estimate the individual terms!



Low energy structures: Grains (Ariza-Ortiz perspective)

Definition
(u, σ) supports a ‘perfect grain’ G ⊂ L with orientation S ∈ R3×3

skew

u(x) − u(y) − σ(x , y) =
{

S(x − y) if {x , y} ⊂ G,

0 if {x , y} ⊂ Gc ,

σ(x , y) = 0 if x ∼ y and {x , y} ⊂ Gc .

Energy cost of a grain is not automatically proportional to volume of grain
thanks to the invariance under linearized rotations.
Theorem (Upper bound)

min {H(u, σ) : (u, σ) support perfect grain G with orientation S} = O(|∂G|).

The minimum energy is bounded by the size of the grain boundary.



Visualization

Left: Displacement u with S = 1
5

(
0
1

−1
0

)
.

Right: Relaxed displacement field uσ which minimizes HAO(·, σ) subject to
Neumann boundary conditions.

Colored triangles indicate the support of dσ.



The Read-Shockley law

The energy density (per unit length/aera) γ of a low-angle boundaries
depends on the degree of misorientation θ between the neighbouring grains.
Read-Shockley law

γRS(θ) = (c0 − c1 log θ) θ,

where c0 is proportional to the core-energy of a single dislocation and
c1 ∼ (1 − ν)G (ν is the Poisson ratio, G is the shear modulus).

Note: γRS(·) is strictly concave on [0,1].

Significance: Dislocation structures exhibit concentrations

2γRS(θ/2) − γRS(θ) = log 2 c1 θ > 0



Low angle grain boundaries

Grain boundaries can be seen as walls of edge dislocations with the same
Burgers vector.



Dislocation dipoles

qn
dip = (1f0 − 1fn) b1 (1)

with b1 = (1
0), b3 = −1

2( 1√
3) and fn = (0, b1, −b3) + nb1.

0 1 2 · · · n

1 2 · · · n

Shaded triangles, corresponding to faces f0 and fn, indicate the support of
qn

dip. In red: the support of a slip field σn
dip such that dσn

dip = qn
dip.

Exterior calculus notation:

du(x , y) = u(x) − u(y),
dσ(x , y , z) = σ(x , y) + σ(y , z) + σ(z , x).



Dislocation wall

qM,n,m
grain (f ) =

M∑
j=1

qn
dip(f − jm(b2 − b3)).

Number of dislocation pairs: M
Distance between dislocation cores with same (different) signs: m (n).



The Read-Shockley law IV

Theorem

Edip(n) = min
{

HAO(u, σ) : dσ = qn
dip

}
= log n

2π
√

3
+ O(1), n ≫ 1,

Egrain(n, m) = lim
M→∞

1√
3mM

min
{

HAO(u, σ) : dσ = qM,n,m
grain

}
= log m

6πm + O(1/m), m ≫ 1.

Energy of dipole grows logarithmically with distance. Energy of wall is
proportional to length of wall and independent of distance.

Read-Shockley law: γ(θ) = (c0 − c1 log θ)θ + o(θ), 0 < θ = 1
m ≪ 1,

γs is the grain boundary energy density θ is the orientation difference.



Capacitor law
Compare with version of energy not invariant under linearized rotations.

E [q] = 1
2 min

(u,σ)

{
|du − σ|2 : dσ = q

}
= 1

2 min
v

{
|v |2 : dv = q

}
,

Theorem

E [qn
dip] =

√
3

2π
log n + O(1), n ≫ 1,

lim
M→∞

1
M E [qM,n,m

grain ] = n
2m + O(1), n ≫ 1.

Recall from Physics: Energy of two capacitor plates is proportional to
the distance.
Invariance under linearized rotations affects scaling of energy minima
significantly.



Towards a rigorous proof of the Read-Shockley law
Recall RS-law: γ(θ) = −cθ log θ + O(θ), 0 < θ ≪ 1.
Can use continuum setting: ω = {x1, x2, . . . xN} ⊂ R × T:

E (ω) = − log θ

θ
+ θ

N

N log N +
∑
i<j

F (xi − xj)

 ,

where

Fcont(x) = x1 sinh(x1)
cosh(x1) − cos(x2) − log(cosh(x1) − cos(x1)) − log 2



Conclusions and Outlook

Reference: Giuliani-T JEMS 24 (2022), 3505–3555.

First rigorous, quantitative result on equilibrium dislocation
configurations
Results due to a complete decoupling between dislocations and elastic
field

Outlook
Two dimensions (orientational order, hexatic phases)
Non-Euclidean version, e.g. on spheres etc.
Modelling of scar behaviour.


