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Topics
1. Hydrodynamic regimes in the Heisenberg spin chain 
now realized in materials, emulators, and computers

2. Finite-entanglement scaling and the quantum Kibble-
Zurek mechanism in one spatial dimension

(3. Higher dimensions)



1. In 1D (“spin chains”), we know well the ground states of models like the Heisenberg chain, 
but basic facts about dynamics were only understood recently.  Experiment on KCuF3.

Examples of theory and numerics in easy-plane case:
V. Bulchandani, R. Vasseur, C. Karrasch, JEM, PRL 2018

Does this lead to anything really new and observable about actual spin chains?

M. Dupont, JEM PRB RC 2020
A. Scheie, N. Sherman, M. Dupont, S. Nagler, G. Granroth, M. Stone, JEM, A. Tennant, Nat. Phys. 2021
M. Dupont, N. Sherman, JEM PRL 2021
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How thermalization relates to what we measure in solids:
Linear response theory

Einstein’s theory of motion of Brownian particles:

the diffusion constant D that appears in Fick’s law
(which is the restoration to equilibrium from a density perturbation)

is given by the dynamical correlation function of velocity at equilibrium:

Philosophy: how a system returns to equilibrium is independent of whether it was driven away or 
fluctuated away

Kubo formula for electrical conductivity in metals: dynamical correlation function of electrical current

j = �Drn

D =
1

3

Z 1

0
hv(0) · v(t)iT dt ⇡ v2⌧

Other possibilities include many-body localization, a failure to thermalize from disorder.



Phenomenological description of most 
spin chains at high temperatures
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t1
t2 t3

∫V
n(x, t)dx = N ∀t

local density

# of particles 
N conserved

∂t n (x, t) − D∇2 n (x, t) = 0

The diffusion equation

M̂z = ∑n
̂Sz
n ≡ # of particles

Analogy with magnets

x

n (x, t)
Nδ(x)

n(x, t) =
N e− x2

4Dt

4πDt

[ℋ̂, M̂z] = 0Conserved 
quantity:

Emergent fluid-like 
spin diffusion?

= t−1/2 fGaussian (x2/t)
lim

x,t→+∞ ⟨ ̂Sz
x(t) ̂Sz

0(0)⟩kBT→+∞

z = 2Dynamical exponent:



Standard hydrodynamics
(0th order)

The “zeroth-order” hydrodynamical equations in three dimensions, which
neglect dissipative behavior such as viscosity, are
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(r · u)⌧ = 0. (3)

These come from the Boltzmann equation assuming local equilibrium.

Hydrodynamics: how does local equilibrium become global equilibrium?

Different fluid properties are seen in very good crystals where
momentum relaxation from impurities and phonons can be avoided. 



Simple models with complicated dynamics

Here are two examples of Yang-Baxter “integrable” systems:

the 1D Bose gas with delta-function interaction (Lieb-Liniger model);

the 1D “XXZ” spin chain.

The latter has a more complicated Bethe ansatz formulation, but is easier to 
compare to microscopic DMRG numerics and to experiments.

By adding a random field (last term), we could obtain a localized phase.

The “Heisenberg chain” we discuss in most detail is just Jz = Jxx.
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Some history

The ground state of the Heisenberg chain was solved 
by Bethe (1931) and the thermodynamics was 
understood in the 1970s.

However, dynamical questions such as whether there 
is a nonzero “Drude weight” remained perplexing

2011: it turns out that half of the conserved 
quantities had been missed, including those that 
control the spin dynamics (Prosen).  This yields a 
nonzero Drude weight, matching computations that 
became available at that time.

One can use these conservation laws to get some 
far-from-equilibrium hydrodynamical results that pass 
tests against DMRG-type numerical calculations.
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These are comparisons for interacting spinless fermions (XXZ) between backwards 
Euler solution of Bethe-Boltzmann and microscopic DMRG simulations.
(figure from “Solvable quantum hydrodynamics”, V. Bulchandani, R. Vasseur, C. Karrasch, and JEM, PRL 2018)

Take XXZ in zero magnetic field.  Make a spatial variation of initial temperature.
Watch the energy spread out in time.

Note: nonzero temperature is required for coarse-graining time to be finite, 
according to basic principle that systems can’t relax faster than hbar/kT.
(Hence more physically generic than T=0 or Bethe-Bethe comparisons.)



Emergent hydrodynamics in Heisenberg 
spin chain at infinite temperature
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⟨∇h(x, t) ⋅ ∇h(0,0)⟩ ∼ t−2/3 fKPZ(x /t2/3)Solution:

Where to find it? Profile of a growing interface, disordered 
conductors, traffic flow, spin-1/2 
Heisenberg chain…

∂th(x, t) − D∇2h(x, t) = λ[∇h(x, t)]2 + ση(x, t)What is KPZ?

In the thermodynamic limit L → ∞ the second term
vanishes as there are no correlations across infinite dis-
tances, and using the cyclic property of the trace we get

hsz0ð0ÞszrðtÞi ¼ lim
μ→0

hszr−1ðtÞiμ − hszrðtÞiμ
2μ

: ð7Þ

This is our first main result. It shows that a weak domain
wall initial state can be seen as a trick that allows us to
calculate the infinite-temperature spin-spin correlation. We
next recall [8] why the left-hand side of Eq. (7) is in certain
classical systems described by the KPZ scaling function.
Kardar-Parisi-Zhang equation.—The KPZ stochastic

partial differential equation was initially suggested to
model the growth of surface hðr; tÞ through random
deposition [2]

∂th ¼ 1

2
λð∂rhÞ2 þ ν∂2

rhþ
ffiffiffi
Γ

p
ζ; ð8Þ

where ζðr; tÞ is a space-time uncorrelated noise.

Of particular interest to us will be the correlation function
Cðr; tÞ ¼ h½hðr; tÞ − hð0; 0Þ − th∂thi&2i—representing the
fluctuations of the height around the expected value—and
its second derivative 1

2 ∂2
rCðr; tÞ ¼ h∂rhð0; 0Þ∂rhðr; tÞi—

describing the slope correlations (here brackets denote noise
averaging). In terms of scaling functions gðφÞ and fðφÞ
one has

gðφÞ ¼ lim
t→∞

C(ð2λ2t2Γν−1Þ−1=3φ; t)
ð12 λtΓ

2ν−2Þ2=3
;

fðφÞ ¼ 1

4
g00ðφÞ ∼ ∂2

rCðr; tÞ: ð9Þ

These can be obtained from the exact solution of the
polynuclear growth model [9] (a model in the KPZ
universality class), and have been tabulated with high
precision in Ref. [26]. Nonlinear fluctuating hydrodynam-
ics predicts that the correlation function of a conserved
quantity, in our case hsz0ð0ÞszrðtÞi, should be given by the
so-called KPZ scaling function fðφÞ.

FIG. 2. Scaling functions and numerical data: the left column corresponds to the continuous-time model while the right corresponds to
the discrete-time model. We show data for the spin current density hjiμ and the discrete spin derivative Δz, defined as Δz ¼
−ðhszriμ − hszr−1iμÞ in the continuous-time model and Δz ¼ − 1

4 ðhs
z
rþ1iμ þ hszriμ − hszr−1iμ − hszr−2iμÞ in the discrete-time model. All

numerical data (yellow and red points) are appropriately scaled to the KPZ scaling functions, see Eqs. (10) and (11). The blue curves
represent the KPZ scaling functions while the green ones are the best-fitting Gaussian profiles. We note that relatively long times are
needed in order to observe the KPZ scaling, namely, t⪆50 for the continuous-time model and t⪆600 for the discrete-time model.

PHYSICAL REVIEW LETTERS 122, 210602 (2019)

210602-3

t2/
3

⟨̂ Sz x(
t)

̂ Sz 0(0
) ⟩

x /t2/3

In the thermodynamic limit L → ∞ the second term
vanishes as there are no correlations across infinite dis-
tances, and using the cyclic property of the trace we get

hsz0ð0ÞszrðtÞi ¼ lim
μ→0

hszr−1ðtÞiμ − hszrðtÞiμ
2μ

: ð7Þ

This is our first main result. It shows that a weak domain
wall initial state can be seen as a trick that allows us to
calculate the infinite-temperature spin-spin correlation. We
next recall [8] why the left-hand side of Eq. (7) is in certain
classical systems described by the KPZ scaling function.
Kardar-Parisi-Zhang equation.—The KPZ stochastic

partial differential equation was initially suggested to
model the growth of surface hðr; tÞ through random
deposition [2]

∂th ¼ 1

2
λð∂rhÞ2 þ ν∂2

rhþ
ffiffiffi
Γ

p
ζ; ð8Þ

where ζðr; tÞ is a space-time uncorrelated noise.

Of particular interest to us will be the correlation function
Cðr; tÞ ¼ h½hðr; tÞ − hð0; 0Þ − th∂thi&2i—representing the
fluctuations of the height around the expected value—and
its second derivative 1

2 ∂2
rCðr; tÞ ¼ h∂rhð0; 0Þ∂rhðr; tÞi—

describing the slope correlations (here brackets denote noise
averaging). In terms of scaling functions gðφÞ and fðφÞ
one has

gðφÞ ¼ lim
t→∞

C(ð2λ2t2Γν−1Þ−1=3φ; t)
ð12 λtΓ

2ν−2Þ2=3
;

fðφÞ ¼ 1

4
g00ðφÞ ∼ ∂2

rCðr; tÞ: ð9Þ

These can be obtained from the exact solution of the
polynuclear growth model [9] (a model in the KPZ
universality class), and have been tabulated with high
precision in Ref. [26]. Nonlinear fluctuating hydrodynam-
ics predicts that the correlation function of a conserved
quantity, in our case hsz0ð0ÞszrðtÞi, should be given by the
so-called KPZ scaling function fðφÞ.

FIG. 2. Scaling functions and numerical data: the left column corresponds to the continuous-time model while the right corresponds to
the discrete-time model. We show data for the spin current density hjiμ and the discrete spin derivative Δz, defined as Δz ¼
−ðhszriμ − hszr−1iμÞ in the continuous-time model and Δz ¼ − 1

4 ðhs
z
rþ1iμ þ hszriμ − hszr−1iμ − hszr−2iμÞ in the discrete-time model. All

numerical data (yellow and red points) are appropriately scaled to the KPZ scaling functions, see Eqs. (10) and (11). The blue curves
represent the KPZ scaling functions while the green ones are the best-fitting Gaussian profiles. We note that relatively long times are
needed in order to observe the KPZ scaling, namely, t⪆50 for the continuous-time model and t⪆600 for the discrete-time model.

PHYSICAL REVIEW LETTERS 122, 210602 (2019)

210602-3

t = 100ℏ/J

t = 200ℏ/J

kBT/J = ∞

M. LJUBOTINA, ET AL.

PRL 122, 210602 (2019)

⟨ ̂Sz
x(t) ̂Sz

0(0)⟩kBT=+∞
= t−2/3 fKPZ(x /t2/3)

Kardar-Parisi-Zhang

 “KPZ” hydrodynamics

z = 3/2Dynamical 
exponent:



Kardar-Parisi-Zhang physics
An example of a classical problem with this scaling: interface growth


Model below is “Sticky Tetris”



Emergent hydrodynamics in Heisenberg 
spin chain at infinite temperature
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⟨∇h(x, t) ⋅ ∇h(0,0)⟩ ∼ t−2/3 fKPZ(x /t2/3)Solution:

Where to find it? Profile of a growing interface, disordered 
conductors, traffic flow, spin-1/2 
Heisenberg chain…

∂th(x, t) − D∇2h(x, t) = λ[∇h(x, t)]2 + ση(x, t)What is KPZ?
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Ballistic 
dynamics

z = 1

𝔇(T) > 0

Hydrodynamics beyond diffusion

5

≥
1
T ∑i

⟨ ̂JQ̂i⟩2

⟨Q̂2
i ⟩

1
T

lim
t→∞ ⟨ ̂J(t) ̂J(0)⟩kBT Drude weight

= 𝔇(T)Relation to spin 
transport/currents

[ℋ̂, Q̂i] = 0The spin-1/2 Heisenberg 
chain is integrable

Extensive # of 
conserved quantities

𝔇(T) = 0 ⟨ ̂J(t) ̂J(0)⟩ ∼ t−2/3but

Superdiffusion 
Kardar-Parisi-Zhang

z = 3/2

𝔇(T) = 0

Diffusion
z = 2

Example: ℋ̂ = J∑n
̂Sx
n

̂Sx
n+1 + ̂Sy

n
̂Sy
n+1+Δ ̂Sz

n
̂Sz
n+1

Δ = 1 Δ > 1
Δ < 1

Integrable + spin isotropyIntegrable Integrable + easy-
axis anisotropy

Or absence of 
integrability

M. DUPONT AND J.E. MOORE

PRB 101, 121106(R) (2020) 



Why Boltzmann equation should get modified in (classical 
or quantum) integrable systems: quasi-ballistic case

Solitons/particles pass through each other even in dense system;
no randomization of momentum and no collision term.

However, there is an interaction:

Classical Quantum

Phase shift from Bethe equations

but semiclassically an energy-dependent phase
shift is also just a time delay (Wigner)

Solitons delay each other

so velocity depends on other
solitons at spacetime point

⌧ = 2~ d�

dE



Our starting point: think of particles in an integrable model 
as streaming (with self-consistent velocity) but not colliding

“Bethe-Boltzmann equation”

No collision term since quasiparticles retain their identity;
however, they modify each other’s velocities via phase shifts

One early classical appearance of this type of equation is

@t⇢(k, x, t) + @x [v({⇢(k0, x, t)})⇢(k, x, t)] = 0

Castro-Alvaredo/Doyon/Yoshimura, PRX 2016 (Lieb-Liniger)
Bertini/Collura/De Nardis/Fagotti, PRL 2016 (XXZ)Quantum:



Integrable hydrodynamics
Simplest case is Bose gas with delta-function repulsion.

GGE = Generalized Gibbs Ensemble = includes an infinite number of 
conservation laws:

GGE (conserved quantities) is equivalent to distribution 
function, rather than containing less information.

Somewhat surprising for XXZ, where the charges are quite complicated; 
somehow Takahashi’s old TBA and Bertini et al. backflow leads to Drude 
weight, i.e., it “knows about” the deep quasilocal charges.

⇢(k, x, t)

Z
⇢(k, x, t) dk = n(x, t)

Z
k⇢(k, x, t) = mv(x, t)

Z
k2⇢(k, x, t) = 2m✏(x, t)

...
Z

kn⇢(k, x, t)

Kinetic theory: might as well work
with

instead of its moments.



Summary of when this is useful

Normal fluid:
Initial state → Local equilibrium → Hydrodynamics

Integrable fluid:
Initial state → Local GGE → Boltzmann/generalized HD

So, for non-local-GGE initial conditions, still need to solve 
difficult “quench” problem, at least locally.

Two-reservoir problem already solved in 2016 papers: solution is 
function of one variable (x/t).

Let’s look for full (x,t) solutions: are quantum dynamics really 
describable by these classical particle equations?

Mathematical properties of solutions (“semi-Hamiltonian structure”): Bulchandani, 
2017, as for NLS
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These are comparisons for interacting spinless fermions (XXZ) between backwards 
Euler solution of Bethe-Boltzmann and microscopic DMRG simulations.
(figure from “Solvable quantum hydrodynamics”, V. Bulchandani, R. Vasseur, C. Karrasch, and JEM, PRL 2018)

Take XXZ in zero magnetic field.  Make a spatial variation of initial temperature.
Watch the energy spread out in time.

Note: nonzero temperature is required for coarse-graining time to be finite, 
according to basic principle that systems can’t relax faster than hbar/kT.
(Hence more physically generic than T=0 or Bethe-Bethe comparisons.)
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Experimentally looking for hydrodynamics

6

Superdiffusive Kardar-Parisi-Zhang 
“KPZ” hydrodynamics expected

J = 33.5 meV ≫ J⊥ = − 1.6 meV
Weakly coupled spin-1/2 chains

Cu2+ has a single free electron: S=1/2.

Cu orbital order gives a strong exchange in c 
(vertical) direction, and weak exchange in the 
ab (horizontal) directions.

Result: 1D chains of S=1/2.

The material KCuF3: a 1D Heisenberg antiferromagnet

Hutchings, Phys. Rev. 1969

KCuF3

Well described by the 
1D Heisenberg model ℋ̂ = J∑n

̂Sn ⋅ ̂Sn+1

Corresponds to the neutron 
scattering intensity

⟨ ̂Sz
x(t) ̂Sz

0(0)⟩ S(Q, ω)Fourier transformsA. SCHEIE, ET AL.

NAT. PHYS. (2021) 



Neutron scattering measurements

7

It emerges in the long time 
and wavelength limits

Where to look for hydrodynamics?

Q → 0, ω → 0
S(Q → 0, ω ≈ 0) ∼ Q−3/2

Dynamical exponent z

Figure 2: Measured neutron spectrum of KCuF3. a Cartoon of the KCuF3 spinon spectrum. The
gray region at the bottom shows the region measured. b Zoom in on the region measured in the
SEQUOIA experiment, also showing three cuts (cut a, cut b, and cut c) used to approximate the
~! ! 0 scattering. c and d show measured spectra at 75 K and 100 K, respectively. Cut a is
indicated by the horizontal red bar. It is not possible to directly measure the magnetic scattering
at ~! ! 0 due to the strong elastic incoherent scattering. Therefore, we take the lowest energy
cuts where magnetic scattering dominates, cut a, as shown in Fig. 3.
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S(Q, ω)

LOOKING HERE

Q/a

Q/a



Additional experimental insight from a very different system

~50 spins in an isolated chain, with 
control over the XXZ anisotropy. 



Dynamics of the quantum spin-1/2 
Heisenberg chain

9

Kardar-Parisi-Zhang “KPZ”

Hydrodynamics

High-temperature

Tomonaga-Luttinger 
liquid physics

Low-temperature
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FIG. 1. Log-scale intensity plot of the Euclidean norm of the spin-
spin correlation (2) at ) = 0.25. Simulation obtained for ! = 256
with j = 1024. The goal of this work is to determine and study the
superdi�usive region delimited by the spatiotemporal crossover C¢ of
Eq. (3) versus the temperature (white circles and dashed white line).
As the temperature is decreased, we find that the superdi�usive region
is shifted vertically to longer and longer times by a factor / 1/) , and
eventually disappear at exactly zero temperature.

periments on the nearly ideal Heisenberg spin-1/2 compound
Sr2CuO3 [41].

Model and method.— The 1D spin-1/2 Heisenberg model
is described by the lattice Hamiltonian,

Ĥ = �
’

9

Ŷ 9 · Ŷ 9+1, (1)

with Ŷ 9 = ((̂G
9
, (̂H

9
, (̂I

9
) and � > 0 the nearest-neighbor antifer-

romagnetic exchange. To investigate the thermal equilibrium
spin dynamics, we consider the time-dependent spin-spin cor-
relation function,

⇠
�
) , G, C

�
= tr

⇣
ŶG

�
C
�
· Ŷ0

�
0
�
d̂)

⌘
2 C, (2)

with d̂) = e�Ĥ/:B) /tr(e�Ĥ/:B) ) the thermal density matrix
of the system at temperature ) and Ŷ 9

�
C
�
= e8ĤC/~ Ŷ 9e�8ĤC/~

the time-dependent spin operator in the Heisenberg picture.
We set � = :B = ~ = 1 in the following. We compute the
correlation function (2) based on a numerical matrix product
state (MPS) approach [42, 43] where we represent the mixed
state as a pure state in an enlarged Hilbert space [44, 45].
We use the time-evolving block decimation algorithm [46]
along with a fourth-order Trotter decomposition [47] to handle
the exponential operators [48]. To ensure convergence of the
numerical data, we study in the Supplementary Information
(SI) the e�ect of the bond dimension j of the MPS, which is
the control parameter of the simulations (larger is better, but
computationally more expensive) [49].

At fixed distance G and temperature ) , the hydrodynamics
regime is characterized by an algebraic decay of the Euclidean
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FIG. 2. Time dependence of the norm of the spin-spin correlation (2)
at G = 0 for various temperatures) . Simulations obtained for ! = 256
with j = 1024. At long time, it displays an algebraic decay with time,
according to Eq. (3). It is well-fitted by the form⌥()) C�2/3 with⌥())
a temperature-dependent prefactor decreasing with the temperature
reported in Fig. 3(b). The deviation from the genuine power-law at
long-time is the result of the bond dimension being too small [49].

norm of the spin-spin correlation (2) function at long time,��⇠ �
) , G, C

� �� / C�1/I for C & C¢
�
G,)

�
, (3)

with I the dynamical exponent. The long-time limit is denoted
by the crossover time C¢ which we aim to identify, see Fig. 1.
Depending on the microscopic model, three values for the
exponent I have been reported for 1D quantum magnets: I =
3/2 corresponding to superdi�usion, I = 1 for ballistic and
I = 2 for di�usion [24, 25]. Superdi�usion is expected for the
isotropic spin-1/2 Heisenberg model of Eq. (1).

Autocorrelation.— We first consider the autocorrelation
function (G = 0) versus time for di�erent temperatures, as
plotted in Fig. 2. Two regimes are clearly visible, delimited by
the crossover time C¢(G = 0,)). Beyond the crossover time and
for all temperatures, one finds the expected power-law decay
/ C�2/3 of superdi�usive hydrodynamics. Note that the rapid
change of slope from the genuine power-law, at the longest
times displayed, is the result of the bond dimension being too
small and not a physical e�ect [49].

With high-temperature physics beyond C¢, one can suspect
low-temperature features at shorter times. For instance, the
oscillating behavior observed in the norm of the autocor-
relation is reminiscent of a change of sign in the real and
imaginary part [49], signaling antiferromagnetic correlations
as the temperature is lowered. The long-time asymptotic of
⇠ () = 0, G = 0, C) have been studied at exactly zero tempera-
ture [50, 51]. It is composed by several power-law decaying
contributions with the slowest one being / C�1 (up to logarith-
mic corrections inherent to the isotropic spin-1/2 Heisenberg
antiferromagnet [52–59]). We cannot identify this regime in
Fig. 2, which we attribute to insu�ciently low temperatures,
see the SI for additional data [49].
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=
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FIG. 3. The data points are extracted from Fig. 2. (a) Temperature
dependence of the crossover timescale C¢

�
G = 0,)

�
beyond which the

algebraic decay / C�2/3 for superdi�usive hydrodynamics emerges,
see Eq. (3). It shows a linear dependence with the inverse temperature
(dashed line). (b) Temperature dependence of the prefactor ⌥()) of
the algebraic decay/ C�2/3 for superdi�usive hydrodynamics. At low
temperatures ) . 1, it follows a quadratic dependence / )2 (dashed
line).

We now turn our attention to the temperature dependence
of the crossover time C¢(G = 0,)). It is plotted in Fig. 3(a)
versus the inverse temperature and shows a linear dependence.
It can be understood as follows. It is well-known that a fi-
nite temperature induces a thermal correlation length b which
diverges as ) ! 0 as / D/) (up to logarithmic corrections)
with D the velocity of low-energy excitations in the spin-1/2
chain [53]. Moreover, the dynamical correlation function (2)
can also be thought of as measuring the spreading of a spin
excitation. In this picture, the system behaves like a TLL
for C . b/D, which can be identified as the crossover time
C¢(G = 0,)) / 1/) . Hence, the onset of superdi�usive hydro-
dynamics simply takes place as the low-energy physics gets
suppressed by the finite temperature. It is only at zero tem-
perature that the system is strictly critical and thus does not
display any sign of anomalous high-energy dynamics. In ad-
dition to the linear dependence with / 1/) , there is an $ (1)
constant in Fig. 3(a) which coincides with the very short-time
dynamics where |⇠ () , G = 0, C ' 0) | ' 0.75.

At infinite temperature, it has been established that the dy-
namics belong to the 1+1 KPZ universality class [20, 40], as
it shows the same scaling laws as appear in the KPZ equa-
tion itself: mC⌘ = 1

2_
�
mG⌘

�2
+ am2

G
⌘ + f[ with ⌘ ⌘ ⌘(G, C),

[ ⌘ [(G, C) a normalized Gaussian white noise, and _, a, f
parameters. It is a Langevin equation, with no quantum roots
– and which makes the observation of its physics in a quantum
magnet rather puzzling. In the right limits, the noise-averaged
slope correlations behave as [60],

⇠KPZ
�
G, C

�
'

✓
f2

2a

◆ ⇣p
2_C

⌘�2/3
5KPZ


G
⇣p

2_C
⌘�2/3

�
, (4)

with 5KPZ the KPZ scaling function [61]. The numerical obser-
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FIG. 4. (a) Time dependence of the norm of the spin-spin correla-
tion (2) at ) = 0.25 for various distances G. Simulations obtained
for ! = 256 with j = 1024. The curves have been shifted verti-
cally for visibility. At long time, it displays an algebraic decay with
time, according to Eq. (3), well-fitted by the form / C�2/3. The de-
viation from the genuine power-law at long time is the result of the
bond dimension being too small [49]. (b) Spatial dependence of the
crossover time C¢(G,)) beyond which the algebraic decay / C�2/3 for
superdi�usive hydrodynamics emerges, see Eq. (3). The dashed lines
are fits of the form � + ⌫|G |3/2 with � ⌘ C¢(0,)) and ⌫ = 0.17(3)
found to be temperature-independent.

vation of the scaling (4) for the Heisenberg spin chain through
the spin-spin correlation (2) served as a conjecture regarding
the nature of its dynamics [20]. A theoretical scenario for
how KPZ hydrodynamics emerges in the Heisenberg chain
has been advanced [30]. A relation between the parameters
of the KPZ equation with those of the microscopic quantum
model has been proposed [26]. Here, by identifying the pref-
actor of ⇠KPZ (G = 0, C) in Eq. (4) with the prefactor ⌥()) of
the power-law decay / C�2/3 shown in Fig. 3(b), we are able
to report on the temperature dependence of the parameters.
The high-temperature data points are compatible with Ref. 26.
In addition, for ) . 1, we find that ⌥()) = 0.13(1))2, and
therefore that f

2

2a

�p
2_

��2/3
5KPZ (0) / )2. We argue in the

following that this behavior is compatible with earlier NMR
experiments on Sr2CuO3 [41, 49].

The definition of the crossover time C¢ in Eq. (3) for the
onset of superdi�usion is related to the power-law dependence
/ C�2/3 and not 5KPZ of Eq. (4). It is well-known that unam-
biguously identifying the scaling function from microscopic
simulations with 5KPZ requires great numerical precision and
long-time data for all distances G [20]. This is beyond the
capability of our simulations at low temperatures. Instead, we
consider the spatial dependence of C¢ for |G | > 0.

Spatiotemporal crossover.— The time-dependent spin-spin
correlation function (2) is associated with a light-cone struc-
ture and we therefore expect C¢(G,)) to be an increasing func-
tion with the distance |G |. It is verified in Fig. 4(a) where we
plot its time dependence at fixed temperature () = 0.25). As
|G | increases, the onset of superdi�usion takes place at longer
and longer times, and we display the crossover timescale in

J/kBT

t⋆
(x

=
0,

T )
J /

ℏ Onset of KPZ

hydrodynamics
t⋆(x = 0, T) ∼ 1/T



Universal quantum behavior out of equilibrium

At ground state phase transitions (``quantum phase transitions’’), 
an energy gap closes.

At second-order phase transitions, this gap closing involves a 
diverging correlation length and universal critical exponents.

Now imagine a parameter in the Hamiltonian to sweep through 
this gap closing.  The failure of adiabaticity (“quantum Kibble-
Zurek mechanism”) gives a way to measure some properties of 
the quantum critical point.

Very suitable for quantum hardware, e.g., in Harvard Rydberg 
system to measure critical exponents of 2D quantum Ising model.

Part 2: Why do classical numerics work so well for that 
problem?  Try to understand in a more general case 



Universal quantum behavior out of equilibrium



Applied entanglement entropy

The remarkable success of the density-matrix renormalization 
group algorithm in one dimension (White, 1992; Ostlund and 
Rommer, 1995) can be understood as follows:

DMRG constructs “matrix product states” that retain local 
entanglement but throw away long-ranged entanglement.

Graphical tensor network representation:

|ψ〉 = Aij
s1

Ajk
s2

Akl
s3

Ali
s4
|s1s2s3s4〉

|ψ〉 = As1
As2

As3
As4

|s1s2s3s4〉simple product

matrix product

Example states for four spins:

A
i j

A
j k

A
k l

s1 s2 s3

...



“Infinite system” methods

Note that we can impose translation invariance simply by 
requiring constant matrices A.

In other words, for quantities in a translation-invariant system, 
we just calculate A, rather than a large finite system.
(Idea 1 of renaissance; see Vidal ’07, for example)

So where is the approximation?
A finite matrix A can only capture a finite amount of entanglement.

In the early DMRG days, it was often thought:
1. To study an infinite system, we should study a large finite one.
2. Gapless/critical systems are hard
3. Dynamical properties are hard
4. Finite temperature is hard (solved pre-2005)
But none of these is strictly correct.  Going above one dimension is expensive, 
but not impossible.  Long-range interactions very hard.

|ψ〉 = Aij
s1

Ajk
s2

Akl
s3

Ali
s4
|s1s2s3s4〉matrix product



A way to picture the entanglement of a state


• Schmidt decomposition of the state (SVD):

•  

 
 
 
 
 
 
with               and                        


• a natural measure of the entanglement is the entropy:

...
A B

�� � 0

|⇤� =
NA�

i=1

NB�

j=1

Cij |i�A|j�B

=
min(NA,NB)�

�=1

��|⇥��A|⇥��B

�
� �2

� = 1

SA = SB = S = �
�

�

�2
� log(�2

�)



Efficient representation of quantum states?


• Hilbert-space dimension of many-body problems increases 
exponentially with number of sites 
example: spin 1/2 system on “classical” computers  
(store one state in double precision)


• need an efficient way to “compress” quantum states so 
that the matrices studied remain fixed-dimensional


➡slightly entangled 1D systems: Matrix Product States


➡DMRG, TEBD, ... 
 
 



• find the ground state of a system by using imaginary time 
evolution (almost unitary for small time steps)


• parallel updates for infinite/translational invariant 
systems: iTEBD [Vidal ‘07]


• example,  transverse Ising model:         H =
⇤

i

�
J�z

i �z
i+1 + g�x

i

⇥

−0.05 0 0.05

10−10

10−5

100

[g−gc]/J

[E
0−

E 0ex
ac

t ]/J

 

 
χ=4
χ=8
χ=12
χ=16

➡convergence of wave 
function is worst at the 
critical point


➡conformal invariance

Good news: can make “finite-entanglement” theory of 
convergence at critical points; they are hardly inaccessible.



Criticality: finite-entanglement scaling
All numerical methods have difficulty with quantum critical points.
In DMRG-type approaches, this can be understood from the 
divergence of entanglement entropy at such points: the 
entanglement in a matrix product state is limited by dim A.

Quantitatively, it is found that dim A plays a role similar to imposing 
a finite system size:                             
     (Tagliacozzo et al., PRB 2008).

Finite matrix dimension effectively moves the system away from the 
critical point.

What determines this “finite-entanglement scaling”?
Is it like “finite-size scaling” of CFT’s (cf. Blöte, Cardy, & Nightingale)

|ψ〉 = Aij
s1

Ajk
s2

Akl
s3

Ali
s4
|s1s2s3s4〉matrix product

Le� � ��, � = dim A



• (Li-Haldane) “entanglement spectrum” [Calabrese et al ‘08] 
 
 
 
 
 
 
continuum of Schmidt values


• Want to explain how at a critical point, finite matrix size 
effectively moves the system away from criticality, leading 
to universal relations like

n(�) = I0

�
2
⇤
�b2 � 2b log �

⇥

with b =
S

2
=

c

12
log ⇥ = �2 log �max

# of    ‘s greater


than
�̂

�

|⇤� =
��

�=1 ��|⇥��A|⇥��B

�

Le� � ��, � = dim A



• A heuristic argument for the asymptotic case 
(using a continuum of Schmidt values and              )


➡universal finite-entanglement scaling relations

��⇥

F. Pollmann, S. Mukerjee, A. Turner, and J.E. Moore, PRL 2009 

Some checks for various critical theories are in that paper, and the recent work

B. Pirvu, G. Vidal, F. Verstraete, L. Tagliacozzo, PRB 2012


So critical points are worse than gapped points, but in a controlled way.

What does this mean in practice?


Remark: Entanglement spectra are qualitatively different for random critical spin chains 
than for pure ones, though entanglement entropies similar (M. Fagotti, P. Calabrese, JEM). 

� =
6

c
�⇤

12
c + 1

⇥ � S =
1⇤

12
c + 1

log ⇥



What about a Kibble-Zurek sweep?

N. Sherman, A. Avdoshkin, JEM, Universality of critical dynamics
with finite entanglement, arXiv:2301.09681 



What about a Kibble-Zurek sweep at finite 
entanglement?  Double scaling hypothesis

TFIM



What about a Kibble-Zurek sweep?
Double scaling hypothesis

3-state Potts,
More stringent test



Some conclusions/questions

We have some new approaches, experimental and theoretical, to 
many-body quantum problems in one dimensional systems.


Some of this is actually tested in experiments on ordinary crystals near 
room temperature, or with ultracold atoms.


The heuristic concept that “finite entanglement” (i.e., finite bond 
dimension) induces a length scale at quantum critical points describes 
not just ground states (~2009) but even dynamical processes like the 
Kibble-Zurek mechanism, with universal scaling functions.


Current questions:


Q: What are the unusual non-diffusive “fluids” of electrons and spins in 
higher dimensions?


Q: Are other non-standard perturbations, for example those relevant to 
quantum computers, also still captured within scaling frameworks?
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