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INTRODUCTION

Review of results by non-perturbative RG

It can take into account irrelevant terms like lattice effects, non linear
bands, Umklapp

It is based on convergent expansion (Fermions)

actual limitations; 7" = 0, weak coupling

I will focus on open questions which should admit an analytical
understanding
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WEYL SEMIMETALS WITH QUASI-PERIODIC DISORDER

@ The effect of weak random disorder in Weyl semimetals is subject to
debate; (Altland Bagrets PRL(2015) /Nandkishore, Huse, Sondhi,
PRB(2014)). Disorder is perturbatively irrelevant but non
perturbative effects can change the behavior (rare region)
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@ The effect of weak random disorder in Weyl semimetals is subject to
debate; (Altland Bagrets PRL(2015) /Nandkishore, Huse, Sondhi,
PRB(2014)). Disorder is perturbatively irrelevant but non
perturbative effects can change the behavior (rare region)

@ What happens with quasi-periodic disorder? (Pixley, Wilson, Huse,
Gopalakrishnan PRL(2018)) Numerical evidence for stability for weak
disorder;no rare region; usual numerical limitations.
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@ The effect of weak random disorder in Weyl semimetals is subject to
debate; (Altland Bagrets PRL(2015) /Nandkishore, Huse, Sondhi,
PRB(2014)). Disorder is perturbatively irrelevant but non
perturbative effects can change the behavior (rare region)

@ What happens with quasi-periodic disorder? (Pixley, Wilson, Huse,
Gopalakrishnan PRL(2018)) Numerical evidence for stability for weak
disorder;no rare region; usual numerical limitations.

o Lattice model Hy = [ 5 alh(k)y with h(k) = <;((% _6;2))
where k € (0,27]%, a(k) =2+ ¢ — cosky — cos ky — cos k3 and
ﬂ(k) = tl sin kl — itg sin kg.
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WEYL SEMIMETALS WITH QUASI-PERIODIC DISORDER

@ The effect of weak random disorder in Weyl semimetals is subject to
debate; (Altland Bagrets PRL(2015) /Nandkishore, Huse, Sondhi,
PRB(2014)). Disorder is perturbatively irrelevant but non
perturbative effects can change the behavior (rare region)

@ What happens with quasi-periodic disorder? (Pixley, Wilson, Huse,
Gopalakrishnan PRL(2018)) Numerical evidence for stability for weak
disorder;no rare region; usual numerical limitations.

- o dk ATpiya i _ [o(k)  B(k)

@ Lattice model Hy = [ Gnje ah(k)ay, with h(k) = <ﬂ*(/€) (k)
where k € (0,27]%, a(k) =2+ ¢ — cosky — cos ky — cos k3 and
ﬂ(k) = tl sin kl — itg sin kg.

@ ¢ €0,1), in which case h(k) is singular at k = 4pp, with
pr = (0,0, arccos () (Weyl points).
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DIRAC FERMIONS WITH QUASI-PERIODIC DISORDER

@ In the vicinity of +pr, kK = ¢ &+ pp, Dirac fermions
H%(q % pp) = tio1q1 + toago £sinprosgs + O(g?). Lattice
realization of Dirac fermions with smaller light velocity.
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DIRAC FERMIONS WITH QUASI-PERIODIC DISORDER

@ In the vicinity of +pr, kK = ¢ &+ pp, Dirac fermions
H%(q % pp) = tio1q1 + toago £sinprosgs + O(g?). Lattice
realization of Dirac fermions with smaller light velocity.

@ Many body interaction and quasiperiodic disorder

H=H)+ az gbw(azla;l — aZQa;2) + )\Z (T — Y)papy
T

x?y

where v(z — y) is a short range potential, p, = a ja_ | + a) ,a_,
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DIRAC FERMIONS WITH QUASI-PERIODIC DISORDER

@ In the vicinity of +pr, kK = ¢ &+ pp, Dirac fermions
H%(q % pp) = tio1q1 + toago £sinprosgs + O(g?). Lattice
realization of Dirac fermions with smaller light velocity.

@ Many body interaction and quasiperiodic disorder

H=H+¢ Z gbw(azla;l - a22a;2) + A Z (T — Y)papy
T T,y

where v(z — y) is a short range potential, p, = a; a,, + a; ya,,

@ Quasi-periodic disorder, w; irrational (rational=periodic)
by = Z qgneiQW(wln17$1+w2n2$2+w3n3$3)
n

with n € Z3, ¢, = d_p, and |¢,| < CesmltInzl+insl),

@ Is the Weyl phase stable?
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RELATED PROBLEMS IN 1D (AUBRY-ANDRE)

@ Without interaction 1d Aubry-Andre’ (in 3d Burgain 2002)
—ep(z+1) —ep(z — 1) + ucos(2m(wz + 0))Y(z) = Ev(x). Small
divisors 1/(E,, — E,,) with E,, = cos(k — 2rwn) producing n!.
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@ Without interaction 1d Aubry-Andre’ (in 3d Burgain 2002)
—ep(x+1) —ep(z — 1) + ucos(2m(wz + 0))(x) = Evp(z). Small
divisors 1/(E,, — E,,) with E,, = cos(k — 2rwn) producing n!.

@ In such problems order by order analysis is not sufficient; in certain
cases the series are convergent (KAM tori), while in others divergent
(Birkoff series for prime integrals) (Even Poincare’ did mistakes...).

4/32

VIERIT MASTROPIETRO (UNIVERSITA DI MILAQUANTUM TRANSPORT, SMALL DIVISORS, INT JANUARY 27, 2023



RELATED PROBLEMS IN 1D (AUBRY-ANDRE)

@ Without interaction 1d Aubry-Andre’ (in 3d Burgain 2002)
—ep(x+1) —ep(z — 1) + ucos(2m(wz + 0))(x) = Evp(z). Small
divisors 1/(E,, — E,,) with E,, = cos(k — 2rwn) producing n!.

@ In such problems order by order analysis is not sufficient; in certain
cases the series are convergent (KAM tori), while in others divergent
(Birkoff series for prime integrals) (Even Poincare’ did mistakes...).

@ For almost every w, 0 a)for ¢/u < % only pps with exponentially
decaying eigenfunctions; b)for ¢/u > % purely absolutely continuous
(quasi-Bloch waves) (Dinaburg, Sinai, Jatomirskaja Avila... )
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@ Without interaction 1d Aubry-Andre’ (in 3d Burgain 2002)
—ep(x+1) —ep(z — 1) + ucos(2m(wz + 0))(x) = Evp(z). Small
divisors 1/(E,, — E,,) with E,, = cos(k — 2rwn) producing n!.

@ In such problems order by order analysis is not sufficient; in certain
cases the series are convergent (KAM tori), while in others divergent
(Birkoff series for prime integrals) (Even Poincare’ did mistakes...).

@ For almost every w, 0 a)for ¢/u < % only pps with exponentially
decaying eigenfunctions; b)for ¢/u > % purely absolutely continuous
(quasi-Bloch waves) (Dinaburg, Sinai, Jatomirskaja Avila... )

@ Early results in the interacting Aubry-Andre’ model T'=0
Mastropietro (CMP 99 proof of irrelevance of weak disorder,
PRB15persistence of gaps; PRL15+CMP16 strong disorder ) Vidal,
Mouhanna, Giamarchi, PRL99 (evidence of relevance with Fibonacci))
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RELATED PROBLEMS IN 1D (AUBRY-ANDRE)

@ Without interaction 1d Aubry-Andre’ (in 3d Burgain 2002)
—ep(x+1) —ep(z — 1) + ucos(2m(wz + 0))(x) = Evp(z). Small
divisors 1/(E,, — E,,) with E,, = cos(k — 2rwn) producing n!.

@ In such problems order by order analysis is not sufficient; in certain
cases the series are convergent (KAM tori), while in others divergent
(Birkoff series for prime integrals) (Even Poincare’ did mistakes...).

@ For almost every w, 0 a)for ¢/u < % only pps with exponentially
decaying eigenfunctions; b)for ¢/u > % purely absolutely continuous
(quasi-Bloch waves) (Dinaburg, Sinai, Jatomirskaja Avila... )

@ Early results in the interacting Aubry-Andre’ model T'=0
Mastropietro (CMP 99 proof of irrelevance of weak disorder,
PRB15persistence of gaps; PRL15+CMP16 strong disorder ) Vidal,
Mouhanna, Giamarchi, PRL99 (evidence of relevance with Fibonacci))

@ Recent investigations lyer, Oganesyan, Refael, Huse, PRB (2013),
Varma, Znidari¢ PRB19, Cookmeyer, Motruk, Moore PRB (2020)...
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WEYL SEMIMETAL AND QP DISORDER

@ The Weyl phase is stable with weak quartic interaction; no
non-perturbative effects are present. Perturbation theory is
Convergent (determinant bounds) (Mastropietro JPA2014, JSP2014).

VIERT MASTROPIETRO (UNIVERSITA DI MILAQUANTUM TRANSPORT, SMALL DIVISORS, INT JANUARY 27, 2023 5/32



WEYL SEMIMETAL AND QP DISORDER

@ The Weyl phase is stable with weak quartic interaction; no
non-perturbative effects are present. Perturbation theory is
Convergent (determinant bounds) (Mastropietro JPA2014, JSP2014).

@ Determinant bound

ETWM(Py), ... oM (Pn)) =" T] 9z — w) /dPT(t) det GT(t)

T leT

Eliminates combinatorial n!
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WEYL SEMIMETAL AND QP DISORDER

@ The Weyl phase is stable with weak quartic interaction; no
non-perturbative effects are present. Perturbation theory is
Convergent (determinant bounds) (Mastropietro JPA2014, JSP2014).

@ Determinant bound

ST(J(}L)(PD,...,?,D m) (P,)) ZHQ (7 — 1) /dPT(t) det GT(t)
T leT

Eliminates combinatorial n!

@ Radius of convergence independent on v (not only in linear region)
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WEYL SEMIMETAL AND QP DISORDER

@ The Weyl phase is stable with weak quartic interaction; no
non-perturbative effects are present. Perturbation theory is
Convergent (determinant bounds) (Mastropietro JPA2014, JSP2014).

@ Determinant bound

ETW@M(Py), ... .0 (Pn)) =D T 9l —w) /dPT(t) det G™(t)
T €T
Eliminates combinatorial n!
@ Radius of convergence independent on v (not only in linear region)

@ Multiscale analysis and 2 regimes, one linear and the other quartic.
cos(k + pr) — u = sin ppkk + O(k?). Interaction irrelevant in both
regimes. (Gain by Pauli)
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WEYL SEMIMETAL AND QP DISORDER

@ The Weyl phase is stable with weak quartic interaction; no
non-perturbative effects are present. Perturbation theory is
Convergent (determinant bounds) (Mastropietro JPA2014, JSP2014).

Determinant bound

ETWW(Pr), ... (Pr)) =Y T atai — ) /dPT(t) det G™(t)
T €T

Eliminates combinatorial n!

@ Radius of convergence independent on v (not only in linear region)

Multiscale analysis and 2 regimes, one linear and the other quartic.
cos(k + pr) — u = sin ppkk + O(k?). Interaction irrelevant in both
regimes. (Gain by Pauli)

Strong interaction may produce different behavior Witczak-Krempa,
Knap, Abanin (PRL2014), Maciejko, Nandkishore PRB14...
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WEYL SEMIMETAL AND QP DISORDER

@ What happens adding quasi periodic disorder? infinitely many
relevant quadratic terms. D =4 — 3/2]
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WEYL SEMIMETAL AND QP DISORDER

@ What happens adding quasi periodic disorder? infinitely many
relevant quadratic terms. D =4 — 3/2]

@ Conservation of momenta measured from the Fermi points
k=q+epr, e=(0,0,%)

Qi1 — G2i, + 2wingm + 2L + (61 — 2)pr = 0

The factor 2w;n;m is the momentum exchanged with the quasiperiodic
disorder while the factor 2/;7 is exchanged with the lattice
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k=q+epr, e=(0,0,%)

Qi1 — G2i, + 2wingm + 2L + (61 — 2)pr = 0

The factor 2w;n;m is the momentum exchanged with the quasiperiodic
disorder while the factor 2/;7 is exchanged with the lattice

@ Dangerous terms are the ones connecting Fermi points (q conserved);
if w rational huge violation of conservation
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WEYL SEMIMETAL AND QP DISORDER

@ What happens adding quasi periodic disorder? infinitely many
relevant quadratic terms. D =4 — 3/2]

@ Conservation of momenta measured from the Fermi points
k=q+epr, e=(0,0,%)

Qi1 — G2i, + 2wingm + 2L + (61 — 2)pr = 0

The factor 2w;n;m is the momentum exchanged with the quasiperiodic
disorder while the factor 2/;7 is exchanged with the lattice

@ Dangerous terms are the ones connecting Fermi points (q conserved);
if w rational huge violation of conservation

@ In the g-periodic case are relevant or irrelevant?
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RENORMALIZATION GROUP ANALYSIS

@ In the quasi-periodic case Umklapp terms can connect with arbitrary
precision the Fermi points; they could be therefore relevant (manifest
as small divisors)
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RENORMALIZATION GROUP ANALYSIS

@ In the quasi-periodic case Umklapp terms can connect with arbitrary
precision the Fermi points; they could be therefore relevant (manifest
as small divisors)

@ Use of Number-theoretical properties; As in KAM theory we choose w
so that a Diophntine condition holds

Co

[n|”

n€Z/0

|27rwin|p > 127twsn + 2pp 3|7 >

n]”

where by |.|7 is [2rwn|r = inf, [2mwn — 27|
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@ In the quasi-periodic case Umklapp terms can connect with arbitrary
precision the Fermi points; they could be therefore relevant (manifest

as small divisors)
@ Use of Number-theoretical properties; As in KAM theory we choose w
so that a Diophntine condition holds

Co

[n|”

n€Z/0

|27rwin|p > 127twsn + 2pp 3|7 >

n]”

where by |.|7 is [2rwn|r = inf, [2mwn — 27|

@ Diophantine numbers have full measure
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RENORMALIZATION GROUP ANALYSIS

@ In the quasi-periodic case Umklapp terms can connect with arbitrary
precision the Fermi points; they could be therefore relevant (manifest
as small divisors)

@ Use of Number-theoretical properties; As in KAM theory we choose w
so that a Diophntine condition holds

C
Tzio n€Z/0

|n]”

|2mwin|r > P
where by |.|7 is [2rwn|r = inf, [2mwn — 27|
@ Diophantine numbers have full measure

@ Multiscale decomposition g(z,y) = S-0____ g"(x,y), with §"(k),
gl ~ 2" k= g+epp. [P(dp)e” = [ P(dp="")
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RENORMALIZATION GROUP ANALYSIS

@ k= g4 pp in quadratic term |g,| <", |q| < A" We call
N = (Ny, Ny, N3), N =>".n; (N non vanishing) where n; is the
momentum associated with each ¢ vertex in the subgraph;
ka — ky = 2m(Niw1, Nows, N3ws) 29" > |qal7 + | g7 > |40 — @3l 7
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RENORMALIZATION GROUP ANALYSIS

@ k= g4 pp in quadratic term |g,| <", |q| < A" We call
N = (Ny, Ny, N3), N =>".n; (N non vanishing) where n; is the
momentum associated with each ¢ vertex in the subgraph;
ko — kp = 2m(Niw1, Nowa, Nsws) 29" > |qa| 7 + |gs| 7 > |60 — 6|7
@ Now we use the Diophantine property ¢ = 0, +

3C
2*yh > \/]27rw1N1|2T + |27Tw2N2\2T + |27ws N3 + €2pr 313 > N—TO

so that, if N = max(Ny, Na, N3) then N > Cy~ M7
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RENORMALIZATION GROUP ANALYSIS

@ k= g4 pp in quadratic term |g,| <", |q| < A" We call
N = (Ny, Ny, N3), N =>".n; (N non vanishing) where n; is the
momentum associated with each ¢ vertex in the subgraph;
ko — kp = 2m(Niw1, Nowa, Nsws) 29" > |qa| 7 + |gs| 7 > |60 — 6|7
@ Now we use the Diophantine property ¢ = 0, +

3¢
2*yh > \/]27rw1N1|2T + |27Tw2N2\2T + |2mws N3 + 62pF,3|2 > N—TO
so that, if N = max(Ny, No, N3) then N > Cy~ M7
@ This inequality says that if the denominators of propagators are very
small, than the momentum transferred is very large
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RENORMALIZATION GROUP ANALYSIS

@ k= g4 pp in quadratic term |g,| <", |q| < A" We call
N = (Ny, Ny, N3), N =>".n; (N non vanishing) where n; is the
momentum associated with each ¢ vertex in the subgraph;
ko — kp = 2m(Niw1, Nowa, Nsws) 29" > |qa| 7 + |gs| 7 > |60 — 6|7
@ Now we use the Diophantine property ¢ = 0, +

2" > \/]27rw1N1|2T + [27wo No|% + |2mws N3 + e2pp 3% > ?;VLTO
so that, if N = max(Ny, Na, N3) then N > Cy~ M7

@ This inequality says that if the denominators of propagators are very
small, than the momentum transferred is very large

@ From the exponential decay of ¢, we can extract a factor
e~ EN2" < =€07772" \hich compensate the 4" (problems by
overlapping divergences)
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RENORMALIZATION GROUP ANALYSIS

@ k= g4 pp in quadratic term |g,| <", |q| < A" We call
N = (Ny, Ny, N3), N =>".n; (N non vanishing) where n; is the
momentum associated with each ¢ vertex in the subgraph;
ko — kp = 2m(Niw1, Nowa, Nsws) 29" > |qa| 7 + |gs| 7 > |60 — 6|7
@ Now we use the Diophantine property ¢ = 0, +

2" > \/]27rw1N1|2T + [27wo No|% + |2mws N3 + e2pp 3% > ?;VLTO
so that, if N = max(Ny, Na, N3) then N > Cy~ M7

@ This inequality says that if the denominators of propagators are very
small, than the momentum transferred is very large

@ From the exponential decay of ¢, we can extract a factor
e~ EN2" < =€07772" \hich compensate the 4" (problems by
overlapping divergences)

@ Similar to what was done for KAM Lindtedt series (Gallavotti
CMP94) but here there are loops (in KAM no loops)
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STABILITY OF QUASI-PERIODIC DISORDER

@ As the interaction in general moves the location of the Weyl
momentum, we write £ = cos pr + v and we fix the interacting pg
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STABILITY OF QUASI-PERIODIC DISORDER

@ As the interaction in general moves the location of the Weyl
momentum, we write £ = cos pr + v and we fix the interacting pg

@ S(z.y) Euclidean 2-point function at T = 0; S(k) Fourier transform
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STABILITY OF QUASI-PERIODIC DISORDER

@ As the interaction in general moves the location of the Weyl
momentum, we write £ = cos pr + v and we fix the interacting pg
@ S(z.y) Euclidean 2-point function at T = 0; S(k) Fourier transform

@ Theorem (PRB 2021) For A, e small enough, choosing v and imposing
Diophantine conditions

—1
1 —igo £ v3q3 vV1q1 — Qe
S(q+ = — . . 1+0
(a+pr) =7 <v1q1 ting —inFuwg) O OW)

with Z =1+ O(\,e), v = i + O(\,€), 1 = ta + O(\, ¢),
v3 = sin pp + O(\, )
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STABILITY OF QUASI-PERIODIC DISORDER

@ As the interaction in general moves the location of the Weyl
momentum, we write £ = cos pr + v and we fix the interacting pr

@ S(z.y) Euclidean 2-point function at T = 0; S(k) Fourier transform

@ Theorem (PRB 2021) For A, e small enough, choosing v and imposing
Diophantine conditions

1 (—igo+vgs vign— img)
Slatpr) = Z <v1ql + g —iq F 113(]3) (1+ Ola))
with Z =1+ O(\,e), v = i + O(\,€), 1 = ta + O(\, ¢),
v3 = sin pp + O(\, )
@ This result proves the stability of the Weyl semimetallic phase, as
quasiperiodic disorder does not modify qualitatively the 2-point
function (power law decay).
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STABILITY OF QUASI-PERIODIC DISORDER

@ As the interaction in general moves the location of the Weyl
momentum, we write £ = cos pr + v and we fix the interacting pr

@ S(z.y) Euclidean 2-point function at T = 0; S(k) Fourier transform

@ Theorem (PRB 2021) For A, e small enough, choosing v and imposing
Diophantine conditions

1 (—igo+vgs vign— img)
Slatpr) = Z <v1ql + g —iq F 113(]3) (1+ Ola))
with Z =1+ O(\,e), v = i + O(\,€), 1 = ta + O(\, ¢),
v3 = sin pp + O(\, )
@ This result proves the stability of the Weyl semimetallic phase, as
quasiperiodic disorder does not modify qualitatively the 2-point
function (power law decay).

@ With random disorder still open
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

@ Let us consider the opposite limit of strong quasi-periodic disorder
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

@ Let us consider the opposite limit of strong quasi-periodic disorder
@ lyer, Oganesyan, Refael, Huse, PRB (2013) (MBL, all states localized,
conductivity zero for any T, debated...)

e H=-5%. Zl 1(%3rg az +aqa5+e)+
+
UZ af aa? + UZZG* a* ai—i-e@ z+61
z =1

¢z = cos 2m(&T), w irrational, p = cosa
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

@ Let us consider the opposite limit of strong quasi-periodic disorder
@ lyer, Oganesyan, Refael, Huse, PRB (2013) (MBL, all states localized,
conductivity zero for any T, debated...)

e H=-5%. Zl 1(%3rg az +aqa5+e)+
+
UZ af aa? + UZZG* a* ai—i-e@ z+61
z =1

¢z = cos 2m(&T), w irrational, p = cosa
e T=0If fiﬁ(p, ¥) = zen [ dzge™* < j%xoo?jg’o > the Drude weight
Di = limyp, 0 limpﬂo[f{”(p, 9+ < 7'?-3'» >| with

— +
= =50 05 + 0 05,5)
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

@ Let us consider the opposite limit of strong quasi-periodic disorder
@ lyer, Oganesyan, Refael, Huse, PRB (2013) (MBL, all states localized,
conductivity zero for any T, debated...)

e H=-5%. Zl 1(%3rg az +aq aﬂe)%—

E _ + § E
U ¢z af a’f +U a"’ a’* z—i—el z—i—el
z

¢z = cos 2m(&T), w irrational, p = cosa
e T=0If fiﬁ(p, ¥) = zen [ dzge™* < j%xoo?jg’o > the Drude weight
Di = limyp, 0 limpﬂo[f{”(p, 9+ < 7'?-3'» >| with

— +
5—_*( +a.95 T 9 9g1a,)-

@ u =1 considering e, U small
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

o ||(@@)|lp > Col# . & € Z4/0,
(&F) + 2|7 > ColZ|™ T €2/0
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

o [|(@@)|lT > Colz| ™", & € 2°/0,
(&F) + 2|7 > ColZ|™ T €2/0

@ Theorem(M PRL 16, CMP 2016, PRB 17, JSP 2021)Assuming
Diophantine conditions and for €, U small enough the T = 0 2-point

function Lo
e~ |1ogel|Z—7l

1+ (Alzg — yo|)Y

with A = (1 + min(|z|, |y|)~" and the Drude weight is vanishing
Di =0
0]

|S(z; )| < Clog A
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

o ||(@@)|lp > Col# . & € Z4/0,
(&F) + 2|7 > ColZ|™ T €2/0
@ Theorem(M PRL 16, CMP 2016, PRB 17, JSP 2021)Assuming

Diophantine conditions and for €, U small enough the T = 0 2-point

function Lo
e~ |1ogel|Z—7l

1+ (Alzo — yo )V
with A = (1 + min(|z|, |y|)~" and the Drude weight is vanishing
D% =0

@ Exponential decay at 7' = 0 and vanishing of Drude weight; at least
localization in the ground state

|S(z; )| < Clog A
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

o [|(@@)|lT > Colz| ™", & € 2°/0,
(&F) + 2|7 > ColZ|™ T €2/0

@ Theorem(M PRL 16, CMP 2016, PRB 17, JSP 2021)Assuming
Diophantine conditions and for €, U small enough the T = 0 2-point

function Lo
e~ |1ogel|Z—7l

1+ (Alzo — yo )V
with A = (1 + min(|z|, |y|)~" and the Drude weight is vanishing
D% =0

@ Exponential decay at 7' = 0 and vanishing of Drude weight; at least
localization in the ground state

|S(z; )| < Clog A

@ Other disorder much more difficult coswyz; + coswazs + coswszas
(even without interaction, Bourgain )
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

@ At ¢ = U = 0 the propagator is proportional to ¢z ;; we expand for
small e, U
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

@ At ¢ = U = 0 the propagator is proportional to ¢z ;; we expand for
small e, U

° k§+’¢z—ﬂ|2’v’72h, h=0,-1,-2..., v > 1, ¢, = cos 27(JZ) ; this
correspond to two regions, around &F = +a.
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

@ At ¢ = U = 0 the propagator is proportional to ¢z ;; we expand for
small e, U

@ K2+ |y — pl? ~4* h=10,-1,-2..., v > 1, ¢, = cos 2m(&7T) ; this
correspond to two regions, around &JZ = *ta.

@ We integrate the fields with decreasing scale; V" sum of monomials
. h )
of any order in 35 [ duo1...dwon W T, 9051 40 -
@ According to power counting, the theory is non renormalizable ; all
effective interactions have positive dimension, D = 1 (at weak
coupling renormalizable)
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FERMIONS IN Z% WITH STRONG QUASI-PERIODIC
DISORDER

@ At ¢ = U = 0 the propagator is proportional to ¢z ;; we expand for
small e, U

@ K2+ |y — pl? ~4* h=10,-1,-2..., v > 1, ¢, = cos 2m(&7T) ; this
correspond to two regions, around &JZ = *ta.

@ We integrate the fields with decreasing scale; V" sum of monomials

. h )

of any order in 35 [ duo1...dwon W T, 9051 40 -

@ According to power counting, the theory is non renormalizable ; all
effective interactions have positive dimension, D = 1 (at weak
coupling renormalizable)

@ One has to distinguish among the monomials [, %5 , . in the

effective potential between resonant and non resonant terms.
Resonant terms; Z; = Z. Non Resonant terms Z; # Z; for some ¢, j.
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SOME IDEA OF THE PROOF

@ It turns out that the non resonant terms are irrelevant (even if they
are relevant according to power counting).
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SOME IDEA OF THE PROOF

@ It turns out that the non resonant terms are irrelevant (even if they
are relevant according to power counting).

@ If two propagators have similar (not equal) small size (non resonant
subgraphs) , then the difference of their coordinates is large and this
produces a "gain” as passing from z to x + n one needs n vertices.
That is if (GZ])mod1 ~ (GF)mod1 ~ 2", &7’ = &% — pa, p = + then
by the Diophantine condition

2" > |IB(7 - B)|| = Cold — |7

_ _ el
that is |71 — 2| > €277 ' then g2
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SOME IDEA OF THE PROOF

@ It turns out that the non resonant terms are irrelevant (even if they
are relevant according to power counting).

@ If two propagators have similar (not equal) small size (non resonant
subgraphs) , then the difference of their coordinates is large and this
produces a "gain” as passing from z to x + n one needs n vertices.
That is if (GZ])mod1 ~ (GF)mod1 ~ 2", &7’ = &% — pa, p = + then
by the Diophantine condition

2" > |IB(7 - B)|| = Cold — |7

_ _ el
that is |71 — 2| > €277 ' then g2

@ For resonant terms gain due to Pauli; hence gain in any monomial
(coordinates or equal or different)
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SOME IDEA OF THE PROOF

@ It turns out that the non resonant terms are irrelevant (even if they
are relevant according to power counting).

@ If two propagators have similar (not equal) small size (non resonant
subgraphs) , then the difference of their coordinates is large and this
produces a "gain” as passing from z to x + n one needs n vertices.
That is if (GZ])mod1 ~ (GF)mod1 ~ 2", &7’ = &% — pa, p = + then
by the Diophantine condition

2" > |IB(7 - B)|| = Cold — |7

_ _ el
that is |71 — 2| > €277 ' then g2

@ For resonant terms gain due to Pauli; hence gain in any monomial
(coordinates or equal or different)

@ Expansion converges and Dj; = 0. Exponential decay of correlations
(MBL in ground state)

VIERT MASTROPIETRO (UNIVERSITA DI MILAQUANTUM TRANSPORT, SMALL DIVISORS, INT JANUARY 27,



SOME IDEA OF THE PROOF

@ It turns out that the non resonant terms are irrelevant (even if they
are relevant according to power counting).

@ If two propagators have similar (not equal) small size (non resonant
subgraphs) , then the difference of their coordinates is large and this
produces a "gain” as passing from z to x + n one needs n vertices.
That is if (GZ])mod1 ~ (GF)mod1 ~ 2", &7’ = &% — pa, p = + then
by the Diophantine condition

2" > (|37 - B)I| = Coldi — Bl 7

_ _ el
that is |71 — 2| > €277 ' then g2

@ For resonant terms gain due to Pauli; hence gain in any monomial
(coordinates or equal or different)

@ Expansion converges and Dj; = 0. Exponential decay of correlations
(MBL in ground state)

@ Open problem in the random case (even at 7' = 0) or quasi periodic
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UNIVERSALITY

@ Remarkable Universality properties in transport. Without interaction
often topological explanation. Interaction produces corrections to all
orders.
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UNIVERSALITY

@ Remarkable Universality properties in transport. Without interaction
often topological explanation. Interaction produces corrections to all
orders.

@ Example Graphene; in the non interacting case the T' = 0 optical

2

conductivity is 0 = 5

JANUARY 2
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UNIVERSALITY

@ Remarkable Universality properties in transport. Without interaction
often topological explanation. Interaction produces corrections to all
orders.

@ Example Graphene; in the non interacting case the T' = 0 optical

R g
conductivity is 0 = 7.

@ Effect of interactions. Perturbative computations in the continuum
found different results ( Mishchenko (2008), Herbut,Juricic, Vafek
(2008)..), both for local and Coulomb interactions, and first claims
were that interactions produce strong renormalizations
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UNIVERSALITY

@ Remarkable Universality properties in transport. Without interaction
often topological explanation. Interaction produces corrections to all
orders.

@ Example Graphene; in the non interacting case the T' = 0 optical

L 2
conductivity is 0 = 5-3.

@ Effect of interactions. Perturbative computations in the continuum
found different results ( Mishchenko (2008), Herbut,Juricic, Vafek
(2008)..), both for local and Coulomb interactions, and first claims
were that interactions produce strong renormalizations

@ Experiments found instead a universal result Geim, Nosovelov et al
(2008) (of course with error bars...)
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GRAPHENE

@ Important to take into account lattice effect. Hubbard model on the
honeycomb lattice is H = Hy + UZfeAAUAB <nf’T - %) (”f,i - %)

with Hy = —t Y scn im193 Y0ty (agab;+& ot b;gma;g).
gl = (170) ) 52 = %(_17 \/3) ’ 53 = %(_1’ _\/3)’ AA periodic
triangular lattice.
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GRAPHENE

@ Important to take into account lattice effect. Hubbard model on the
honeycomb lattice is H = Ho + U zcp i, <ng—5’T — %) (”a?,i — %)
with Hy = —t Y sen  i108 gty (agab;+& L b;gma;g),
01=(1,0, & =3(=1,v3), & =3(~1,-V3), A4 periodic
triangular lattice.

@ The conductivity is defined via the Euclidean Kubo formula (Wick
rotation ok) oy = lim,, 0 lim,_g %%(Kﬁ(p, po) + A), A
Schwinger terms, K;; Fourier transform of current correlation
< JlJJ >.
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GRAPHENE

@ Important to take into account lattice effect. Hubbard model on the
honeycomb lattice is H = Ho + U zcp i, <ng—5’T — %) (”a?,i — %)
with Hy = —t Y sen  i108 gty (agab;+& L b;gma;g),

5 =(1,0), doa=21(=1,v3), 85 =1(~1,-v3), A4 periodic
triangular lattice.

@ The conductivity is defined via the Euclidean Kubo formula (Wick
rotation ok) oy = lim,, 0 lim,_g %%(Kﬁ(p, po) + A), A
Schwinger terms, K;; Fourier transform of current correlation
< JlJJ >.

@ Lattice Ward Identities (p; = 0, j # 1)

poKoi(p, po) + pi(Kii(p, po) +A) =0

and p, G, (k,p) = S(k+p) — S(P)
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GRAPHENE

@ Crucial relation between differentiability and conductivity properties
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GRAPHENE

@ Crucial relation between differentiability and conductivity properties

@ If K(po,p) is continuous from poKo:(p, po) + pi(Ksi(p, po) + A) =0
we can exchange the limits and the Drude weight is vanishing
(f dd+1]{,‘/k2)

VIERT MASTROPIETRO (UNIVERSITA DI MILAQUANTUM TRANSPORT, SMALL DIVISORS, INT JANUARY 27,



GRAPHENE

@ Crucial relation between differentiability and conductivity properties

@ If K(po,p) is continuous from poKoi(p, po) + pi(Ki(p, po) +A) =0
we can exchange the limits and the Drude weight is vanishing
(f dd—i—lk./kQ)

@ K(p) is even so if differentiable the conductivity would vanishing but
is not
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GRAPHENE

@ Crucial relation between differentiability and conductivity properties

@ If K(po,p) is continuous from poKoi(p, po) + pi(Ki(p, po) +A) =0
we can exchange the limits and the Drude weight is vanishing
(f dd—i—lk./kQ)

@ K(p) is even so if differentiable the conductivity would vanishing but
is not

@ Mutiscale analysis says

. %7, .
Kim(p) = T(Jp 55J-pm)g.op + Bim (D)

where (-) . is the average associated to a non-interacting system

with Fermi velocity vp(U) = 3t+dU +.. Z, =3l +aU+ .. and
Ry, (p) with continous derivative.
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IMPLICATIONS OF WI

@ By the lattice WI exact relations Zg = Z, Zy = Zo = vpZ

f{lm(p) = 7}125‘<jp,l;j—p,m>oyvp + le(p)
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IMPLICATIONS OF WI

@ By the lattice WI exact relations Zg = Z, Zy = Zo = vpZ

f{lm(p) = 7}125‘<jp,l;j—p,m>oyvp + le(p)

@ Note that Kj,,(p) is even
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IMPLICATIONS OF WI

@ By the lattice WI exact relations Zg = Z, Zy = Zo = vpZ

f{lm(p) = 7}125‘<jp,l;j—p,m>oyvp + le(p)

@ Note that Kj,,(p) is even
°

VIERT MASTROPIETRO (UNIVERSITA DI MILAQUANTUM TRANSPORT, SMALL DIVISORS, INT JANUARY 27, 2023 17/32



IMPLICATIONS OF WI

@ By the lattice WI exact relations Zg = Z, Zy = Zo = vpZ

f{lm(p) = 7}125‘<jp,l;j—p,m>oyvp + le(p)

@ Note that Kj,,(p) is even
°

|:(R11(w, 6) - le(07 6))

@ The first term is differentiable and even hence vanishing, while the
first term is identical to the free one so it does not depend from vp
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UNIVERSALITY OF THE CONDUCTIVITY

@ Theorem Giuliani, Mastropietro, Porta. PRB (2011); CMP (2012).

For ‘ U’ < U()
en
Olm = Zgélm .
while the Fermi velocity vy = 3/2t + aU + O(U?) with
a=0.3707....
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UNIVERSALITY OF THE CONDUCTIVITY

@ Theorem Giuliani, Mastropietro, Porta. PRB (2011); CMP (2012).

For ‘ U’ < U()
en
m — **5m .
o 5 90
while the Fermi velocity vy = 3/2t + aU + O(U?) with
a=0.3707....

@ While the Fermi velocity and the wave function renormalization are
renormalized vp(U) > vp(0) the conductivity is protected; all the
interaction corrections cancel exactly.
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UNIVERSALITY OF THE CONDUCTIVITY

@ Theorem Giuliani, Mastropietro, Porta. PRB (2011); CMP (2012).

For ‘ U’ < U()
en
Olm = Zgélm .
while the Fermi velocity vy = 3/2t + aU + O(U?) with
a=0.3707....

@ While the Fermi velocity and the wave function renormalization are
renormalized vp(U) > vp(0) the conductivity is protected; all the
interaction corrections cancel exactly.

@ In the continuum with momentum regularization the cancellation is
absent
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UNIVERSALITY OF THE CONDUCTIVITY

@ Theorem Giuliani, Mastropietro, Porta. PRB (2011); CMP (2012).
For ‘ U’ < U()

6271'

Olm = Zgélm .
while the Fermi velocity vp = 3/2t + aU + O(U?) with
a=0.3707....

@ While the Fermi velocity and the wave function renormalization are
renormalized vp(U) > vp(0) the conductivity is protected; all the
interaction corrections cancel exactly.

@ In the continuum with momentum regularization the cancellation is
absent

@ With Coulomb forces? (Herbut-M (PRB15) perturbative universal
corrections)
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UNIVERSALITY OF THE CONDUCTIVITY

@ Theorem Giuliani, Mastropietro, Porta. PRB (2011); CMP (2012).

For ‘ U’ < U()
en
Olm = Zgélm .
while the Fermi velocity vy = 3/2t + aU + O(U?) with
a=0.3707....

@ While the Fermi velocity and the wave function renormalization are
renormalized vp(U) > vp(0) the conductivity is protected; all the
interaction corrections cancel exactly.

@ In the continuum with momentum regularization the cancellation is
absent

@ With Coulomb forces? (Herbut-M (PRB15) perturbative universal
corrections)

@ Frequency and temperature dependence?
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UNIVERSALITY OF THE CONDUCTIVITY

@ Strategy used in several other cases (Hall insulators, Chiral anomaly
in Weyl semimetals) amd in spin chains (see below)
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UNIVERSALITY OF THE CONDUCTIVITY

@ Strategy used in several other cases (Hall insulators, Chiral anomaly
in Weyl semimetals) amd in spin chains (see below)

@ In the quadratic response of weyl semimetals in d = 3 similar
argument with short interaction says

. 1
Zp,u < Juvlp >= Tor Qeocﬁl/cfpapﬁ + O(p )
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UNIVERSALITY OF THE CONDUCTIVITY

@ Strategy used in several other cases (Hall insulators, Chiral anomaly
in Weyl semimetals) amd in spin chains (see below)

@ In the quadratic response of weyl semimetals in d = 3 similar
argument with short interaction says

. 1
Zp,u < Juvlp >= Tor Qeocﬁl/cfpapﬁ + O(p )

@ There are examples where interaction breaks universality (Avdoshkin
,Kozii, Moore PRB 2020) in chiral photocurrent
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NON-INTEGRABLE SPIN CHAINS

@ The universality properties in 1d are more subtle as the interaction is
marginal (but strategy similar).

VIERI MASTROPIETRO (UNIVERSITA DI MILAQUANTUM TRA! SM £ J JANUARY 2



NON-INTEGRABLE SPIN CHAINS

@ The universality properties in 1d are more subtle as the interaction is
marginal (but strategy similar).

@ H=Hy+ H,
Hy =Y J(SiSpiq+ S282,1) + 38383, + hSE + Uy

x
H =\ Z v(z, y)SgSg‘j’

with e.g. > |z|"|v(z, y)| < C. [one can consider more general
3 N
Hi=301 20,550
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NON-INTEGRABLE SPIN CHAINS

@ The universality properties in 1d are more subtle as the interaction is
marginal (but strategy similar).

o H= HO + H1
Hy = Z J(Sp 851+ 828511) + J3S3 S0 + hSy + UL

x
H =\ Z v(z, y)SgSg‘j’

with e.g. > |z|"|v(z, y)| < C. [one can consider more general
H, = Z?:1 Zx S;Sal;+2]-

@ Equivalent to fermions (k) = Jcosk + h; if cospr = —h/J.
cos(k + pp) — cosp = £(sin pr)k + r(k) with |r| < Ck%.
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NON-INTEGRABLE SPIN CHAINS

@ The universality properties in 1d are more subtle as the interaction is
marginal (but strategy similar).

(") H:H0+H1

Hy =Y J(SiSpiq+ S282,1) + 38383, + hSE + Uy

x
H =\ Z v(z, y)SgSg‘j’

with e.g. > |z|"|v(z, y)| < C. [one can consider more general
Hy=30, %, SiSi,)-

@ Equivalent to fermions (k) = Jcosk + h; if cospr = —h/J.
cos(k + pp) — cosp = £(sin pr)k + r(k) with |r| < Ck%.

@ In Luttinger model vk (quadratic terms neglected, continuum limit)
at T=0 D= Kv/m, k = K7 /v, v velocity and
n= (K + K~' —2)/2 critical exponent.
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NON-INTEGRABLE SPIN CHAINS

@ Luttinger liquid conjecture (Haldane). The same relations are true in
a wide class of systems (including solvable or not solvable spin chains)
at T'=0
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NON-INTEGRABLE SPIN CHAINS

@ Luttinger liquid conjecture (Haldane). The same relations are true in
a wide class of systems (including solvable or not solvable spin chains)

at T =0

@ INXXZA=0v=mn/usiny K~ =2(1 — p/7)
k~t=2n(r/p—1)siny, cosp = —J3/J. LL relations verified.

JANUARY 27, 2023 21 /32
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NON-INTEGRABLE SPIN CHAINS

@ Luttinger liquid conjecture (Haldane). The same relations are true in
a wide class of systems (including solvable or not solvable spin chains)
at T'=0

@ INXXZA=0v=mn/usiny K~ =2(1 — p/7)
k~t=2n(r/p—1)siny, cosp = —J3/J. LL relations verified.

@ Integrabilty conjecture Zotos (1977) in d =1 at T > 0 the Drude
weight is vanishing for non solvable models and not vanishing for
solvable ( Ag > 0 in XXZ by Mazur bounds llievski and Prosen 2013).
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NON-INTEGRABLE SPIN CHAINS

B + - - . _ JiHt ) ,—iHt.
@ pr=afay, jo=1J/2(ay 0, —afag,,); Op = e Ope™ ™,
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NON-INTEGRABLE SPIN CHAINS

@ p,=ala;, j, = iJ/Q(a:_Ha; — a;a;rl); Ot = et O, e~ iHt,
@ Continuity equation 0;py ¢ + djyt = 0; dfy = for1 — fa-
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NON-INTEGRABLE SPIN CHAINS

@ Continuity equation at/):c,t + dyz,t —o, dfz = for1 — fo.
@ Kubo formula

. 0
¢ 5o .
H(n,p) = L(/ ’ dte < Up,tsJ—p,0) >5 +1 < A >p)
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NON-INTEGRABLE SPIN CHAINS

@ py = a;ax Jz = lJ/Q( Gpy10g a+a;¢+1) Ow,t = thOace_th
@ Continuity equation 0;py ¢ + djyt = 0; dfy = for1 — fa-
@ Kubo formula

.0
(3 ~ “ .
H(n,p) = L(/ . dte’ < Up,tsJ—p,0) >5 +1 < A >p)
A__J/QZ(:r+1a +a’x+1a ) ZQEAZ
@ T = 0 Drude weight
Dy = lim, g+ limy 0 lim 700 limg oo H(7n, p); T > 0 Drude
weight Dg = lim, _,q+ limy, o lim 7o H (7, p);
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NON-INTEGRABLE SPIN CHAINS

@ Euclidean correlations. Oy = eff®0 O e~ 1% x = (1, x9);
E g ;
D (p):/ da:()Zelpx<jxjo >—<A>5/L
0 X

Euclidean Drude weight. DZ = limy,,—0 limy, 0 limg_,o0 D¥(p);
k2 =lim, o lim,, 0 limg_, K(p) with

K= fég drg Y, ePX < pxpo >.
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NON-INTEGRABLE SPIN CHAINS

@ Euclidean correlations. Oy = eff®0 O e~ 1% x = (1, x9);
E g ;
D (p):/ da:()Zelpx<jxjo >—<A>5/L
0 X

Euclidean Drude weight. DZ = limy,,—0 limy, 0 limg_,o0 D¥(p);
k2 =lim, o lim,, 0 limg_, K(p) with
K= fég drg Y, ePX < pxpo >.
@ Theorem (Mas PRE(2015)) For |A|,|J3] < |sinpr|eop the LL
relations holds; in particular DX = Km/v > 0 and k% = K/vr
@ Lemma (Porta-Mas JSP(2017)) DZ = D,
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NON-INTEGRABLE SPIN CHAINS

@ Euclidean correlations. Oy = eff®0 O e~ 1% x = (1, x9);
E g ;
D (p):/ da:()Zelpx<jxjo >—<A>5/L
0 X

Euclidean Drude weight. DZ = limy,,—0 limy, 0 limg_,o0 D¥(p);
k2 =lim, o lim,, 0 limg_, K(p) with
K= fég drg Y, ePX < pxpo >.
@ Theorem (Mas PRE(2015)) For |A|,|J3] < |sinpr|eop the LL
relations holds; in particular DX = Km/v > 0 and k% = K/vr
@ Lemma (Porta-Mas JSP(2017)) DZ = D,
@ Theorem (Bonetto-M EPL, JSP(2018)) Same relations hold
|Al, |J3] < eo up to critical point
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NON-INTEGRABLE SPIN CHAINS

@ Euclidean correlations. Oy = eff®0 O e~ 1% x = (1, x9);
E g ;
D (p):/ da:()Zelpx<jxjo >—<A>5/L
0 X

Euclidean Drude weight. DZ = limy,,—0 limy, 0 limg_,o0 D¥(p);
k2 =lim, o lim,, 0 limg_, K(p) with
K= fég drg Y, ePX < pxpo >.

@ Theorem (Mas PRE(2015)) For |A|,|J3] < |sinpr|eop the LL
relations holds; in particular DX = Km/v > 0 and k% = K/vr

@ Lemma (Porta-Mas JSP(2017)) DZ = D,

@ Theorem (Bonetto-M EPL, JSP(2018)) Same relations hold
|Al, |J3] < eo up to critical point

@ At T = 0 no effect if integrability, even far from the linear region
where irrelevant terms dominate!
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WARD IDENTITIES

@ Ward Identities (conservation of current)
—ipo < oty iy > (1 — €®) < ot iy, >=

i PR
<t > = < UepPirp >

VIERIT MASTROPIETRO (UNIVERSITA DI MILAQUANTUM TRAN.



WARD IDENTITIES

@ Ward Identities (conservation of current)
—ipo < oty iy > (1 — €®) < ot iy, >=

. TR -
<Y P > = <y >

@ WI for densities

—ipy < ppp—p > +i(1 — €P) < fppp >=0
—ipy < ppj-p > +(1 = ¢?)DF(p) = 0
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WARD IDENTITIES

@ Ward Identities (conservation of current)
—ipo < oty iy > (1 — €®) < ot iy, >=

. TR -
<Y P > = <y >

@ WI for densities

—ipy < ppp—p > +i(1 — €7) < fppp >=0
—ipy < ppj-p > +(1 - ¢?)DP(p) =0

@ DP =lim,,_,0lim,—0 D¥(p); by the WI lim,_,q lim,, o DZ(p) = 0;
hence a finite Drude weight is possible only of D(p) is non continuous
(in FT 1/22). Relation between regularity and transport properties
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NON-INTEGRABLE SPIN CHAINS

@ Multiscale analysis
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NON-INTEGRABLE SPIN CHAINS

@ Multiscale analysis
@ One gets a bond | < jxjo > | <

finiteness of DZ (as [ dx

1+€(|2; not enough to prove the

1
)
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NON-INTEGRABLE SPIN CHAINS

@ Multiscale analysis

@ One gets a bond | < jxjo > | < #; not enough to prove the
finiteness of DZ (as [ dxﬁ).

@ In order to take advantage from emerging symmetries we introduce a
linear continuum (reference) model with linear dispersion relations
(different from luttinger); we can fine tune its parameters
Mooy Z, Z1Y, Z? so that the fixed point is the same (parameters
function of all microscopics details).
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NON-INTEGRABLE SPIN CHAINS

@ Multiscale analysis

@ One gets a bond | < jxjo > | < #; not enough to prove the
finiteness of DZ (as [ dxﬁ).

@ In order to take advantage from emerging symmetries we introduce a
linear continuum (reference) model with linear dispersion relations
(different from luttinger); we can fine tune its parameters
Mooy Z, Z1Y, Z? so that the fixed point is the same (parameters
function of all microscopics details).

@ If < .. >p are the correlations of the reference model and <> of
lattice one

< ]x]y >=< jxjy >R JFG(Xa Y)
with |G(x,y)| < ﬁ (
transform we have decomposed in a continuous and non continuous
part.

bound by convergence); in Fourier
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QFT MODEL

@ The reference model verifies an extra chiral symmetry which is not
true in the lattice model, that is 1t — etivwyt |f

D, = —ipy + wusk, T_4>;w
b2 < i, >R Up e < Gt >R
A P*k Tk+p S Z(g) P*k Yk+p
1

T (< U Ve >R — < U pYiip >R)
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QFT MODEL

@ The reference model verifies an extra chiral symmetry which is not
true in the lattice model, that is 1t — etivwyt |f
D, = —ipy + wusk, T = Aco

drvg

7
—P0my z<z>
1

T (< U Ve >R — < U pYiip >R)

< Ppwk wk_;_p >R HUsWp— < jpl/};_wk__,_p >R=

@ By the WI for the reference model (Z wave finction renormalization,
Z®?) vertex renormalization)

1 (Zz®)% D_

Dy
sz2ﬁ[7+7+27']+G( )

< Jofop >=
ol-p D,  D_

G(p) continuous
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REFERENCE MODEL

@ < jyp > and < jip >pg coincides up to subleading terms for small
p; similarly < jy1 > and < jiyp >g. The lattice WI and the QFT
one must coincide, so that

7(1)

_a (1)) 72
=L vl /72 =1
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REFERENCE MODEL

@ < jyp > and < jip >pg coincides up to subleading terms for small
p; similarly < jy1 > and < jiyp >g. The lattice WI and the QFT
one must coincide, so that

7(1)
B 70 1 7(2) —q

Za-n Ll

@ Moreover from the WI p2 < ppp—p >= 2sin® p/2D(p) we get
limy, 0 limp, —0(< 4 > +A) = 0 and this fixes G(0) (crucial
continuity of G otherwise it could depend on the order of limits!).

1—7

The reference model verifies exact Wl K = o
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REFERENCE MODEL

@ < jyp > and < jip >pg coincides up to subleading terms for small
p; similarly < jy1 > and < jiyp >g. The lattice WI and the QFT
one must coincide, so that

7(1)
B 70 1 7(2) —q
Za-n Ll
@ Moreover from the WI p2 < ppp—p >= 2sin® p/2D(p) we get
limy, 0 limp, —0(< 4 > +A) = 0 and this fixes G(0) (crucial
continuity of G otherwise it could depend on the order of limits!).

The reference model verifies exact Wl K = L‘r—:;
®
1 (Z%)? 2 Kv
DE = lim lim (27) P 2
po—0p—0 TV Z% 1 — 72 pg + v2p? T

. LL relation hold for solvable and non solvable models; no effect of
solvability at T'= 0.
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QUADRATIC TERMS IN LLL THEORY

@ The expansion holds at finite 3; subtracting the limit one maybe could
identify some term depending on integrability (if conjecture true).
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QUADRATIC TERMS IN LLL THEORY

@ The expansion holds at finite 3; subtracting the limit one maybe could
identify some term depending on integrability (if conjecture true).

@ Correlations are bounded by A" C™(sin pr)™. Results not uniform in pgp.
What happens close to QCT where curvature more relevant? (simpler
question than T # 0)
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QUADRATIC TERMS IN LLL THEORY

@ The expansion holds at finite 3; subtracting the limit one maybe could
identify some term depending on integrability (if conjecture true).

@ Correlations are bounded by A" C™(sin pr)™. Results not uniform in pgp.
What happens close to QCT where curvature more relevant? (simpler
question than T # 0)

@ Two-regime RG analysis; in the infrared linear regime the scaling dimension
is 2 — n/2, in the ultraviolet quadratic one is 3/2 — n/4; Quartic terms
relevant. Gain due to Pauli principle (using the closeness of Fermi points).
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QUADRATIC TERMS IN LLL THEORY

@ The expansion holds at finite 3; subtracting the limit one maybe could
identify some term depending on integrability (if conjecture true).

@ Correlations are bounded by A" C™(sin pr)™. Results not uniform in pgp.
What happens close to QCT where curvature more relevant? (simpler
question than T # 0)

@ Two-regime RG analysis; in the infrared linear regime the scaling dimension
is 2 — n/2, in the ultraviolet quadratic one is 3/2 — n/4; Quartic terms
relevant. Gain due to Pauli principle (using the closeness of Fermi points).

@ Luttinger liquid relations uniformly |A| < &¢ up to the quantum critical
point, D = Kv/m k= K/mv where (r is the distance from criticality)

_Ll=7 _\v0) — v(2pr) 2 .
K—1+T,T—)\T+O()\ r) v=sinpp(l+ O(Ar))

pw=pr+v, v=>X(o)pr/m+ ON), pp = —cospp = £1F 7.
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QUADRATIC TERMS IN LLL THEORY

The expansion holds at finite 3; subtracting the limit one maybe could
identify some term depending on integrability (if conjecture true).

Correlations are bounded by A" C™(sin pr)™. Results not uniform in pg.
What happens close to QCT where curvature more relevant? (simpler
question than T # 0)

Two-regime RG analysis; in the infrared linear regime the scaling dimension
is 2 — n/2, in the ultraviolet quadratic one is 3/2 — n/4; Quartic terms
relevant. Gain due to Pauli principle (using the closeness of Fermi points).

Luttinger liquid relations uniformly |A| < &g up to the quantum critical
point, D = Kv/m k= K/mv where (r is the distance from criticality)

_Ll=7 _\v0) — v(2pr) 2 .

=17 )\T + O(\°r) v=sinpp(l+ O(Ar))
pw=pur+v, v=2(o)pr/m+ O\), pp = —cospr = 1 F r.

At criticality one gets the non interacting values K —1 D/Dy — 1 as
r — 0. . is shifted by the interaction. O(Ar)r convergent series.
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SPINLESS CASE

— X =02u(x) = b(z)

S A= 02.u() = (5
A=02,u(z)

— =002,

---a=002, 1)+ 6z —1))/2]
A= 0.02,u(z) = exp(=|z[)/3

F1) 48 - 1))/2
—|2)/3

03

015

0.05 F

0, 02 04 06 05 1 12 14

0 0.2 04 06 08 1 12 14
2

D and K as function of density (or magnetic field), both in Heisenberg or
non solvable cases. D/Dy and K tend to 1: Features found in the solvable
case (Bethe ansatz) persists up to the critical point.
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ONE DIMENSIONAL CASE: SPINFUL

@ In the spinful case in the first quadratic regime the interaction is relevant
and there are no cancellations; the estimated radius of convergence
decreases with r.
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ONE DIMENSIONAL CASE: SPINFUL

@ In the spinful case in the first quadratic regime the interaction is relevant
and there are no cancellations; the estimated radius of convergence
decreases with r.

@ Non trivial fixed point. K —1 = O(1)
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ONE DIMENSIONAL CASE: SPINFUL

@ In the spinful case in the first quadratic regime the interaction is relevant
and there are no cancellations; the estimated radius of convergence
decreases with r.

@ Non trivial fixed point. K —1 = O(1)

@ The LL relations are still true in the convergence regime
D= Kv/m k= K/mv with

(1-2v,)2—v2 . (14 v4)? — 402
= P e——— vV = S1n P e e————
(1+20,)2 — 72 PRy — a2

vy = Xv(0)/2nsinpr + .. v, = A(v(0) — v(2pr)/2) /2w sinpr + ..

V,,v4 are the anomalies of the emerging theory.(non perturbative)
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ONE DIMENSIONAL CASE: SPINFUL

@ In the spinful case in the first quadratic regime the interaction is relevant
and there are no cancellations; the estimated radius of convergence
decreases with r.

@ Non trivial fixed point. K —1 = O(1)
@ The LL relations are still true in the convergence regime

D= Kv/m k= K/mv with

_ (1-2v,)2—v2 U:Sion(1+V4)2 — 4}
(14 2v,)2 —v2 (1—va)? —42

vy = Xv(0)/2nsinpr + .. v, = A(v(0) — v(2pr)/2) /2w sinpr + ..
V,,v4 are the anomalies of the emerging theory.(non perturbative)

@ One cannot take the » — 0 limit; however for X\ small one can see that K
does not tend to the non interacting value 1 but D/Dy — 1 for small 7.
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SPINFUL CASE

0.98

096 e
03
=094

) 02 04 06 08 1 12 14
PE

277 0
025 e
72 0.96

094/

A

002 tf

09
0.05 01, 015 02 02

0.6 08 1 12 14
r

Contrary to the spinless case, we cannot get pr = 0. K show the tendency
to a strongly interacting fixed point while D is close to the non interacting
value Cfr the behaV|or of the Hubbard model by Bethe ansatz (Fig 13 14
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SOME OPEN PROBLEMS

@ Some very concrete questions maybe accessible to analytical study
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SOME OPEN PROBLEMS

@ Some very concrete questions maybe accessible to analytical study

@ Drude weight at finite 7" in 1d with integrable or non integrable
interactions in 1d (integrability conjecture true?).
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SOME OPEN PROBLEMS

@ Some very concrete questions maybe accessible to analytical study
@ Drude weight at finite 7" in 1d with integrable or non integrable
interactions in 1d (integrability conjecture true?).

@ Analytical results with random disorder even in the ground state in
Weyl?
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SOME OPEN PROBLEMS

@ Some very concrete questions maybe accessible to analytical study

@ Drude weight at finite 7" in 1d with integrable or non integrable
interactions in 1d (integrability conjecture true?).

@ Analytical results with random disorder even in the ground state in
Weyl?

@ Localization in the ground state with strong random disorder and
interaction at 7' = 07
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SOME OPEN PROBLEMS

@ Some very concrete questions maybe accessible to analytical study

@ Drude weight at finite 7" in 1d with integrable or non integrable
interactions in 1d (integrability conjecture true?).

@ Analytical results with random disorder even in the ground state in
Weyl?

@ Localization in the ground state with strong random disorder and
interaction at T = 07

@ The same with quasi periodic but any state not only GS?
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SOME OPEN PROBLEMS

@ Some very concrete questions maybe accessible to analytical study

@ Drude weight at finite 7" in 1d with integrable or non integrable
interactions in 1d (integrability conjecture true?).

@ Analytical results with random disorder even in the ground state in
Weyl?

@ Localization in the ground state with strong random disorder and
interaction at T = 07

@ The same with quasi periodic but any state not only GS?

@ Universality or not with long range forces (graphene, Weyl semimetals
etc), temperature and frequency dependence (why small correction in
graphene) etc?
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SOME OPEN PROBLEMS

@ Some very concrete questions maybe accessible to analytical study

@ Drude weight at finite 7" in 1d with integrable or non integrable
interactions in 1d (integrability conjecture true?).

@ Analytical results with random disorder even in the ground state in
Weyl?

@ Localization in the ground state with strong random disorder and
interaction at T = 07

@ The same with quasi periodic but any state not only GS?

@ Universality or not with long range forces (graphene, Weyl semimetals
etc), temperature and frequency dependence (why small correction in
graphene) etc?
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