
Introduction

Review of results by non-perturbative RG

It can take into account irrelevant terms like lattice effects, non linear
bands, Umklapp
It is based on convergent expansion (Fermions)
actual limitations; T = 0, weak coupling
I will focus on open questions which should admit an analytical
understanding
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Weyl semimetals with quasi-periodic disorder

The effect of weak random disorder in Weyl semimetals is subject to
debate; (Altland Bagrets PRL(2015) /Nandkishore, Huse, Sondhi,
PRB(2014)). Disorder is perturbatively irrelevant but non
perturbative effects can change the behavior (rare region)

What happens with quasi-periodic disorder? (Pixley, Wilson, Huse,
Gopalakrishnan PRL(2018)) Numerical evidence for stability for weak
disorder;no rare region; usual numerical limitations.

Lattice model H0 =
∫ dk

(2π)3 â†
kh(k)âk with h(k) =

(
α(k) β(k)
β∗(k) −α(k)

)
where k ∈ (0, 2π]3, α(k) = 2 + ζ − cos k1 − cos k2 − cos k3 and
β(k) = t1 sin k1 − it2 sin k2.
ζ ∈ [0, 1), in which case ĥ(k) is singular at k = ±pF , with
pF = (0, 0, arccos ζ) (Weyl points).

Vieri Mastropietro (Universitá di Milano)Quantum transport, small divisors, integrability, universalityJanuary 27, 2023 2 / 32



Weyl semimetals with quasi-periodic disorder

The effect of weak random disorder in Weyl semimetals is subject to
debate; (Altland Bagrets PRL(2015) /Nandkishore, Huse, Sondhi,
PRB(2014)). Disorder is perturbatively irrelevant but non
perturbative effects can change the behavior (rare region)
What happens with quasi-periodic disorder? (Pixley, Wilson, Huse,
Gopalakrishnan PRL(2018)) Numerical evidence for stability for weak
disorder;no rare region; usual numerical limitations.

Lattice model H0 =
∫ dk

(2π)3 â†
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Dirac Fermions with quasi-periodic disorder

In the vicinity of ±pF , k = q ± pF , Dirac fermions
Ĥ 0(q ± pF) = t1σ1q1 + t2σ2q2 ± sin pFσ3q3 + O(q2). Lattice
realization of Dirac fermions with smaller light velocity.

Many body interaction and quasiperiodic disorder

H = H0 + ε
∑

x
φx(a+

x,1a−
x,1 − a+

x,2a−
x,2) + λ

∑
x,y

v(x − y)ρxρy

where v(x − y) is a short range potential, ρx = a+
x,1a−

x,1 + a+
x,2a−

x,2
Quasi-periodic disorder, ωi irrational (rational=periodic)

φx =
∑

n
φ̂nei2π(ω1n1,x1+ω2n2x2+ω3n3x3)

with n ∈ Z3, φ̂n = φ̂−n and |φ̂n| ≤ Ce−ξ(|n1|+|n2|+|n3|).
Is the Weyl phase stable?
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Related problems in 1d (Aubry-Andre)

Without interaction 1d Aubry-Andre’ (in 3d Burgain 2002)
−εψ(x + 1)− εψ(x − 1) + u cos(2π(ωx + θ))ψ(x) = Eψ(x). Small
divisors 1/(En − Em) with En = cos(k − 2πωn) producing n!.

In such problems order by order analysis is not sufficient; in certain
cases the series are convergent (KAM tori), while in others divergent
(Birkoff series for prime integrals) (Even Poincare’ did mistakes...).
For almost every ω, θ a)for ε/u < 1

2 only pps with exponentially
decaying eigenfunctions; b)for ε/u > 1

2 purely absolutely continuous
(quasi-Bloch waves) (Dinaburg, Sinai, Jatomirskaja Avila... )
Early results in the interacting Aubry-Andre’ model T = 0
Mastropietro (CMP 99 proof of irrelevance of weak disorder,
PRB15persistence of gaps; PRL15+CMP16 strong disorder ) Vidal,
Mouhanna, Giamarchi, PRL99 (evidence of relevance with Fibonacci))
Recent investigations Iyer, Oganesyan, Refael, Huse, PRB (2013),
Varma, Žnidarič PRB19, Cookmeyer, Motruk, Moore PRB (2020)...
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Weyl semimetal and qp disorder

The Weyl phase is stable with weak quartic interaction; no
non-perturbative effects are present. Perturbation theory is
Convergent (determinant bounds) (Mastropietro JPA2014, JSP2014).

Determinant bound

ET (ψ̃(h)(P̃1), . . . , ψ̃
(h)(P̃n)) =

∑
T

∏
l∈T

g(xl − yl)

∫
dPT (t) det GT (t)

Eliminates combinatorial n!
Radius of convergence independent on vF (not only in linear region)
Multiscale analysis and 2 regimes, one linear and the other quartic.
cos(k + pF)− µ = sin pFkk + O(k2). Interaction irrelevant in both
regimes. (Gain by Pauli)
Strong interaction may produce different behavior Witczak-Krempa,
Knap, Abanin (PRL2014), Maciejko, Nandkishore PRB14...
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Weyl semimetal and qp disorder

What happens adding quasi periodic disorder? infinitely many
relevant quadratic terms. D = 4 − 3/2l

Conservation of momenta measured from the Fermi points
k = q + εpF , ε = (0, 0,±)

qi,1 − q2i, + 2ωiniπ + 2liπ + (ε1 − ε2)pF = 0

The factor 2ωiniπ is the momentum exchanged with the quasiperiodic
disorder while the factor 2liπ is exchanged with the lattice
Dangerous terms are the ones connecting Fermi points (q conserved);
if ω rational huge violation of conservation
In the q-periodic case are relevant or irrelevant?
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Renormalization group analysis

In the quasi-periodic case Umklapp terms can connect with arbitrary
precision the Fermi points; they could be therefore relevant (manifest
as small divisors)

Use of Number-theoretical properties; As in KAM theory we choose ω
so that a Diophntine condition holds

|2πωin|T ≥ C0
|n|τ

|2πω3n ± 2pF ,3|T ≥ C0
|n|τ

n ∈ Z/0

where by |.|T is |2πωn|T = infp |2πωn − 2πp|
Diophantine numbers have full measure
Multiscale decomposition g(x, y) =

∑0
h=−∞ gh(x, y), with ĝh(k),

|q| ∼ γh, k = q + εpF .
∫

P(dψ)eV =
∫

P(dψ≤−1)
∫

P(dψ)eV ...
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where by |.|T is |2πωn|T = infp |2πωn − 2πp|
Diophantine numbers have full measure
Multiscale decomposition g(x, y) =

∑0
h=−∞ gh(x, y), with ĝh(k),

|q| ∼ γh, k = q + εpF .
∫

P(dψ)eV =
∫

P(dψ≤−1)
∫

P(dψ)eV ...
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Renormalization group analysis

k = q ± pF in quadratic term |qa| ≤ γh, |qb| ≤ γh; We call
N = (N1,N2,N3), N =

∑
i ni (N non vanishing) where ni is the

momentum associated with each ε vertex in the subgraph;
ka − kb = 2π(N1ω1,N2ω2,N3ω3) 2γh ≥ |qa|T + |qb|T ≥ |qa − qb|T

Now we use the Diophantine property ε = 0,±

2γh ≥
√
|2πω1N1|2T + |2πω2N2|2T + |2πω3N3 + ε2pF ,3|2T ≥ 3C0

N̄ τ

so that, if N̄ = max(N1,N2,N3) then N̄ ≥ Cγ−h/τ

This inequality says that if the denominators of propagators are very
small, than the momentum transferred is very large
From the exponential decay of φn we can extract a factor
e−ξN̄2h ≤ e−ξCγ−h/τ2h which compensate the γ−h (problems by
overlapping divergences)
Similar to what was done for KAM Lindtedt series (Gallavotti
CMP94) but here there are loops (in KAM no loops)
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Stability of quasi-periodic disorder

As the interaction in general moves the location of the Weyl
momentum, we write ξ = cos pF + ν and we fix the interacting pF

S(x.y) Euclidean 2-point function at T = 0; Ŝ(k) Fourier transform
Theorem (PRB 2021) For λ, ε small enough, choosing ν and imposing
Diophantine conditions

S(q ± pF) =
1
Z

(
−iq0 ± v3q3 v1q1 − iv2q2
v1q1 + iv2q2 −iq0 ∓ v3q3

)−1
(1 + O(q))

with Z = 1 + O(λ, ε), v1 = t1 + O(λ, ε), v2 = t2 + O(λ, ε),
v3 = sin pF + O(λ, ε)

This result proves the stability of the Weyl semimetallic phase, as
quasiperiodic disorder does not modify qualitatively the 2-point
function (power law decay).
With random disorder still open
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Fermions in Z d with strong quasi-periodic
disorder

Let us consider the opposite limit of strong quasi-periodic disorder

Iyer, Oganesyan, Refael, Huse, PRB (2013) (MBL, all states localized,
conductivity zero for any T , debated...)
H = − ε

2
∑

~x
∑d

i=1(a
+
~x+~ei

a−
~x + a+

~x a−
~x+~ei

)+

u
∑
~x

(φ~x − µ)a+
~x a−

~x + U
∑
~x

d∑
i=1

a+
~x a−

~x a+
~x+~ei

a−
~x+~ei

φ~x = cos 2π(~ω~x), ω irrational, µ = cosα
T = 0 If Ĥii(p,~y) =

∑
~x∈Λ

∫
dx0eipx < ji

~x,x00; j
i
~y,0 > the Drude weight

is Di
~y = limp0→0 lim~p→0[Ĥii(p,~y)+ < τ i

~y >] with
τ i
~y = − ε

2(a
+
~y+~ei

a−
~y + a+

~y a−
~y+~ei

).
u = 1 considering ε,U small
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Fermions in Z d with strong quasi-periodic
disorder

||(~ω~x)||T ≥ C0|~x|−τ , ~x ∈ Zd/~0,
||(~ω~x)± 2α||T ≥ C0|~x|−τ ~x ∈ Zd/~0

Theorem(M PRL 16, CMP 2016, PRB 17, JSP 2021)Assuming
Diophantine conditions and for ε,U small enough the T = 0 2-point
function

|S(x; y)| ≤ C log∆
e−| log ε||~x−~y|

1 + (∆|x0 − y0|)N

with ∆ = (1 + min(|x|, |y|)−τ and the Drude weight is vanishing
Di
~y = 0

Exponential decay at T = 0 and vanishing of Drude weight; at least
localization in the ground state
Other disorder much more difficult cosω1x1 + cosω2x2 + cosω3x3
(even without interaction, Bourgain )
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Fermions in Z d with strong quasi-periodic
disorder

At ε = U = 0 the propagator is proportional to δ~x,~y; we expand for
small ε,U

k2
0 + |φx − µ|2 ∼ γ2h, h = 0,−1,−2..., γ > 1, φx = cos 2π(~ω~x) ; this

correspond to two regions, around ~ω~x = ±α.
We integrate the fields with decreasing scale; V h sum of monomials
of any order in

∑
x1

∫
dx0,1...dx0,nW h ∏

i ψ
εi
xi ,x0,i ,ρi .

According to power counting, the theory is non renormalizable ; all
effective interactions have positive dimension, D = 1 (at weak
coupling renormalizable)
One has to distinguish among the monomials

∏
i ψ

εi
xi ,x0,i ,ρi in the

effective potential between resonant and non resonant terms.
Resonant terms; ~xi = ~x. Non Resonant terms ~xi 6= ~xj for some i, j.
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Some idea of the proof

It turns out that the non resonant terms are irrelevant (even if they
are relevant according to power counting).

If two propagators have similar (not equal) small size (non resonant
subgraphs) , then the difference of their coordinates is large and this
produces a ”gain” as passing from x to x + n one needs n vertices.
That is if (~ω~x ′

1)mod1 ∼ (~ω~x ′
2)mod1 ∼ 2h, ~ω~x ′ = ~ω~x − ρα, ρ = ± then

by the Diophantine condition
2h ≥ ||~ω(~x ′

1 − ~x ′
2)|| ≥ C0|~x1 − ~x2|−τ

that is |~x1 − ~x2| ≥ C̄2−hτ−1 ; then ε2−hτ−1
.

For resonant terms gain due to Pauli; hence gain in any monomial
(coordinates or equal or different)
Expansion converges and D~y = 0. Exponential decay of correlations
(MBL in ground state)
Open problem in the random case (even at T = 0) or quasi periodic
T 6= 0....
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Universality

Remarkable Universality properties in transport. Without interaction
often topological explanation. Interaction produces corrections to all
orders.

Example Graphene; in the non interacting case the T = 0 optical
conductivity is σ = e2

h
π
2 .

Effect of interactions. Perturbative computations in the continuum
found different results ( Mishchenko (2008), Herbut,Juricic, Vafek
(2008)..), both for local and Coulomb interactions, and first claims
were that interactions produce strong renormalizations
Experiments found instead a universal result Geim, Nosovelov et al
(2008) (of course with error bars...)
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Graphene

Important to take into account lattice effect. Hubbard model on the
honeycomb lattice is H = H0 + U

∑
~x∈ΛA∪ΛB

(
n~x,↑ − 1

2

)(
n~x,↓ − 1

2

)
with H0 = −t

∑
~x∈ΛA,i=1,2,3

∑
σ=↑↓

(
a+
~x,σb−

~x+~δi ,σ
+ b+

~x+~δi ,σ
a−
~x,σ

)
,

~δ1 = (1, 0) , ~δ2 = 1
2(−1,

√
3) , ~δ3 = 1

2(−1,−
√

3), ΛA periodic
triangular lattice.

The conductivity is defined via the Euclidean Kubo formula (Wick
rotation ok) σii = limp0→0 limp→0

2
3
√

3
1
p0
(Kii(p, p0) + ∆), ∆

Schwinger terms, Kii Fourier transform of current correlation
< JiJj >.
Lattice Ward Identities (pj = 0, j 6= i)

p0K0i(p, p0) + pi(Kii(p, p0) + ∆) = 0

and pµĜµ(k,p) = Ŝ(k + p)− S(~p)
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Graphene

Crucial relation between differentiability and conductivity properties

If K(p0, p) is continuous from p0K0i(p, p0) + pi(Kii(p, p0) + ∆) = 0
we can exchange the limits and the Drude weight is vanishing
(
∫

dd+1k/k2)
K(p) is even so if differentiable the conductivity would vanishing but
is not
Mutiscale analysis says

K̂lm(p) = ZlZm
Z2 〈̂jp,l ; ĵ−p,m〉0,vF

+ R̂lm(p)

where 〈·〉0,vF
is the average associated to a non-interacting system

with Fermi velocity vF(U ) = 3
2 t + dU + .. Zµ = 3t

2 + aU + .. and
Rlm(p) with continous derivative.
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Implications of WI

By the lattice WI exact relations Z0 = Z , Z1 = Z2 = vFZ

K̂lm(p) = v2
F〈̂p,l ; ̂−p,m〉0,vF

+ R̂lm(p)

Note that K̂lm(p) is even

σ11 = − 2
3
√

3
lim

ω→0+
1
ω

[(
R̂11(ω,~0)− R̂lm(0,~0)

)
+
(
v2

F 〈̂j(ω,~0),l ; ĵ(−ω,~0),m〉
0,vF

− v2
F 〈̂j0,l ; ĵ0,m〉0,vF

)]
.

The first term is differentiable and even hence vanishing, while the
first term is identical to the free one so it does not depend from vF
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Universality of the conductivity

Theorem Giuliani, Mastropietro, Porta. PRB (2011); CMP (2012).
For |U | ≤ U0

σlm =
e2

h
π

2
δlm .

while the Fermi velocity vF = 3/2t + aU + O(U 2) with
a = 0.3707....

While the Fermi velocity and the wave function renormalization are
renormalized vF(U ) > vF(0) the conductivity is protected; all the
interaction corrections cancel exactly.
In the continuum with momentum regularization the cancellation is
absent
With Coulomb forces? (Herbut-M (PRB15) perturbative universal
corrections)
Frequency and temperature dependence?
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Universality of the conductivity

Strategy used in several other cases (Hall insulators, Chiral anomaly
in Weyl semimetals) amd in spin chains (see below)

In the quadratic response of weyl semimetals in d = 3 similar
argument with short interaction says∑

µ

pµ < jµν jρ >= − 1
2π2 εαβνσp1

ap2
β + O(p̄3)

There are examples where interaction breaks universality (Avdoshkin
,Kozii, Moore PRB 2020) in chiral photocurrent
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Non-integrable spin chains

The universality properties in 1d are more subtle as the interaction is
marginal (but strategy similar).

H = H0 + H1

H0 =
∑

x
J (S1

x S1
x+1 + S2

x S2
x+1) + J3S3

x S3
x+1 + hS3

x + UL

H1 = λ
∑

v(x, y)S3
x S3

y

with e.g.
∑

x |x|n|v(x, y)| ≤ C . [one can consider more general
H1 =

∑3
i=1

∑
x S i

xS i
x+2].

Equivalent to fermions ε(k) = Jcosk + h; if cos pF = −h/J .
cos(k ± pF)− cosF = ±(sin pF)k + r(k) with |r | ≤ Ck2.
In Luttinger model ±vk (quadratic terms neglected, continuum limit)
at T = 0 D = Kv/π, κ = Kπ/v, v velocity and
η = (K + K−1 − 2)/2 critical exponent.
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η = (K + K−1 − 2)/2 critical exponent.

Vieri Mastropietro (Universitá di Milano)Quantum transport, small divisors, integrability, universalityJanuary 27, 2023 20 / 32



Non-integrable spin chains
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Non-integrable spin chains

Luttinger liquid conjecture (Haldane). The same relations are true in
a wide class of systems (including solvable or not solvable spin chains)
at T = 0

In XXZ λ = 0 v = π/µ sinµ K−1 = 2(1 − µ/π)
κ−1 = 2π(π/µ− 1) sinµ, cosµ = −J3/J . LL relations verified.
Integrabilty conjecture Zotos (1977) in d = 1 at T > 0 the Drude
weight is vanishing for non solvable models and not vanishing for
solvable ( ∆β > 0 in XXZ by Mazur bounds Ilievski and Prosen 2013).
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Non-integrable spin chains

ρx = a+
x a−

x , jx = iJ/2(a+
x+1a−

x − a+
x a−

x+1); Ox,t = eiHtOxe−iHt ;

Continuity equation ∂tρx,t + djx,t = 0; dfx = fx+1 − fx .
Kubo formula

H (η, p) = i
L
(

∫ 0

−T
dteηt < [̂jp,t , ĵ−p,0] >β +i < ∆ >β)

∆ = −J/2
∑

x(a
+
x+1a−

x + a+
x+1a−

x ) =
∑

x ∆x

T = 0 Drude weight
D∞ = limη→0+ limp→0 limT→∞ limβ→∞ H (η, p); T > 0 Drude
weight Dβ = limη→0+ limp→0 limT→∞ H (η, p);
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Non-integrable spin chains

Euclidean correlations. Ox = eHx0Oxe−Hx0 , x = (x, x0);

DE(p) =
∫ β

0
dx0

∑
x

eipx < jxj0 > − < ∆ >β /L

Euclidean Drude weight. DE
∞ = limp0→0 limp→0 limβ→∞ DE(p);

κE
∞ = limp→0 limp0→0 limβ→∞ K(p) with

K =
∫ β

0 dx0
∑

x eipx < ρxρ0 >.

Theorem (Mas PRE(2015)) For |λ|, |J3| ≤ |sinpF |ε0 the LL
relations holds; in particular DE

∞ = Kπ/v > 0 and κE
∞ = K/vπ

Lemma (Porta-Mas JSP(2017)) DE
∞ = D∞

Theorem (Bonetto-M EPL, JSP(2018)) Same relations hold
|λ|, |J3| ≤ ε0 up to critical point
At T = 0 no effect if integrability, even far from the linear region
where irrelevant terms dominate!
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Ward Identities

Ward Identities (conservation of current)

−ip0 < ρ̂pψ̂
+
k ψ̂

−
k+p > +(1 − eip) < ĵpψ̂+

k ψ̂
−
k+p >=

< ψ̂+
k ψ̂

−
k > − < ψ̂+

k+pψ̂
−
k+p >

WI for densities

−ip0 < ρpρ−p > +i(1 − eip) < jpρ−p >= 0
−ip0 < ρpj−p > +(1 − eip)DE(p) = 0

DE = limp0→0 limp→0 DE(p); by the WI limp→0 limp0→0 DE(p) = 0;
hence a finite Drude weight is possible only of D(p) is non continuous
(in FT 1/x2). Relation between regularity and transport properties
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Non-integrable spin chains

Multiscale analysis

One gets a bond | < jxj0 > | ≤ C
1+|x|2 ; not enough to prove the

finiteness of DE
∞ (as

∫
dx 1

1+|x|2 ).
In order to take advantage from emerging symmetries we introduce a
linear continuum (reference) model with linear dispersion relations
(different from luttinger); we can fine tune its parameters
λ∞,Z ,Z1,Z2 so that the fixed point is the same (parameters
function of all microscopics details).
If < .. >R are the correlations of the reference model and <> of
lattice one

< jxjy >=< jxjy >R +G(x, y)

with |G(x, y)| ≤ C
1+|x−y|3 (bound by convergence); in Fourier

transform we have decomposed in a continuous and non continuous
part.
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QFT model

The reference model verifies an extra chiral symmetry which is not
true in the lattice model, that is ψ±

ω → e±iαωψ±
ω . If

Dω = −ip0 + ωvsk, τ = λ∞
4πvs

−ip0
Z

Z (1) < ρpψ
+
k ψ

−
k+p >R +vsωp Z

Z (2) < jpψ+
k ψ

−
k+p >R=

1
1 − τ

(< ψ+
k ψ

−
k >R − < ψ+

k+pψ
−
k+p >R)

By the WI for the reference model (Z wave finction renormalization,
Z (2) vertex renormalization)

< ĵpĵ−p >=
1

πvZ2
(Z (2))2

1 − τ2 [
D−
D+

+
D+

D−
+ 2τ ] + G(p)

G(p) continuous
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Reference model

< jψψ > and < jψψ >R coincides up to subleading terms for small
p; similarly < jψψ > and < jψψ >R. The lattice WI and the QFT
one must coincide, so that

Z (1)

Z(1 − τ)
= 1 vsZ (1)/Z (2) = 1

Moreover from the WI p2
0 < ρpρ−p >= 2 sin2 p/2D(p) we get

limp→0 limp0→0(< jj > +∆) = 0 and this fixes G(0) (crucial
continuity of G otherwise it could depend on the order of limits!).
The reference model verifies exact WI K =

√
1−τ
1+τ ;

DE
∞ = lim

p0→0
lim
p→0

1
πvsZ2

(Z2))2

1 − τ2
p2

0
p2

0 + v2
s p2 =

Kvs
π

. LL relation hold for solvable and non solvable models; no effect of
solvability at T = 0.
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Quadratic terms in LL theory

The expansion holds at finite β; subtracting the limit one maybe could
identify some term depending on integrability (if conjecture true).

Correlations are bounded by λnCn(sin pF)
n. Results not uniform in pF .

What happens close to QCT where curvature more relevant? (simpler
question than T 6= 0)
Two-regime RG analysis; in the infrared linear regime the scaling dimension
is 2 − n/2, in the ultraviolet quadratic one is 3/2 − n/4; Quartic terms
relevant. Gain due to Pauli principle (using the closeness of Fermi points).
Luttinger liquid relations uniformly |λ| ≤ ε0 up to the quantum critical
point, D = Kv/π κ = K/πv where (r is the distance from criticality)

K =
1 − τ

1 + τ
, τ = λ

v(0)− v(2pF)

2πv
+ O(λ2r) v = sin pF(1 + O(λr))

µ = µR + ν, ν = λv(o)pF/π + O(λ), µR = − cos pF = ±1 ∓ r .
At criticality one gets the non interacting values K → 1 D/D0 → 1 as
r → 0. µc is shifted by the interaction. O(λr)r convergent series.
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Luttinger liquid relations uniformly |λ| ≤ ε0 up to the quantum critical
point, D = Kv/π κ = K/πv where (r is the distance from criticality)

K =
1 − τ

1 + τ
, τ = λ

v(0)− v(2pF)

2πv
+ O(λ2r) v = sin pF(1 + O(λr))

µ = µR + ν, ν = λv(o)pF/π + O(λ), µR = − cos pF = ±1 ∓ r .
At criticality one gets the non interacting values K → 1 D/D0 → 1 as
r → 0. µc is shifted by the interaction. O(λr)r convergent series.
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Spinless case

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.05

0.1

0.15

0.2

0.25

0.3

pF

D

λ = 0.2, w(x) = δ(x)

λ = 0.2, w(x) = (δ(x+ 1) + δ(x− 1))/2

λ = 0.2, w(x) = exp(−|x|)/3
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D and K as function of density (or magnetic field), both in Heisenberg or
non solvable cases. D/D0 and K tend to 1: Features found in the solvable
case (Bethe ansatz) persists up to the critical point.
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One dimensional case: spinful

In the spinful case in the first quadratic regime the interaction is relevant
and there are no cancellations; the estimated radius of convergence
decreases with r .

Non trivial fixed point. K − 1 = O(1)

The LL relations are still true in the convergence regime
D = Kv/π κ = K/πv with

K =

√
(1 − 2νρ)2 − ν2

4
(1 + 2νρ)2 − ν2

4
v = sin pF

(1 + ν4)
2 − 4ν2

ρ

(1 − ν4)2 − 4ν2
ρ

ν4 = λv(0)/2π sin pF + .. νρ = λ(v(0)− v(2pF)/2)/2π sin pF + ..

νρ, ν4 are the anomalies of the emerging theory.(non perturbative)

One cannot take the r → 0 limit; however for λ small one can see that K
does not tend to the non interacting value 1 but D/D0 → 1 for small r .
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Spinful case
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Contrary to the spinless case, we cannot get pF = 0. K show the tendency
to a strongly interacting fixed point while D is close to the non interacting
value. Cfr the behavior of the Hubbard model by Bethe ansatz (Fig 13 14
in Schultz 93). Again no difference in solvable or non solvable
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Some open problems

Some very concrete questions maybe accessible to analytical study

Drude weight at finite T in 1d with integrable or non integrable
interactions in 1d (integrability conjecture true?).
Analytical results with random disorder even in the ground state in
Weyl?
Localization in the ground state with strong random disorder and
interaction at T = 0?
The same with quasi periodic but any state not only GS?
Universality or not with long range forces (graphene, Weyl semimetals
etc), temperature and frequency dependence (why small correction in
graphene) etc?
...
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