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Topics

|. Hydrodynamic regimes in the Heisenberg spin chain
now realized in materials, emulators, and computers

2. Finite-entanglement scaling and the quantum Kibble-
Zurek mechanism in one spatial dimension

(3. Higher dimensions)



References for part |

|.In 1D (“spin chains”), we know well the ground states of models like the Heisenberg chain,
but basic facts about dynamics were only understood recently. Experiment on KCuFs.

Examples of theory and numerics in easy-plane case:
V. Bulchandani, R.Vasseur, C. Karrasch, JEM, PRL 2018

Does this lead to anything really new and observable about actual spin chains?

M. Dupont, JEM PRB RC 2020
A.Scheie, N. Sherman, M. Dupont, S. Nagler, G. Granroth, M. Stone, JEM, A. Tennant, Nat. Phys. 202 |

M. Dupont, N. Sherman, |JEM PRL 2021
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How thermalization relates to what we measure in solids:
Linear response theory

Einstein’s theory of motion of Brownian particles:
L s &

''''''

the diffusion constant D that appears in Fick’s law
(which is the restoration to equilibrium from a density perturbation)

j=—-DVn
is given by the dynamical correlation function of velocity at equilibrium:

D = % OOO<V(O) V() dt = v

Philosophy: how a system returns to equilibrium is independent of whether it was driven away or

fluctuated away
Kubo formula for electrical conductivity in metals: dynamical correlation function of electrical current

Other possibilities include many-body localization, a failure to thermalize from disorder.



Phenomenological description of most
spin chains at high temperatures

[The diffusion equation)

o,n(x,1) —DV?n(x, 1) =0

N conserved

# of particles J n(x, ) dx = NVt
\Y

local density

n(x,t)

(Analogy with magnetsj

M? = Z §,§ = # of particles
n

Conserved |4, 1zl _
guantity: [%M] =0

Emergent fluid-like
spin diffusion?

lim () $5(0))
X,[—+00 kg T—+00

— t_l/szaussian (xz/t)

Dynamical exponent: 7 = 2



Different fluid properties are seen in very good crystals where
momentum relaxation from impurities and phonons can be avoided.

Standard hydrodynamics
(Oth order)

The “zeroth-order” hydrodynamical equations in three dimensions, which
neglect dissipative behavior such as viscosity, are

on
(%—Fu-V)qu%VP = % (2)
(%—l—u-V)T—F;(V'U—)T = 0. (3)

These come from the Boltzmann equation assuming local equilibrium.

Hydrodynamics: how does local equilibrium become global equilibrium?



Simple models with complicated dynamics

Here are two examples of Yang-Baxter “integrable” systems:
the |ID Bose gas with delta-function interaction (Lieb-Liniger model);
the ID “XXZ” spin chain.
= Jou Z (SFSEL +SYSYL) + . Zszs Y1+ Zh S;

The latter has a more complicated Bethe ansatz formulatlon but is easier to
compare to microscopic DMRG numerics and to experiments.

By adding a random field (last term), we could obtain a localized phase.

The “Heisenberg chain” we discuss in most detail is just |z = |xx.



Some history

The ground state of the Heisenberg chain was solved
by Bethe (1931) and the thermodynamics was
understood in the 1970s.

However, dynamical questions such as whether there
is a nonzero “Drude weight” remained perplexing

201 |: it turns out that half of the conserved
quantities had been missed, including those that
control the spin dynamics (Prosen). This yields a
nonzero Drude weight, matching computations that
became available at that time.

One can use these conservation laws to get some
far-from-equilibrium hydrodynamical results that pass
tests against DMRG-type numerical calculations.



Take XXZ in zero magnetic field. Make a spatial variation of initial temperature.
Watch the energy spread out in time.

Note: nonzero temperature is required for coarse-graining time to be finite,
according to basic principle that systems can’t relax faster than hbar/kT.
(Hence more physically generic than T=0 or Bethe-Bethe comparisons.)

' ‘ ' ~ ' ‘ ' / ' ‘ ' ! ' ‘ ' "]-0.15F===c====__ ' ‘ T
(a) Po=0.5, Pu=0.1 /=0 - (b) Bo=6, Pu=4 /N\t=0 1 NN o
D - —
-0.02-  Gauss, L=8 [~ 7 Gauss, L=20 I\ t=10—>—> N\ =002 ¥
\ / \ \
/ \ / \ 1l
/1=5\\ 1$—5\l \
/ t=5 \ ;',t 5\ . t=20 \\\\ = DMRG
- \ 1 i
/ \ -0.35} f -\ . NN 4 + hydro
-~ {7 16\‘\ N \\‘\ 0 ‘ | ‘
. N\ / t= \ NN
=-0.04} /=0 DMRG / \ DMRG 0.2L[— DMRG N\ 0 0 20)
> - -- hydrodynamics 4’ - -- hydrodynamics - -- hydrodynamics \
~—" e ~N ’l \\ \
W A5 A X
//JII ________ \\\\\ - // ,III’ \\ ‘t \ . _ \\ W\
~ = I \ \ - \
AT =200 NN SN N WY N AN\ N\
-0.06 vy WA N . / FANY/ I = R N \ N\
Yooy Wl NN / /N W\ \ \ N N
S/ ///I \ NN -0.36 / . XN\ \ E W\ AN
/ // // // \\\ \\ \\ \\ - /, // / /// \\\ ’// \\\\\\ \\ \\ _025%(0) B0=2, BM=1 \\ \\ \\ ]
_ P 94 AN A % ’Y T AN o A AN
_,’,/:,/54 NS OSSN T~ _- o t=40 ™S~ S~ tanh, L=8 S~ T~
i | T e FT———=%- | | \T-“_‘a'-_—ﬁ— n | | B it we—
20 0 2 80 40 0 40 80 20 0 20
X X X

These are comparisons for interacting spinless fermions (XXZ) between backwards

Euler solution of Bethe-Boltzmann and microscopic DMRG simulations.
(figure from “Solvable quantum hydrodynamics”,V. Bulchandani, R.Vasseur, C. Karrasch, and JEM, PRL 201 8)




Emergent hydrodynamics in Heisenberg
spin chain at infinite temperature

o /1= (S50 $50) =128, (x112P)
/6\ g kgT=+00
< 107%L
DU M. LUUBOTINA, ET AL. Kardar-Parisi-Zhang
107 I PRL122, 210602 (2019) ; “KP7" hvdrod :
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(VVhat is KPZ? 0,h(x,t) — DV*h(x,1) = A| Vh(x, 1)| >+ on(x, t)\
Solution: ( Vi(x,1) - VR(0,0)) ~ 1725 fi ) (x/127)

Whereto findit? Profile of a growing interface, disordered
conductors, traffic flow, spin-1/2

\ Heisenberg chain... J




Kardar-Parisi-Zhang physics

An example of a classical problem with this scaling: interface growth
Model below is “Sticky Tetris”




Emergent hydrodynamics in Heisenberg
spin chain at infinite temperature
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fVVhat is KPZ? 0,h(x,t) — DV*h(x,1) = A| Vh(x, 1)| >+ on(x, r)\

Solution: ( Vi(x,1) - VR(0,0)) ~ 1725 fi ) (x/127)

Whereto findit? Profile of a growing interface, disordered
conductors, traffic flow, spin-1/2

K Heisenberg chain... J




Hydrodynamics beyond diffusion

Example: % =J Z S’fﬁx + 58 +A§Z$’i 1

n+1 T~ n+1

A<

D(T) >0 | D(T) =0 but (J(1)J(0)) ~ " D(T) =0
Ballistic Superdiffusion Diffusion
dynamics Kardar-Parisi-Zhang
z=1 7 =3/2 z2=2
Integrable Integrable + spin isotropy Integrable + easy-

axis anisotropy

M. DUPONT AND J.E. MOORE Or absence of
PRB 101, 121106(R) (2020) integrability




Why Boltzmann equation should get modified in (classical
or quantum) integrable systems: quasi-ballistic case

Solitons/particles pass through each other even in dense system;
no randomization of momentum and no collision term.

However, there is an interaction:

Classical Quantum

Solitons delay each other

u(x,t)

Phase shift from Bethe equations

50

but semiclassically an energy-dependent phase
shift is also just a time delay (Wigner)

do
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Our starting point: think of particles in an integrable model
as streaming (with self-consistent velocity) but not colliding

“Bethe-Boltzmann equation”
Orp(k,x,t) + O [v({p(K', 2, ) })p(k, z,t)] = O

No collision term since quasiparticles retain their identity;
however, they modify each other’s velocities via phase shifts

One early classical appearance of this type of equation is

Kinetic Equation for a Dense Soliton Gas

G. A. EI"* and A. M. Kamchatnov>'

'Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom

2Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, 142190, Russia
(Received 5 July 2005:; published 7 November 2005)

We propose a general method to derive kinetic equations for dense soliton gases in physical systems
described by integrable nonlinear wave equations. The kinetic equation describes evolution of the spectral
distribution function of solitons due to soliton-soliton collisions. Owing to complete integrability of the
soliton equations, only pairwise soliton interactions contribute to the solution, and the evolution reduces to
a transport of the eigenvalues of the associated spectral problem with the corresponding soliton velocities
modified by the collisions. The proposed general procedure of the derivation of the kinetic equation is
illustrated by the examples of the Korteweg—de Vries and nonlinear Schrodinger (NLS) equations. As a
simple physical example, we construct an explicit solution for the case of interaction of two cold NLS
soliton gases.

Q tum: Castro-Alvaredo/Doyon/Yoshimura, PRX 2016 (Lieb-Liniger)
Uantum:  pertini/Collura/De Nardis/Fagotti, PRL 2016 (XXZ)



Integrable hydrodynamics

Simplest case is Bose gas with delta-function repulsion.

GGE = Generalized Gibbs Ensemble = includes an infinite number of
conservation laws:

/ plk,x,t)dk =n(x,t)

Kinetic theory: might as well work

kp(k,z,t) = muv(x,t) :
/ P with p(k, ZC, t)

/ kK p(k,x,t) = 2me(x, 1) . .
instead of its moments.

/ k" p(k, :z:,t).

GGE (conserved quantities) is equivalent to distribution
function, rather than containing less information.

Somewhat surprising for XXZ, where the charges are quite complicated;
somehow Takahashi’s old TBA and Bertini et al. backflow leads to Drude
weight, i.e., it “knows about” the deep quasilocal charges.



Summary of when this is useful

Normal fluid:
Initial state = Local equilibrium — Hydrodynamics

Integrable fluid:
Initial state = Local GGE — Boltzmann/generalized HD

So, for non-local-GGE initial conditions, still need to solve
difficult “quench” problem, at least locally.

Two-reservoir problem already solved in 2016 papers: solution is
function of one variable (x/t).

Let’s look for full (x,t) solutions: are quantum dynamics really
describable by these classical particle equations?

Mathematical properties of solutions (‘semi-Hamiltonian structure”): Bulchandani,
2017, as for NLS



Take XXZ in zero magnetic field. Make a spatial variation of initial temperature.
Watch the energy spread out in time.

Note: nonzero temperature is required for coarse-graining time to be finite,
according to basic principle that systems can’t relax faster than hbar/kT.
(Hence more physically generic than T=0 or Bethe-Bethe comparisons.)
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These are comparisons for interacting spinless fermions (XXZ) between backwards

Euler solution of Bethe-Boltzmann and microscopic DMRG simulations.
(figure from “Solvable quantum hydrodynamics”,V. Bulchandani, R.Vasseur, C. Karrasch, and JEM, PRL 201 8)
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Experimentally looking for hydrodynamics

[KCuF3] Weakly coupled spin-1/2 chains
K® Cue Fe J=335meV>J =—-1.6 meV

g A
Welldescribed by the 5, A A
1D Heisenberg model = Zn SnSntl

. J

Superdiffusive Kardar-Parisi-Zhang
“KPZ” hydrodynamics expected

AL LA Fourier transforms
<S§(t) Sg(())> — 5 5(0.0)
Corresponds to the neutron
scattering intensity




Neutron scattering measurements

, )
Where to look for hydrodynamics? It emergesin the long time
and wavelength limits
ﬁQanzQNQ{) 0 0
Dynamical exponent z Q-0 0-
\_ y,
8':
I" ) 6
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Additional experimental insight from a very different system

RESEARCH ARTICLE

QUANTUM SIMULATION

Quantum gas microscopy of Kardar-Parisi-Zhang
superdiffusion

David Wei%, Antonio Rubio-Abadal*?+, Bingtian Ye®, Francisco Machado®#, Jack Kemp?,
Kritsana Srakaew'?, Simon Hollerith™Z, Jun Rui**, Sarang Gopalakrishnan>®, Norman Y. Yao®#,
Immanuel Bloch'?’, Johannes Zeiher?*

The Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth

of classical stochastic models. Surprisingly, KPZ universality was recently conjectured to also describe
spin transport in the one-dimensional quantum Heisenberg model. We tested this conjecture by
experimentally probing transport in a cold-atom quantum simulator via the relaxation of domain walls in
spin chains of up to 50 spins. We found that domain-wall relaxation is indeed governed by the KPZ
dynamical exponent z = 3/2 and that the occurrence of KPZ scaling requires both integrability and a
nonabelian SU(2) symmetry. Finally, we leveraged the single-spin—-sensitive detection enabled by the
quantum gas microscope to measure an observable based on spin-transport statistics. Our results yield
a clear signature of the nonlinearity that is a halimark of KPZ universality.

~50 spins in an isolated chain, with
control over the XXZ anisotropy.



Dynamics of the quantum spin-1/2
Heisenberg chain

(High-temperature)

Kardar-Parisi-Zhang “KPZ"
Hydrodynamics

M. DUPONT, ET AL.

ARXIV:2104.13393 (2021)

Tomonaga-Luttinger
iquid physics

Onset of KPZ
hydrodynamics

t*(x=0,T) ~1/T

[Low—temperature)




Part 2:Why do classical numerics work so well for that
problem? Try to understand in a more general case

Universal quantum behavior out of equilibrium

At ground state phase transitions ( quantum phase transitions”),
an energy gap closes.

At second-order phase transitions, this gap closing involves a
diverging correlation length and universal critical exponents.

Now imagine a parameter in the Hamiltonian to sweep through
this gap closing. The failure of adiabaticity (“quantum Kibble-
Zurek mechanism”) gives a way to measure some properties of
the quantum critical point.

Very suitable for quantum hardware, e.g., in Harvard Rydberg
system to measure critical exponents of 2D quantum Ising model.



Universal quantum behavior out of equilibrium

The scaling exponents can be deduced from a simple rea-
soning. The adiabaticity is lost when f = —71, where 7 is
determined by Eq. (1), this corresponds to

v

—__rz .
Tkz ~V vz, Exz ~V vz, (2)

thus defining the Kibble-Zurek time and length, correspond-
ingly. Since the adiabaticity is restored after + = 7 and we
expect the generated exitations to freeze out and the average
density of excitations and energy will be

Nex ~ 1 Jéxz ~ Vv, (3)

€ex ~ 1 /€8, ~ VT 4)

This is a very simple argument, but the result has been
confirmed by numerics and experiments. There’s also an exact
solution for the transverse-field Ising model [36].



Applied entanglement entropy

The remarkable success of the density-matrix renormalization
group algorithm in one dimension (White, 1992; Ostlund and
Rommer, 1995) can be understood as follows:

DMRG constructs “matrix product states’ that retain local
entanglement but throw away long-ranged entanglement.

Example states for four spins:

simple product |¢> — A81A52A53A34‘81828384>

matrix product ‘¢> AZ] JkAklAlz |81 8283S4>

Graphlcal tensor network representatlon

@YY .



“Infinite system” methods

Note that we can impose translation invariance simply by
requiring constant matrices A.

In other words, for quantities in a translation-invariant system,

we just calculate A, rather than a large finite system.
(Idea | of renaissance; see Vidal 07, for example)

matrix product ‘¢> AZ] ]kAklAlZ |81 828384>

So where is the approximation!?
A finite matrix A can only capture a finite amount of entanglement.

In the early DMRG days, it was often thought:

|. To study an infinite system, we should study a large finite one.

2. Gapless/critical systems are hard

3. Dynamical properties are hard

4. Finite temperature is hard (solved pre-2005)

But none of these is strictly correct. Going above one dimension is expensive,
but not impossible. Long-range interactions very hard.



A way to picture the entanglement of a state

e Schmidt decomposition of the state (SVD):

A : B

with Ao >0 and > A2 =1
e a natural measure of the entanglement is the entropy:




Efficient representation of quantum states?

e Hilbert-space dimension of many-body problems increases
exponentially with number of sites
example: spin 1/2 system on “classical” computers
(store one state in double precision)

* need an efficient way to “compress” quantum states so
that the matrices studied remain fixed-dimensional

=) slightly entangled 1D systems: Matrix Product States
=»DMRG, TEBD, ...



* find the ground state of a system by using imaginary time
evolution (almost unitary for small time steps)

e parallel updates for infinite/translational invariant
systems: ITEBD [Vidal ‘07]

* example, transverse Ising model: H =Y. (Jo7o7, , + go})

V)
U
0
0O

U

9 m»convergence of wave
function is worst at the

{)

L C = = .
¥ Bl e P critical point
" el & *—% m»conformal invariance
L P -y
—0.05 0 0.05
[9-g I

Good news: can make “finite-entanglement” theory of
convergence at critical points; they are hardly inaccessible.



Criticality: finite-entanglement scaling

All numerical methods have difficulty with quantum critical points.
In DMRG-type approaches, this can be understood from the
divergence of entanglement entropy at such points: the
entanglement in a matrix product state is limited by dim A.

matrix product |¢> — A?l Angg AZ ‘81 8283S4>

Quantitatively, it is found that dim A plays a role similar to imposing
a finite system size: K :
(Tagliacozzo et al., PRB 2008). Lefr o X5 X= dim A
Finite matrix dimension effectively moves the system away from the
critical point.

What determines this “finite-entanglement scaling”?
Is it like “finite-size scaling” of CFT’s (cf. Blote, Cardy, & Nightingale)



e (Li-Haldane) “entanglement spectrum” [Calabrese et al ‘08]

. (2\/—62 ~blog )\) A
# of )\ ‘s greater
S

with b— — ilogf = —2log Amax than A

12
continuum of Schmidt values [)) = >""7 . Ay |da) A|da) B

e \Want to explain how at a critical point, finite matrix size X
effectively moves the system away from criticality, leading
to universal relations like

Leg < x", x=dim A



* A heuristic argument for the asymptotic case
(using a continuum of Schmidt values and x — o0 )

= universal finite-entanglement scaling relations

6 1
K= = 5 = log x

c( 1—62+1) 1—62+1

F. Pollmann, S. Mukerjee, A. Turner, and J.E. Moore, PRL 2009
Some checks for various critical theories are in that paper, and the recent work
B. Pirvu, G. Vidal, F. Verstraete, L. Tagliacozzo, PRB 2012

So critical points are worse than gapped points, but in a controlled way.
What does this mean in practice?

Remark: Entanglement spectra are qualitatively different for random critical spin chains
than for pure ones, though entanglement entropies similar (M. Fagotti, P. Calabrese, JEM).



What about a Kibble-Zurek sweep?

The scaling exponents can be deduced from a simple rea-
soning. The adiabaticity is lost when t = —71, where 7 is
determined by Eq. (1), this corresponds to

v

__yz _ o~
TKkz ~V Wz, gz ~V Tz, (2)

thus defining the Kibble-Zurek time and length, correspond-
ingly. Since the adiabaticity is restored after t = v and we
expect the generated exitations to freeze out and the average
density of excitations and energy will be

Vv .
Rex ~ l/fKZ ~ P lzv, (3)
2v

Eox ~ 1/§§<Z ~ pTazv, (4)

This i1s a very simple argument, but the result has been
confirmed by numerics and experiments. There’s also an exact
solution for the transverse-field Ising model [36].

N. Sherman, A. Avdoshkin, JEM, Universality of critical dynamics
with finite entanglement, arXiv:2301.09681



What about a Kibble-Zurek sweep at finite
entanglement? Double scaling hypothesis

Nex = VI f(éxz/Ey), €= V’%g(é’xz/fx),

31071

31072

E 10_3

(b)

€er | U
..
&
P
I
D

® x =10 E 10—2




What about a Kibble-Zurek sweep?
Double scaling hypothesis

Nex = v%f(fKZ/fx)a € = v%g(gKZ/fx),

3-state Potts,
More stringent test

f/v5/11

10/11
€ex | U /

(a) 10!

- 10—3




Some conclusions/questions

We have some new approaches, experimental and theoretical, to
many-body quantum problems in one dimensional systems.

Some of this is actually tested in experiments on ordinary crystals near
room temperature, or with ultracold atoms.

The heuristic concept that “finite entanglement” (i.e., finite bond
dimension) induces a length scale at quantum critical points describes
not just ground states (~2009) but even dynamical processes like the
Kibble-Zurek mechanism, with universal scaling functions.

Current questions:

Q: What are the unusual non-diffusive “fluids” of electrons and spins in
higher dimensionse

Q: Are other non-standard perturbations, for example those relevant to
quantum computers, also still captured within scaling frameworks?
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