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Institute of Science and Technology (IST) Austria

• Newly founded (2007) research institute near Vienna, Austria

• Mathematics, CS, Physics, Biology + interdisciplinary research

• 50 research groups so far, 8 in mathematics

• Graduate school; fully funded for admitted Ph.D. students. No
undergraduates

• Job opportunities on all level: faculty, postdoc, graduate student

• Fully English speaking

• For more, see www.ist.ac.at
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“Perhaps I am now too courageous when I try to guess the

distribution of the distances between successive levels (of en-

ergies of heavy nuclei). Theoretically, the situation is quite

simple if one attacks the problem in a simpleminded fash-

ion.The question is simply what are the distances of the

characteristic values of a symmetric matrix with random co-

efficients.”

Eugene Wigner, 1956

Nobel prize 1963
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Plan of the lectures

1. Introduction, Wigner’s vision, concepts, correlation functions,

scales, WDM universality, Wigner vs. invariant ensembles.

2. Three step strategy, Dyson Brownian motion, Local law, Stieltjes

transform, Helffer-Sjöstrand formula,

3. Models of increasing complexity, singularity structure of the den-

sity, motivations from physics: universal dichotomy in disordered

quantum systems, band matrices.

4. Some ideas of proofs: moment vs. resolvent method. Schur

formula, derivation of the Dyson equation. Large deviation es-

timates, Ward identity. Analysis of the Dyson equation, exis-

tence/uniqueness, self-energy operator, Perron-Frobenius theo-

rem, 1/3-Hölder regularity. Matrix Dyson equation, symmetric

polar decomposition.
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LECTURE 1: INTRODUCTION

Basic question [Wigner]: What can be said about the statistical

properties of the eigenvalues of a large random matrix? Do some

universal patterns emerge?

H =


h11 h12 . . . h1N
h21 h22 . . . h2N

... ... ...
hN1 hN2 . . . hNN

 =⇒ (λ1, λ2, . . . , λN) eigenvalues?

N = size of the matrix, will go to infinity.

Analogy: Central limit theorem: 1√
N

(X1 +X2 + . . .+XN) ∼ N(0, σ2)
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Wigner Ensemble: i.i.d. entries

H = (hjk) real symmetric or complex hermitian N ×N matrix

Entries are i.i.d. up to hjk = h̄kj (for j < k), with normalization

Ehjk = 0, E|hjk|2 =
1

N
.

The eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN are of order one: (on average)

E
1

N

∑
i

λ2
i = E

1

N
TrH2 =

1

N

∑
ij

E|hij|2 = 1

If hij is Gaussian, then GUE, GOE.

10



Global vs. local law

Global density: Semicircle Law

Typical ev. gap ≈ 1
N (bulk)

• Does semicircle law hold

just above this scale?

(=⇒ local semicircle law )

• How do eigenvalues behave

exactly on this scale?

(=⇒ WDM universality)

Wigner’s revolutionary observation: The global density may be model

dependent, but the gap statistics is very robust, it depends only on

the symmetry class (hermitian or symmetric).

In particular, it can be determined from the Gaussian case (GUE/GOE).
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Wigner surmise and level repulsion

PGOE
(
N%(λi)(λi+1 − λi) = s+ ds

)
'
π

2
s e−πs

2/4 ds

PGUE
(
N%(λi)(λi+1 − λi) = s+ ds

)
'

32

π2
s2 e−4s2/π ds ,

for λi in the bulk (repulsive correlation depending on the symmetry!)
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Side note: Wigner surmise guessed on a 2× 2 matrix calculation and is only an

approximation to the true gap distribution given by a Fredholm determinant of

the Dyson’s sine-kernel [Gaudin, Mehta, Dyson]

12



E. Wigner (1955): The excitation spectra of heavy nuclei have
the same spacing distribution as the eigenvalues of GOE.
Experimental data for excitation spectra of heavy nuclei: (238U)

Typical Poisson statistics:

Typical GOE random matrix eigenvalues
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Level spacing (gap) histogram for different point processes.

NDE – Nuclear Data Ensemble, resonance levels of 30 sequences of
27 different nuclei.
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Zeros of the Riemann-zeta function (detour)

δn = γ̂n+1 − γ̂n, γ̂n =
1

2π
γn log γn, ζ(

1

2
+ iγn) = 0
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Pair correlation functions (sine kernel)
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Sine kernel for correlation functions

Probability density of the eigenvalues: p(x1, x2, . . . , xN)

The k-point correlation function is given by

p
(k)
N (x1, x2, . . . , xk) :=

∫
RN−k

p(x1, . . . xk, xk+1, . . . , xN)dxk+1 . . .dxN

k = 1 point correlation function: density %

Rescaled correlation functions at energy E (in the bulk, %(E) > 0)

p
(k)
E (x) :=

1

[%(E)]k
p

(k)
N

(
E +

x1

N%(E)
, E +

x2

N%(E)
, . . . , E +

xk
N%(E)

)

Rescales the gap λi+1 − λi to O(1).
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Local correlation statistics for GUE [Gaudin, Dyson, Mehta]

lim
N→∞

p
(k)
E (x) = det

{
S(xi − xj)

}k
i,j=1

, S(x) :=
sinπx

πx

Special k = 2 case: Pair correlations.

lim
N→∞

1

[ρ(E)]2
p

(2)
N

(
E +

x1

Nρ(E)
, E +

x2

Nρ(E)

)

= det
{
S(xi − xj)

}2

i,j=1
, S(x) :=

sinπx

πx
, |E| < 2

= 1−
(

sinπ(x1 − x2)

π(x1 − x2)

)2
=⇒ Level repulsion
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Wigner-Dyson-Mehta universality: Local statistics is universal in the

bulk spectrum for any Wigner matrix; only symmetry type matters.

Solved for any symmetry class by the three step strategy

[Bourgade, E, Schlein, Yau, Yin: 2009-2014]

Related results:

[Johansson, 2000] Hermitian case with large Gaussian components

[Tao-Vu, 2009] Needs four moment matching.

(Similar development for the edge, for β-log gases and for many

related models, such as sample covariance matrices, sparse graphs,

regular graphs etc).
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Invariant ensembles (detour)

Unitary ensemble: Hermitian matrices with density

P(H)dH ∼ e−TrV (H)dH

Invariant under H → UHU−1 for any unitary U (GUE)

Joint density function of the eigenvalues is explicitly known

p(λ1, . . . , λN) = const.
∏
i<j

(λi − λj)βe
−
∑
j V (λj)

classical ensembles β = 1,2,4 (orthogonal, unitary, symplectic sym-

metry classes; GOU, GUE, GSE for Gaussian case)

Correlation functions can be explicit computed via orthogonal poly-

nomials due to the Vandermonde determinant structure.

large N asymptotic of orthogonal polynomials =⇒ local eigenvalue

statistics indep of V . But density of e.v. depends on V .
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Many previous results for classical invariant ensembles

Dyson (1962-76), Mehta (1960- ) classical Gaussian ensembles via
Hermite polynomials

General case by Deift etc. (1999), Pastur-Schcherbina (2008),
Bleher-Its (1999), Deift etc (2000-, GOE and GSE), Lubinsky (2008)

All these results are limited to invariant ensembles. If the condi-
tion on Gaussian distribution is dropped (Wigner ensembles), the
ensemble is not invariant.

The only result for the non-invariant case is by Johansson 2001, (Ben
Arous-Peche, 2005) where sine kernel is proven for the Hermitian
Wigner ensembles with a substantial Gaussian component:

H =
√

1− tH0 +
√
tV, t > 0, H0 is Wigner V is GUE

Method: saddle point analysis on an explicit formula (Brezin-Hikami)
valid only for Hermitian matrices.
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********************************************************

Summary of the first lecture

— We study eigenvalue statistics of large N ×N random matrices.

— Two big families of ensembles (Gaussian is the only common)

== (a) Wigner (type): independent matrix elements

== (b) Invariant: exp(−TrV (H))dH – stat mechanics of log gases

p(λ1, . . . , λN) =const.
∏
i<j

(λi − λj)βe
−
∑
j V (λj)

= expβ
[∑
i<j

log |λi − λj| −
∑
j

V (λj)
]

— Normalization: λj ∼ O(1), gap = λi+1 − λi ∼ 1/N (bulk)

— Scales: Global [O(1)], Mesoscopic, Microscopic O(1/N).
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— Wigner’s fundamental vision: Global density may be model de-

pendent, but microscopic statistics is universal, depends only on the

symmetry type (β) [Wigner-Dyson-Mehta universality]

— Semicircle law holds only for Wigner matrices. Sample covariance

matrices have different global density (Marchenko–Pastur law). For

invariant ensembles, the density depends on V

— Local statistics (sine kernel, determinant structure of higher order

correlation functions) were found in the 60’s for GOE/GUE.

— WDM universality has recently been proven for both families

(including general β-ensembles, not only for the classical cases, β =

1,2,4 that originate from a matrix model).

********************************************************
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LECTURE 2: Three-step strategy

1. Local density law down to scales � 1/N

(Needed in entry-wise form, i.e. control also matrix elements Gij
the resolvent G(z) = (H − z)−1 and not only TrG)

2. Use local equilibration of Dyson Brownian motion to prove uni-
versality for matrices with a tiny Gaussian component

3. Use perturbation theory to remove the tiny Gaussian component.

Steps 2 and 3 need Step 1 as an input but are considered standard
since very general theorems are available. [E-Schlein-Yin-Yau], .... most

recent: [Landon-Yau]

Step 1 is model dependent.
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Formulation of the local law via resolvents

Resolvent: G(z) = (H − z)−1, at spectral parameter z ∈ C+.

Claim: Resolvent is asymptotically deterministic for η := Im z � 1
N .

Theorem: There exists a deterministic matrix Mxy(z) such that∣∣∣∣Gxy(z)−Mxy(z)
∣∣∣∣ ≤ Nε

√
Nη

(Entrywise law)∣∣∣∣ 1NTrBG(z)−
1

N
TrBM(z)

∣∣∣∣ ≤ Nε

Nη
‖B‖ (Average law)

Note that

1

N
Im TrG(E + iη) =

1

N

∑
i

η

|λi − E|2 + η2
=

1

N

∑
i

δη(λi − E)

so eigenvalue density on scale η is identified via the average law.

Behind this formalism: Stieltjes transform.
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Stieltjes transform

Def: Let µ be a probability measure on R. Its Stieltjes transform at
spectral parameter z ∈ H is given by

mµ(z) :=
∫
R

dµ(x)

x− z
Easy facts:

• z → mµ(z) is analytic in H with image in H:

Imm(z) = η
∫
R

dµ(x)

|x− E|2 + η2
, z = E + iη

• iη mµ(iη)→ −1 as η →∞

• |m(z)| ≤ 1
Im z

;

• These 3 properties characterize the Stieltjes transform (i.e. for
any such function m(z) there is a prob. measure s.t. m = mµ).
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Message: mµ(E + iη) resolves the measure µ around E on scale η

1

π
Immµ(z) := (hη ? µ)(E) =

∫
R
hη(x− E)dµ(x)

where hµ is an approximate delta fn. on scale η

hµ(x) :=
1

π

η

x2 + η2
,

∫
hµ(x)dx = 1

Inversion formula holds

lim
η→0+

1

π
Immµ(E + iη) = µ(E)dE

(weak convergence).

Similarly to the Fourier transform, the pointwise convergence of the

Stieltjes tr. characterizes weak convergence of prob. measures:

µN ⇀ µ iff mµN(z)→ mµ(z) ∀z ∈ H

More precise results on speed of convergence are also available.
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Resolvents and Stieltjes transform

Obvious fact: The trace of the resolvent G of a hermitian matrix H
is the Stieltjes transform of its empirical spectral density:

%N(E) :=
1

N

N∑
α=1

δ(λα − E),
1

N
TrG(z) =

1

N

∑
α

1

λα − z
= m%N(z)

Clearly the limit

lim
η→0+

Imm%N(E + iη)

may not exist, but its expectation may exist

lim
η→0+

E Imm%N(E + iη) = %(E)

and gives the density of states (DOS). Moreover, even without ex-
pectation, we can hope that

mN(E + iη) ≈ m%(E), η �
1

N
holds with very high probability. This tells us that the eigenvalues are
uniformly distributed down to the smallest possible scales η � 1/N .
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Functional calculus via resolvent

Express a f(H), a function of a Hermitian H, in terms of resolvent?

Let χ ∈ C2[−2,2] be a cutoff function on R s.t. χ ≡ 1 on [−1,1].

Then (Stokes/Green)

f(τ) =
1

2π

∫
R2

iηf ′′(σ)χ(η) + i(f(σ) + iηf ′(σ))χ′(η)

τ − σ − iη
dσdη. (1)

and use it for τ = H. Observe resolvent on the RHS, i.e. f(H) can

be written as an integral of the resolvent.

The numerator is ∂z̄f̃ , where f̃(x+ iy) := (f(x) + iyf ′(x))χ(y) is an

almost analytic extension of f .

[this formalism can be used to build up spectral theorem for un-

bounded self-adjoint operators]
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Helffer-Sjöstrand functional calculus

f(τ) =
1

2π

∫
R2

iηf ′′(σ)χ(η) + i(f(σ) + iηf ′(σ))χ′(η)

τ − σ − iη
dσdη. (2)

Helffer-Sjöstrand formula states that for a real valued f∫
R
f(τ)ν(dτ) = −

1

2π

(
L1 + L2

)
(3)

with

L1 =
∫
R2

[
ηf ′′(σ)χ(η) + f ′(σ)χ′(η)

]
Imm(σ + iη)dσdη

L2 =
∫
R2
ηf ′(σ)χ′(η)Rem(σ + iη)dσdη

where m(z) = mν(z) is the Stieltjes transform of ν.

Use it for ν = %N−% = 1
N

∑
α δλα−% to get estimate on linear statistics

1

N

∑
α
f(λα)−

∫
R
f(τ)ν(dτ)
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**********************************************

Summary of previous lectures

— We study local eigenvalue statistics of large Hermitian matrices

— Density is model dependent, local statistics is not [Wigner]

— Three step strategy – local law is the model dependent input

— Local law: there exists a deterministic matrix M(z), ‖M‖ ∼ O(1),

that very well approximates the resolvent G(z) = (H − z)−1 in the

mesoscopic regime η = Im z � 1/N

Gxy ≈Mxy,
1

N
TrBG ≈

1

N
TrBM

(with very high probabiity).

**********************************************
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LECTURE 3: Models of increasing complexity

• Wigner matrix: i.i.d. entries, sij := E|hij|2 are constant (= 1
N ).

(Density = semicircle; G ≈ diagonal, Gxx ≈ Gyy)
[E-Schlein-Yau-Yin, 2009–2011], [Tao-Vu, 2009]

• Generalized Wigner matrix: indep. entries,
∑
j sij = 1 for all i.

(Density = semicircle; G ≈ diagonal, Gxx ≈ Gyy)
[E-Yau-Yin, 2011], [E-Knowles-Yau-Yin, 2012]

• Wigner type matrix: indep. entries, sij arbitrary
(Density 6= semicircle; G ≈ diagonal, Gxx 6≈ Gyy)
[Ajanki-E-Krüger, 2015]

• Correlated Wigner matrix: correlated entries, sij arbitrary
(Density 6= semicircle; G 6≈ diagonal)
[Ajanki-E-Krüger ’15-’16] [Che ’16], [E-Krüger-Schröder ’17], [Alt-E-Krüger-Schröder ’18]
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Other extensions of the original Wigner model

• Invariant ensembles: P (H) ∼ exp
[
− βNTrV (H)

]
Deift et. al., Pastur-Shcherbina, Bourgade-E-Yau, Bekerman-Guionnet-Figalli, etc.

• Low moment assumptions, heavy tails
Johansson, Guionnet-Bordenave, Götze-Naumov-Tikhomirov, Benaych-Peche, Aggarwal

• Deformed models, general expectation
O’Rourke-Vu, Lee-Schnelli-Stetler-Yau, He-Knowles-Rosenthal

• Sparse matrices, Erdős-Rényi and d-regular graphs
E-Knowles-Yau-Yin, Huang-Landon-Yau, Bauerschmidt-Huang-Knowles-Yau, etc.

• Band matrices
Fyodorov-Mirlin, Disertori-Pinson-Spencer, Schenker, Sodin, E-Knowles-Yau, T. Shcherbina,

Bourgade-E-Yau-Yin, E-Bao etc.

Many other directions and references are left out, apologies...
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OVERVIEW OF RESULTS

• Properties of the limiting (self-consistent) density of states (DOS),

special focus on their singularity structure;

• Local laws, i.e. approximating G(z) with a deterministic quantity

M(z) down to the smallest possible scale η = Im z � 1/N ;

• Universality of the eigenvalue statistics on the scale 1/N .

Most results will be presented only informally; the precise statement

of the local law will be given later.
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Variance profile and self-consistent density of states (DOS)

∑
j

sij = 1 ⇐⇒ -2 -1 0 1 2
0.00

0.05

0.10

0.15

0.20

0.25

0.30

General variance profile sij = E|hij|2: not the semicircle any more.

∑
j sij 6= const =⇒ Density of states
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Features of the DOS for Wigner-type matrices

1) Support splits via cusps:

(Matrices in the pictures represent the variance matrix)

2) Smoothing of the S-profile avoids splitting (⇒ single interval)

0.1

1

1

0.1 DOS of the same matrix as

above but discontinuities in

S are regularized
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Universality of the DOS singularities for Wigner-type models

Edge,
√
E singularity Cusp, |E|1/3 singularity

Small-gap Smoothed cusp

(2+τ)τ

1+(1+τ+
√

(2+τ)τ)2/3+(1+τ−
√

(2+τ)τ)2/3

√
1+τ 2

(
√

1+τ 2+τ)2/3+(
√

1+τ 2−τ)2/3−1
− 1

τ := |E|
gap, τ := |E|

(minimum )1/3
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Main theorems on local laws and universality (informally)

Theorem [Ajanki-E-Krüger, 2014] Let H = H∗ be a Wigner-type
matrix with general variance profile c/N ≤ sij ≤ C/N . Then optimal
local law (including edge) and bulk universality hold.

Theorem [Ajanki-E-Krüger, 2016, E-Krüger-Schröder 2017]
Let H = H∗ be correlated

H = A+
1√
N
W

where A is deterministic, W is random with EW = 0 and polynomial
decay of correlation:

Cov
(
φ(WA), ψ(WB)

)
≤

C(φ, ψ)[
1 + dist(A,B)

]s ; s > 12,

for any subsets A,B of the set of index pairs and a matching bound
on higher cumulants. Assume

E|u∗Wv|2 ≥ c‖u‖2‖v‖2 ∀u,v.
Then optimal local law and bulk universality hold.
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Distance for index sets in the condition on the correlation decay

Cov
(
φ(WA), ψ(WB)

)
≤

C(φ, ψ)[
1 + dist(A,B)

]s
for any A,B ⊂ S × S assumes the usual metric on the set S =

{1,2, . . . , N} of indices. Here WA = {Wij : (i, j) ∈ A}.

( A )B

d(A,B)

B

A
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Local law and ”usual” corollaries

There exists a deterministic matrix M , with ‖M‖ = O(1) s.t.∣∣∣Gij(z)−Mij(z)
∣∣∣ . 1√

N Im z∣∣∣∣ 1NTrBG(z)−
1

N
TrBM(z)

∣∣∣∣ . ‖B‖Nη

with very high prob.

• Delocalization of bulk eigenvectors

• Rigidity of bulk eigenvalues

• Wigner-Dyson-Mehta universality in the bulk

Remark: Very recently all the same results have been extended to
the edge (Tracy-Widom universal statistics)
[Landon-Yau], [Alt-E-Krüger-Schröder]
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Delocalization

Let u be a bulk eigenvector, Hu = λu, %(λ) ≥ c > 0, then

max
i
|u(i)| ≤

Nε
√
N
‖u‖

for any ε > 0 with very high probability. Shows that the system is in
the delocalized regime.

Ex: Prove |u(x)|2 ≤ ηmaxE ImGxx(E + iη) via spectral theorem.

Rigidity

For any E, let k(E) be the index of the corresponding quantile, i.e.∫ E
−∞

%(x)dx =
k(E)

N

Then for any bulk energy, %(E) ≥ c > 0,∣∣∣λk(E) − E
∣∣∣ ≤ Nε

N
with very high probability, i.e. eigenvalues rigidly stick.
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Bulk universality: sine-kernel statistics holds on the level of individual

eigenvalues:

- 3.0 - 2.0 - 1.0 - 0.0

1.0

2.0
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III. MOTIVATIONS

• Physics: nuclear physics (Wigner), disordered quantum systems

• Statistics: Wishart ensemble, sample covariance matrices, Tracy

Widom law

• Wireless communication; channel capacity [Tulino-Verdu], [Hachem-

Loubaton-Najim], [Alt-E-Krüger]

• Neural networks, ODE’s with random coefficients. [Chalker-Mehlig],

[E-Kruger-Renfrew]

• Quantum chaos, Quantum unique ergodicity [Bourgade-Yau]
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Quantum systems

Quantum mechanical system is described by

• a state space `2(Σ) (e.g. Σ = {↑, ↓} for a spin, or Σ = Z3 for an

electron in a metallic lattice);

• an Σ×Σ symmetric (selfadjoint) matrix (operator) H, the Hamil-

ton operator;

• Matrix elements Hx,x′ describe quantum transition rates from x

to x′.

• Eigenvalues of H (real) are the energy levels of the system

• Time evolution is given by ψt = eitHψ0

Disordered: if Hx,x′ is random =⇒ Random matrix.
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Universality conjecture for disordered quantum systems:

A disordered quantum system with sufficient complexity exhibits one

of the following two behaviors:

• Insulator (typically at strong disorder; for simplicity Σ = Zd)
– Localized eigenvectors, i.e. ∃Σ′ ⊂ Σ, |Σ′| � |Σ| s.t.∑

x∈Σ\Σ′
|ψ(x)|2 � 1.

– exp. offdiag decay of the resolvent

|Gxx′| ≤ Ce
−|x−x′|/`, ` localization length

– lack of transport

sup
t∈R

∑
x
x2|ψt(x)|2 ≤ C <∞; ψt = eitHψ0

– nearby eigenvalues are independent (Poisson local spectral

statistics).
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• Conductor (typically at weak disorder)

– Delocalized eigenvectors

– non-integrable decay of the resolvent

– transport (via quantum diffusion)

– eigenvalues are strongly correlated (Wigner-Dyson local statis-

tics)

At first sight, localization is surprising (Anderson). Still, mathemat-

ically it is more accessible (Fröhlich-Spencer, Aizenman-Molchanov,

Minami, ...).

Anderson metal-insulator

quantum phase transition
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Two popular models to study the dichotomy

(1) Random Schrödinger operators: in lattice box Σ := [1, L]d ∩ Zd

In d = 1 it corresponds to a narrow band matrix with i.i.d. diagonal:

H =



v1 1
1 v2 1

1 .. .
. . . 1
1 vL−1 1

1 vL


Follows insulator behavior
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(2) Mean field Wigner random matrices: On the set Σ = {1,2, . . . , N}

H = (hxy), H = H∗ Ehxy = 0.

entries are identically distributed and independent up to symmetry.

H =


h11 h12 . . . h1N
h21 h22 . . . h2N

... ... ...
hN1 hN2 . . . hNN



H models a mean-field hopping mechanism with random quantum

transition rates. No spatial structure.

Follows conductor behavior
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Band matrices: interpolation between Anderson and Wigner

Σ = [1, L]d ∩ Zd lattice box

Entries of H = H∗ are indep but

not identically distr. Wigner type!

E|hxy|2 =
1

W d
f

(|x− y|
W

)

W is the bandwidth (interaction

range)

H =


∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
0 ∗ ∗ ∗ ∗ ∗ 0
0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗


Band matrix in d = 1 physical dim.

W = O(1) [∼ Anderson] ←→ W = L [Wigner]

”Facts” from physics: Transition occurs at

W ∼ L1/2 (d = 1) SUSY [Fyodorov-Mirlin, 1991]

W ∼
√

logL (d = 2) RG scaling [Abrahams, 1979]

W ∼W0(d) (d ≥ 3) extended states conjecture
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Mean field quantum Hamiltonian with correlation

Equip the configuration space Σ with a metric to have ”nearby”
states.

It is reasonable to allow

that hxy and hxy′ are cor-

related if y and y′ are close

with a decaying correlation

as dist(y, y′) increases.

Non-trivial spatial structure changes the density of states.

There are many other natural models leading to correlated struc-
tures. Now we turn to some proofs.
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LECTURE 4: Some proof ideas.

There are two basic methods to study RM eigenvalue statistics, i.e.
for understanding the empirical ev. measure µN(dx) = 1

N

∑
i δ(λi−x)

– Moment method. Find 1
NETrHk = E

∫
xkµN(dx).

– Resolvent method: Use that resolvent = St. transform of µN(dx)

1

N
TrG(z) =

1

N
Tr

1

H − z
=
∫
R

µN(dx)

x− z
, z = E + iη

and use many convenient properties of the resolvent.

Moment method is suitable for global laws and for extreme edges,
even for complicated models involving many matrices or free prob-
ability, but inefficient for local information inside the spectrum.

We will follow the resolvent method and we first informally present
it for Wigner type matrices.
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Def: [Wigner type matrix] H is an N ×N hermitian random matrix

Ehij = 0, sij := E|hij|2

The matrix S := (sij) defines an operator on CN .

Def: [Quadratic vector equation] Given z ∈ H := {Im z > 0}, consider

−
1

mi
= z + (Sm)i, i = 1,2, . . . N, [QV E]

We will see that the QVE has a (unique) solution in the upper half

plane denoted by m(z) = (m1(z), . . .mN(z)) ∈ HN .

Key relation [informally] G = 1
H−z is close to M = diag(m);

Gii(z) ≈ mi(z), Gij(z) ≈ 0, (i 6= j) N →∞
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1

N
TrG =

1

N

∑
i

Gii(z) ≈
1

N

∑
i

mi(z) =: 〈m〉 (N →∞)

Thus, to compute the density of states for H, we need to solve

−
1

mi
= z + (Sm)i, i = 1,2, . . . N, [QV E]

for every z ∈ H, compute

m(z) := 〈m(z)〉 :=
1

N

∑
i

mi(z)

and find its inverse Stieltjes transform.

For Wigner matrices, sij = 1
N , everything is simpler: we have

−
1

mi
= z + (Sm)i = z + 〈m〉, ∀i

thus mi = 〈m〉 and − 1
〈m〉 = z + 〈m〉, which gives the semicircle law.

For general S there is no eq. for 〈m〉, one has to solve the QVE.
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Structure of the proof of the local law

Step 1: Probabilistic step (derivation of the QVE)

Prove that gi := Gii approximately satisfied the QVE, i.e.

−
1

gi
= z + (Sg)i + di, (∗)

for some small (random) error vector d = (di).

Step 2: Deterministic step (Stability of the QVE)

Consider (*) as a small perturbation of the QVE:

−
1

mi
= z + (Sm)i and (∗) =⇒ ‖m− g‖ . ‖d‖

Key question: stability of the QVE in an appropriate norm/space.

Next, we will make Step 1. plausible before we enter Step 2.

55



Step 1. Derivation of the QVE (Dyson equation)

There are two methods for deriving the QVE:

(i) Schur complement formula

(ii) Cumulant expansion

Here we present (i) since it is conceptually simpler (but less general)

Schur complement formula: Use the block-decomposition

H =

(
h11 [a1]∗

a1 H[1]

)
, [a1]∗ = (h21, h31, . . . , hN1)

G11 =
(

1

H − z

)
11

=
1

h11 − z − [a1]∗ 1
H[1]−z

a1

Holds for any 1→ i
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1

Gii
= hii − z −

∑
j,k 6=i

hijG
[i]
jkhki, G[i] = G[i](z) =

1

H[i] − z

hijhki is independent of G[i]
jk, so concentration estimate holds:

∑
j,k 6=i

hijG
[i]
jkhki ≈ Ei

∑
j,k 6=i

hijG
[i]
jkhki =

∑
j 6=i

sijG
[i]
jj ≈

∑
j

sijGjj

thus we get the perturbed QVE

−
1

Gii
= z +

∑
j

sijGjj + di

The main part of the error di comes from the fluctuation and

|di| .
1
√
Nη

with very high prob.

Remark: Here S is the self-energy operator/matrix since

gi ≈
1

−(Sg)i − z
, gi := Gii =

(
1

H − z

)
ii
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Quadratic large deviation bound to estimate di

Let B ∈ CM×M be a fixed matrix (M = N − 1, B = G[i] in appl.)
Let a ∈ CM be centered random vector with indep. components.

Assume ”mean-field” with high moment condition

E|
√
Mai|p ≤ Cp,

independently of M . Clearly

Ea∗Ba =
∑
i

BiiE|ai|2

Question: How close is the (random) quadratic form a∗Ba to its
expectation in very high probability sense?

Answer: The variance tells it, since one can prove

E
∣∣∣∣a∗Ba− Ea∗Ba

∣∣∣∣p . [
E
∣∣∣∣a∗Ba− Ea∗Ba

∣∣∣∣2]p/2

=⇒ bound with very high probability (after Markov’s ineq.)
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The variance can be computed (=⇒ Exercise) and if B is a resolvent
of a hermitian matrix

B =
1

T − z
, T = T ∗, z = E + iη

then we find (=⇒ Exercise)

E
∣∣∣∣a∗Ba− Ea∗Ba

∣∣∣∣2 ≤ C

Mη

1

M
Im TrB

Here we used the Ward identity for any hermitian matrix T∑
j

∣∣∣∣( 1

T − z

)
ij

∣∣∣∣2 =
1

Im z
Im

(
1

T − z

)
ii

Applying this to M = N − 1, B = G[i] we get the fluctuation error

|di| .
1
√
Nη

with very high prob.

After Step 2 (stability), we conclude the local law in the form:

|Gii −mi| .
1
√
Nη

with very high prob.
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Summary so far

Local law with resolvent method: (for Wigner type matrices) find a

deterministic approximation mi(z) to Gii(z) as Im z � 1 and N � 1:∣∣∣Gii(z)−mi(z)
∣∣∣ . 1√

N Im z
with high prob.

QVE (vector Dyson equation)

−
1

mi
= z + (Sm)i, Immi > 0

Self-consistent density: %(E) = 〈Imm(E + i0)〉 = 1
N

∑
i Immi.
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Two steps:

1. Prove that gi = Gii satisfies

−
1

gi
= z + (Sg)i + di, |di| .

1
√
Nη

(∗)

(Schur formula + Large deviation)

2. Stability analysis of QVE: (*) and the QVE

−
1

mi
= z + (Sm)i

imply

‖g −m‖ . ‖d‖

Linear stability operator: L = 1−m2S needs to be inverted.
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Step 2: Analysis and stability of the Dyson equation

−
1

m
= z + a + Sm, z ∈ H, m ∈ HN

where S = St is symmetric, bounded ‖S‖ ≤ C matrix with positive
entries, sij ≥ 0, and a ∈ RN external source. We set a = 0 here.

Notation: For any function f and vector m we write

f(m) :=
(
f(m1), f(m2), . . . , f(mN)

)
∈ CN

in particular

1

m
=
(

1

m1
,

1

m2
, . . . ,

1

mN

)
Similarly, for u,v ∈ CN vectors, their (entrywise) product is

uv :=
(
u1v1, u2v2, . . . , uNvN

)
and

u ≤ v ⇐⇒ ui ≤ vi

62



VI.1. Existence, uniqueness, representation

−
1

m(z)
= z + Sm(z), z ∈ H, m : H→ HN

Thm [Folklore]: (i) The QVE has a unique solution.

(ii) For each i, there is a unique prob measure νi on R s.t.

mi(z) =
∫
R

νi(dτ)

τ − z

Proof. Fixpoint argument for the map

Φ(u)(z) := −
1

z + Su(z)

(i) Φ maps an appropriate bounded subset into itself

(ii) contraction in a specific metric.

63



The right metric, for some small parameter δ, is

dδ(u,v) := sup
z∈Hδ

max
i≤N

D(ui, vi), D(ζ, ω) :=
|ζ − ω|2

(Im ζ)(Imω)

Hδ :=
{
z ∈ H : Im z ≥ δ, |z| ≤ δ−1

}
Relation to the hyperbolic metric on H: D(ζ, ω) = 2(cosh(ζ, ω)− 1).

The representation as a Stieltjes tr. follows from the facts

• Starting from a constant function, every iterate is analytic on H,
hence so is their limit, on compact sets

• iηmk(iη)→ −1 can be checked directly since (η = Im z)

|mk| ≤
1

Im z
from the Im-part of QVE:

Imm

|m|2
= η+SImm ≥ η

then |zm + 1| = |mSm| ≤ ‖S‖‖m‖2 → 0, as Im z →∞.
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VI.2. Bounds on the solution

Two norms

‖u‖22 :=
1

N

∑
i

|ui|2, ‖u‖ := ‖u‖∞ := max
i
|ui|

We have three bounds:

– `2-bound useful in the bulk, if sij ∼ 1
N

– Unconditional `2-bound away from zero.

– `∞-bound if S is 1
2-Hölder continuous.
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`2-bound in the bulk

Proposition. Suppose flatness [for simplicity]

sup
x,y

sxy ∼ inf
x,y

sxy > 0, i.e. c〈v〉 ≤ Sv ≤ C〈v〉, ∀v ≥ 0

Then

‖m‖2 . 1, ‖m(z)‖ .
1

%(z) + dist(z, supp%)
,

%(z) . Imm(z) . %(z)‖m(z)‖2

where

%(z) = 〈Imm(z)〉 harmonic extension of %(τ)

Remark: A ∼ B means A/B and B/A are bounded uniformly in the

constants hidden in the conditions.
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Proof. Take Im-part of the QVE

Imm

|m|2
= η + S Imm & 〈Imm〉 (∗)

by the lower bound Sv & 〈v〉. Then

Imm & |m|2〈Imm〉 =⇒ 〈Imm〉 & 〈|m|2〉〈Imm〉 =⇒ ‖m‖22 . 1.

Also,

|m|2〈Imm〉 . Imm ≤ |m| =⇒ |m| .
1

〈Imm〉
Furthermore, from Stieltjes tr. representation

|m| .
1

dist(z, supp%)

Assume |z| . 1, then from QVE

1

|mi|
≤ |z|+

∣∣∣∣∑
j

sijmj

∣∣∣∣ . 1 + ‖m‖1 ≤ 1 + ‖m‖2 . 1

From (*), we have 〈Imm〉 . Imm, and Imm
|m|2 . η + 〈Imm〉 . 〈Imm〉.
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The saturated self-energy F operator, unconditional `2 bound

Taking the Im-part of the QVE, we have

Imm

|m|2
= η + S(Imm), equivalently

Imm

|m|
= η|m|+ |m|S

(
|m|

Imm

|m|

)
Define the positivity preserving operator F = F (z) as

F (·) := |m|S
(
|m| ·

)
, i.e. (Fw)i = |mi|

∑
j

sij|mj|wj

Trivial bound |m| ≤ η−1 implies that F is bounded.

Perron-Frobenius implies

∃f ∈ RN , f ≥ 0, F f = ‖F‖f

Scalar multiply Im-part of QVE by f and use symmetry of F〈
f ,

Imm

|m|

〉
= η〈f , |m|〉+

〈
f , F

Imm

|m|

〉
= η〈f , |m|〉+ ‖F‖

〈
f ,

Imm

|m|

〉
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After rearranging

‖F‖ = 1− η
〈f |m|〉〈
f Imm
|m|

〉 < 1 (∗)

Key bound (*) gives a finite control on F uniformly in (small) η.

From QVE

‖m‖2 ≤
1

|z|

(
1 + ‖mSm‖2

)
≤

1

|z|

(
1 +

∥∥∥ |m|S|m| ∥∥∥
2

)
=

1

|z|

(
1 + ‖F1 ‖2

)
so we get an unconditional `2-bound away from zero:

‖m‖2 ≤
2

|z|
NO assumption on S (apart from symmetry and nonnegative kernel)
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From `2 to max-bound under Hölder regularity of S (Skip)

Proposition. Let S be (piecewise) 1
2-Hölder continuous and

sij =
1

N
S

(
i

N
,
j

N

)
, c ≤ S(x, y) ≤ C

Then for |z| . 1 we have

|m(z)| ∼ 1, Imm ∼ 〈Imm〉 = %

(all components of |m| and Imm are comparable).

Proof. Subtract the i-th and j-th components of the QVE

1

|mi|
−

1

|mj|
≤
∑
k

|sik − sjk||mk| ≤ ‖m‖2
(
N
∑
k

|sik − sjk|2
)1/2

Using ‖m‖2 . 1 and Hölder, we get

1

|mi|
≤

1

|mj|
+ C

√
|i− j|
N

Take reciprocal and sum up
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1

N

∑
i

 1∣∣∣∣ 1
mj

∣∣∣∣+ C

√
|i−j|
N

2

≤ ‖m‖2 . 1

and

1

N

∑
i

 1∣∣∣∣ 1
mj

∣∣∣∣+ C

√
|i−j|
N

2

&
1

N

∑
i

 1∣∣∣∣ 1
mj

∣∣∣∣2 + C
|i−j|
N

 & log |mj|

Combining these inequalities, we have

‖m‖ . 1

The comparability of Immi components follow from sij ∼ C/N

Imm

|m|2
= η + S(Imm) =⇒ Imm ∼ η + S(Imm)

and

S Imm ∼ 〈Imm〉
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VI.3. The stability operator of the QVE

The stability of the QVE against small perturbations plays a key role

in showing that the solution of QVE approximates the resolvent.

The key point is uniformity in η → 0. Similarly to the boundedness

of m above, η-dependent bounds are easy to get, but are useless for

local laws or studying properties of the density since both are η ≈ 0

phenomena.

We first introduce the stability operator in the context of proving

regularity of m(z) down to the real axis (showing regularity of DOS

in the bulk).

Later we will show how the same operator appears in the random

matrix theory.
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Regularity of m(z) down to the real axis

−
1

m(z)
= z + Sm(z) =⇒ mi(z) =

∫
R

νi(dτ)

τ − z
,

Thm: The generating measure has a density νi(dτ) = νi(τ)dτ that
is uniformly Hölder 1/3 continuous. Its support is independent of i:

Σ = supp νi

and has finitely many intervals. Away from the boundary of Σ the
density ν : R \ ∂Σ→ RN+ is real analytic.

At the boundary points τ0 ∈ ∂Σ, it has either ”cusp” or ”edge”
singularity. No other singularity can occur.

Since νk(τ) = 1
πImmk(τ + i0), all these statements rely on the reg-

ularity of m(z) down to the real axis. We will demonstrate it by
proving the Hölder-1

3 regularity.
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Proof of the Hölder regularity

−
1

m(z)
= z + Sm(z) =⇒

∂zm

m2
= 1 + S∂zm

=⇒ (1−m2S)∂zm = m2 i.e. ∂zm = (1−m2S)−1m2

so m is the solution to an analytic (CN-valued) ODE, hence analytic,
as long as the inverse above exists and ‖m‖ ≤ C.

Main Lemma: [Proof later] For any z ∈ H, |z| ≤ C we have∥∥∥(1−m2S)−1
∥∥∥ . 1

〈Imm(z)〉2

m(z) is analytic =⇒ |∂zImm| =
1

2
|∂zm| .

1

〈Imm〉2
∼

1

(Imm)2

using |m| ∼ 1 and Immi ∼ 〈Imm〉. After integration, we get

sup
z 6=z′∈H

‖Imm(z)− Imm(z′)‖
|z − z′|1/3

<∞
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Spectral gap for positive operators

Definition: For a hermitian matrix T , the spectral gap Gap(T ) ≥ 0

is the difference between the two largest eigenvalues of |T |. If ‖T‖2
is a degenerate ev. then the gap is zero.

Lemma [Spectral gap of T ] Let T have non-negative integral kernel,

tij = tji ≥ 0 and let h be a Perron-Frobenius eigenfunction. Then

Gap(T ) ≥
( ‖h‖2
‖h‖∞

)2
ε, ε := inf

i,j
tij

Proof. =⇒ Exercise
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Spectral gap of F

Lemma Recall F = |m|S
(
|m| ·

)
. For |z| ≤ C we have

(i) The spectral radius ‖F‖ ∼ 1 is a non degenerate eigenvalue

(ii) The corresponding `2-normalized non-negative eigenfunction

f(z) ∼ 1

(iii) F has uniform spectral gap

Gap(F ) ∼ 1

(i) We have seen ‖F‖ ≤ 1. The (easier) lower bound follows from

Fij = |mi|sij|mj| & 1/N (recall |m| ∼ 1).

(ii) follows from f = (‖F‖)−1F f ∼ 〈f〉

(iii) follows for the previous lemma and that ‖f‖∞ ∼ ‖f‖2.
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Boundedness of the stability operator

Goal:
∥∥∥(1−m2S)−1

∥∥∥ . 1

〈Imm(z)〉2

The key info is that this holds uniformly even as η → 0. Write

(1−m2S)w = w−
m2

|m|
F
( w

|m|

)
= e2iϕ|m|

(
e−2iϕ−F

)
|m|−1w, m = eiϕ|m|

Note that sinϕ ∼ Imm since |m| ∼ 1.

F has real spectrum, so e−2iϕ−F should be invertible if sin 2ϕ 6= 0.

In fact, it is invertible if sinϕ 6= 0, since F ≥ −1 + c.

This intuition is true, but the proof is more complicated for non
constant ϕ. We first present the simple case.
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Mechanism for stability I. Generalized Wigner

In this case mx = m constant, the Stieltjes tr. of the semicircle:

|m(z)| ≤ 1− cη, Imm(z) ≈ %(E), z = E + iη

1−m2S = 1− e2iϕF, m = |m| eiϕ, F = |m|S|m| = |m|2S

F is symmetric, Spec(F ) ⊂ (−1,1)

In the bulk ϕ ∼ Imm 6= 0

∥∥∥ 1

1−m2S

∥∥∥ =
∥∥∥ 1

1− e2iϕF

∥∥∥ ≤ C

ϕ
∼
C

% -1
1

0
�

�

Spec (F)

 Spec(  e     F)             i �2

2 Gap

For the edge analysis (when ϕ ≈ 0) use the gap, the isolated

eigenspace F f = |m|2f , with f = 1, is treated separately.
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Mechanism for stability II. Wigner-type

Stability Lemma. If T is hermitian, T f = ‖T‖2f , ‖T‖2 ≤ 1, then∥∥∥∥ 1

U − T

∥∥∥∥ ≤ C

Gap(T )
∣∣∣1− ‖T‖2〈f , Uf〉

∣∣∣, for any U unitary

In our case T = F , ‖F‖2 ≤ 1, U = e−2iϕ = (|m|/m)2 and∣∣∣1− ‖T‖2〈f , Uf〉
∣∣∣ ≥ Re

[
1− 〈|m|−2m2f2〉

]
& 〈Imm〉2

since Immi ∼ 〈Imm〉 and f ∼ 1.

Thus, we have stability (albeit weaker than before)∥∥∥∥ 1

1−m2S

∥∥∥∥ ∼ ∥∥∥∥ 1

e−2iϕ − F

∥∥∥∥ ≤ C

〈Imm〉2

Proof of the lemma: Need a lower bound on ‖(U −T )w‖2 for any w.
Split w = 〈f ,w〉f + Pw and separate into three regimes depending
on the relative size of

∣∣∣1− ‖T‖2〈f , Uf〉
∣∣∣ to ‖Pw‖2 and ‖PUf‖2.
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Summary of the QVE [Ajanki-E-Krüger]

−
1

m
= z + Sm, Imm ≥ 0

• Existence, uniqueness, representation as a Stieltjes transform of a

compactly supported generating measure

• Solution is bounded, |m| ∼ 1 and Immi ∼ 〈Imm〉.

• Solution is Hölder-1/3, real analytic apart from a few points on

the real line (edges, cusps)

• Stability operator has bounded inverse in the bulk and away from

the spectrum

• More careful analysis extends everything to the edges and cusps
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Matrix Dyson equation

For any z ∈ C+, consider the equation (we set A = EH = 0)

−
1

M
= z + S[M ], M = M(z) ∈ CN×N (4)

with the self-energy ”super-operator”

S[R] := E
[
HRH

]
, S : CN×N → CN×N

We do not need the specific form of S, we use only that

(i) S is selfadjoint w.r.t HS scalar product:

〈R, S[T ]〉 = 〈S[T ], R〉, 〈A,B〉 :=
1

N
TrA∗B

(ii) S is positivity preserving; S[R] ≥ 0 for any R ≥ 0.
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Fact: [Girko, Pastur, Wegner, Helton-Far-Speicher]

If S is self-adjoint and positivity preserving, then the MDE

−
1

M
= z + S[M ], M = M(z) ∈ CN×N

has a unique solution with ImM ≥ 0 and it is a Stieltjes transform

of a matrix-valued measure

M(z) =
∫
V (τ)dτ

τ − z
, z ∈ C+

Proof: fixed point argument as before.

Define the density of states

%(τ) := 〈V (τ)〉 =
1

N
TrV (τ), τ ∈ R

and the stability (super)operator L−1 where

L := I −MS[·]M = I − CMS

where CM is the ”sandwiching” operator CM [T ] := MTM .

82



Results on the MDE

Theorem [Ajanki-E-Krüger 2016]

Assume flatness: c〈R〉 ≤ S[R] . C〈R〉 for any R ≥ 0. Then

(i) % is compactly supported, 1
100-Hölder continuous

(ii) % is real analytic away from the edges.
(iii) V (τ) & %(τ)
(iv) M and M−1 are bounded away from the edges

‖M(z)‖ .
1

%(z) + dist(z, supp %)
, ‖M(z)−1‖ . 1 + |z|

(v) Stability operator is bounded in the spectral norm

‖(I − CM(z)S)−1‖sp .
1[

%(z) + dist(z, supp %)
]100

Theorem [Alt-E-Krüger 2018] Hölder exponent improved to 1/3 (opti-
mal), stability around edges and cusps.
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Some proofs for MDE

Main difficulty: non-commutativity. We present some instances.

1) Taking the Im part of the MDE

−Im
1

M
=

1

M∗
ImM

1

M
= Im z + S[ImM ] ≥ Im z

yields the trivial bound

‖M(z)‖ ≤
1

η
, η = Im z

2) Compact support for % and bounds on M are similar to QVE.

3) Key question: What is the proper saturated self-energy operator,

analogue of |m|S
(
|m| ·

)
, that was the basis of the stability analysis

(that implied regularity but also local law for random matrix etc.)
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Matrix stability operator

Lemma: M = M(z) be the solution to MDE, then∥∥∥∥ 1

1−MS[·]M

∥∥∥∥
sp

=
∥∥∥∥ 1

1− CMS

∥∥∥∥
sp

.
1

[%(z) + dist(z, supp(%)]100

Key: find the ”right” symmetrization F of CMS despite the noncom-
mutative matrix structure (M is even not normal, so even |M | is
problematic)

Need the analogue of

m = eiϕ|m|, F = |m|S
(
|m| ·

)
, |1−m2S| = |e−2iϕ − F |

We needed that F is symmetric (for spectral analysis of U − F ),
positivity preserving (for Perron-Frobenius), and

Imm

|m|
= η|m|+ |m|S

(
|m|

Imm

|m|

)
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Bringing to matrix Perron-Frobenius form

Try to write the equation for ImM

ImM = ηM∗M +M∗S(ImM)M

with some Q as (intuition: |Q| ”≈ ”|M |−1/2)

1

Q
(ImM)

1

Q∗
=

1

Q
M∗

1

Q∗
Q∗S

[
Q

1

Q
(ImM)

1

Q∗
Q∗
]
Q

1

Q
M

1

Q∗

i.e. (η = 0)

X = Y ∗Q∗S[QXQ∗]QY, with X :=
1

Q
(ImM)

1

Q∗
, Y :=

1

Q
M

1

Q∗

i.e.

X = Y ∗F[X]Y, with F[·] := Q∗S[Q ·Q∗]Q

Notice that X = ImY and if Y is unitary, then X and Y commute,

X = F[X]

so Perron-Frobenius applies and F is bounded. Also: F∗ = F!
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F[·] = Q∗S[Q ·Q∗]Q, M = QY Q∗, Y Y ∗ = I

Now we write the stability operator in terms of F. For any R

MS[R]M = QY Q∗S[Q
1

Q
R

1

Q∗
Q∗]QY Q∗ = QY F

[1

Q
R

1

Q∗

]
Y Q∗

so

R−MS[R]M = Q

(
1− Y F[·]Y

)[1

Q
R

1

Q∗

]
Q∗

Thus

I − CMS = KQ(I − CY F)K−1
Q , KQ[R] := QRQ∗

i.e. assuming Q ∼ 1, we have

I − CMS is stable ⇐⇒ I − CY F is stable

All we need is a symmetric polar decomposition of M = QY Q∗.
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Symmetric Polar Decomposition of M if ImM > 0

Goal: M = QY Q∗, Y unitary, |Q| ∼ 1

Explicitly: use that M = A+ iB and B > 0 to write

M =
√
B

(
1√
B
A

1√
B

+ i

)√
B

and make the middle factor unitary by dividing its absolute value:

M =
√
BWYW

√
B =: QY Q∗

W :=

1 +
(

1√
B
A

1√
B

)2
1

4

, Y :=

1√
B
A 1√

B
+ i

W2

In the regime, where c ≤ B ≤ C and ‖A‖ ≤ C, we have

Q =
√
BW ∼ 1

Another form of F:

F = K∗QSKQ = CWC√ImM
SC√ImM

CW
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Thus Krein-Rutman applied on the super-operator level to

F = CWC√ImM
SC√ImM

CW

implies that F has a unique, HS-normalized eigenmatrix F with e.v.

‖F‖ ≤ 1 and a spectral gap.

Noncommutative generalization of the Stability Lemma∥∥∥∥ 1

1− CMS

∥∥∥∥
sp

.
∥∥∥∥ 1

U− F

∥∥∥∥
sp

.
1

Gap(F)
∣∣∣1− ‖F‖〈F,U(F )〉

∣∣∣
with U = CU , then we prove that (noncommutative!)

|1− ‖F‖〈F,UFU〉| ≥ c, Gap(F) ≥ c

with some c = c(%) > 0 if ρ = 〈ImM〉 > 0 (i.e. in the bulk).
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Basic structure of the proof of the local law

Back to random matrices, recall the local law for correlated case.

G(z) = (H − z)−1, where H = H∗ has a correlation structure.

Theorem [AEK, EKS] In the bulk spectrum, %(<z) ≥ c, we have

|Gxy(z)−Mxy(z)| .
1√

N Im z
,

∣∣∣∣ 1NTrG(z)−
1

N
TrM(z)

∣∣∣∣ . 1

N Im z

with very high probability.

M is given by the solution of the MDE

−
1

M
= z + S[M ], ImM ≥ 0, Im z > 0

M is typically not diagonal, so G has nontriv off-diagonal component.
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Derivation of MDE: Cumulant Expansion

G(z) := (H − z)−1 I + zG = HG

Write it as

I + (z + S[G])G = D with D := HG+ S[G]G

Note that MDE is equivalent to the same eq. with D = 0

I + (z + S[M ])M = 0 (MDE)

Need to show that D is small then G approx. satisfies MDE.

In the Gaussian case, a simple integration by parts suffices:

ED = E
[
HG+ S[G]G

]
= E

[
− Ẽ[H̃GH̃]G+ S[G]G

]
= 0

and higher moments E|D|p are small by a similar argument.

In the general case, one can use either a full cumulant expansion or
resolvent expansion
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Proof of the local law

I + (z + S[M ])M = 0, I + (z + S[G])G = D

Subtracting from each other:

(I −MS[·]M)[G−M ] = MD +MS[G−M ](G−M)

With the linear stability operator (acting on the space of matrices)

L := 1−MS[·]M

we have (in appropriate norms and with ”good” test-matrices B)

‖G−M‖ . ‖L−1‖‖D‖, Tr(G−M)B ≈ TrMD(L−1)∗(B)

(quadratic corrections neglected here).

Operator norm is too strong; the good norm is

‖A‖pp := sup
‖x‖=‖y‖=1

E|〈x, Ay〉|p

92



More generally, the following facts can be established in the bulk

‖L−1‖ ≤ C ‖D‖ .
1
√
Nη

,
1

N
TrDA .

1

Nη
‖A‖ (∗)

The last two bounds hold with very high probability. The bound for
1
NTrAD requires an extra mechanism, called fluctuation averaging.

Then the entrywise and averaged optimal laws follow immediately:

max
x,y
|(G−M)xy| .

1
√
Nη

,
1

N
Tr(G−M)B .

1

Nη
‖B‖ (∗∗)

We thus need to establish (*)

The bounds on D are obtained with probabilistic techniques (cumu-

lant expansion) and have not been discussed.

We focused only on bounding the deterministic quantity ‖L−1‖
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Dyson equations and their stability operators

Name Dyson Eqn For Stab. op Feature

Wigner
E|hij|2 = sij = 1

N

− 1
m = z +m m ≈ 1

NTrG 1
1−m2|e〉〈e|

m = msc is

explicit

Gen. Wigner∑
j sij = 1

− 1
m = z +m m ≈ 1

NTrG 1
1−m2S

Split S as

S⊥ + |e〉〈e|

Wigner-type
sij arbitrary

− 1
m = z + Sm mx ≈ Gxx 1

1−m2S

m to be

determined

Corr. Wigner
Ehxyhuw 6� δxwδyu

− 1
M = z + S[M ] Mxy ≈ Gxy 1

1−MS[·]M
Matrix eq.

Super-op

• Gen. Wigner could be studied via a scalar equation only
(in practice a vector eq. is also considered for Gxx)

• Wigner-type needs vector equation even for the density
• Corr. Wigner needs matrix equation. – This is the ”true” object!
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RECAPITULATION: Three-step strategy.

1. Local density law down to scales � 1/N

(Needed in entry-wise form, i.e. control also matrix elements Gij
the resolvent G(z) = (H − z)−1 and not only TrG)

2. Use local equilibration of Dyson Brownian motion to prove uni-

versality for matrices with a tiny Gaussian component

3. Use perturbation theory to remove the tiny Gaussian component.

Step 1 is model dependent and has been the main topic today.

Some short comments on Step 2 and 3.
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Step 2: Dyson Brownian Motion

Gaussian convolution matrix interpolates between Wigner and GUE.

H = H0 −→ Ht −→ H∞ = GUE

Embed H into an Ornstein-Uhlenbeck matrix flow:

dHt =
1√
N

dBt −
1

2
Htdt Ht ∼ e−t/2H0 + (1− e−t)1/2V.

Dyson
=⇒ dλi =

1√
N

dBi +
(
−

1

2
λi +

1

N

∑
j 6=i

1

λi − λj

)
dt

Ev-flow becomes a stochastic dynamics of interacting “particles”.

Idea: Equilibrium is GUE/GOE with known local statistics.

Global equilibrium is reached in time O(1) (convexity, Bakry-Emery).

For local statistics, only local equilibrium needs to be achieved which
is much faster. The main result proves Dyson’s conjecture:
[E-Schlein-Yau] [E-Schlein-Yin-Yau] [Landon-Yau] [E-Schnelli] [Landon-Sosoe-Yau]
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“The picture of the gas coming into equilibrium in two well-

separated stages, with microscopic and macroscopic time

scales, is suggested with the help of physical intuition. A

rigorous proof that this picture is accurate would require a

much deeper mathematical analysis.”

Freeman Dyson, 1962

on the approach to equilibrium

of Dyson Brownian Motion

Global equilibrium is reached in time scale of O(1) .
Local equilibrium was believed to be reached in O(N−1).

Thm. Local law on scale η � N−1 implies local eq. in time O(N−1).
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Time scales for DBM

0 N N

time
-1 -ε 1

Local equilibrium
Global eq.

Resolvent perturbation regime

GUEH
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Step 3: Resolvent perturbation with four moment matching

Green Function Comparison Thm. Suppose H and Ĥ have matching
first four moments and entrywise local law is known for both. Then
expectations of resolvents with Im z slightly below 1/N are close:∣∣∣∣EΦ

[
TrG(E + iN−1−ε)

]
− EΦ

[
TrĜ(E + iN−1−ε)

]∣∣∣∣� ‖Φ‖
where Φ is a smooth fn, possibly with several G’s in the argument.

This can detect local statistics of individual eigenvalues.

Proof. Replace the entries of H to Ĥ one by one by res. expansion:

G(h12) = G0 +G0h12G0 +G0h12G0h12G0... G0 := G(h12 := 0)

G(ĥ12) = G0 +G0ĥ12G0 +G0ĥ12G0ĥ12G0... G0 := G(h12 := 0)

Using G0 is indep of h12, ĥ12, first four terms are the same in
expectation. Fifth order term is N−5/2, combinatorics N2 – small!
(For general Φ use Taylor) [Similar idea: Tao-Vu ]
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SUMMARY

• We reviewed local laws for various random matrix ensembles

• We gave a quantitative analysis of the MDE and its stability.

• MDE is the ”correct” equation in RM, with applications: Gram
matrices, Inhomogeneous circular law, structured models etc.

• For correlated random matrices with slow correlation decay in
both symmetry classes we proved

– Optimal local law in the bulk

– Wigner-Dyson-Mehta bulk universality

• Very recently the whole theory is extended to the edge

100


