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Introduction

Motivation: proposal for experimental setup to perform a
calorimeteric measurement of work on a driven qubit!
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Problem: How to model evolution of small quantum system while
continuously measuring a macroscopic property of the bath
Two cases:

® Weak coupling, based on the Lindblad equation 2
® Strong coupling: path integral formalism and filtering

!Pekola et al (New. J. Phys. 2013)
2A. Kupiainen et al PRE (2016), B. D. et al, PRA (2018) and B. D. et al,
PRA (2019)



Qubit-Calorimeter

Qubit: 4, Hey
Ihwq : Te :
éfd(r)i
Driveé Calorimeter

Figure: Experimental setup
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Time scales

» Tee = O(10°)ns: Landau quasi-particle relaxation rate to
Fermi—Dirac equilibrium in a metallic wire

» 7., = O(10%): Electron-phonon interactions
3

v

TR = 2 — 5 x O(10°)ns: Transmon qubit relaxation times

> Teq N g2 Fermi's golden rule estimate of characteristic
qubit-calorimeter time scale

3Wang et al., Appl. Phys. Let., (2015)
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Time scales

» Tee = O(10°)ns: Landau quasi-particle relaxation rate to
Fermi—Dirac equilibrium in a metallic wire

» 7., = O(10%): Electron-phonon interactions
3

v

TR = 2 — 5 x O(10°)ns: Transmon qubit relaxation times

> Teq N g2 Fermi's golden rule estimate of characteristic
qubit-calorimeter time scale

Time scale separations
Tee < Teq < Tep < TR

We assume that the qubit is interacting with the calorimeter at a
well-defined temperature

3Wang et al., Appl. Phys. Let., (2015)



Weak coupling: Stochastic Jump Process

The evolution of a closed quantum system is described by the
Schrodinger equation

P(t+dt) —P(t) = dy(t) = —iHY dt
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Weak coupling: Stochastic Jump Process

The evolution of a closed quantum system is described by the
Schrodinger equation

P(t+dt) —P(t) = dy(t) = —iHY dt

For an open system the Schrédinger equation is modified

» Dissipative terms are added to the Hamiltonian
Hy(t)dt — G(v(t))dt
» Addition of jump terms

([+) — (1)) dNy,  dNy =0, 1,
(=) —v(t))dN,, dN, =0, 1,

Ey(dNyyy) = v/ llosv]|* dt



Temperature Process
Using the Sommerfeld expansion we find the dependence of the
temperature on the change in internal energy E of the calorimeter

dE
T2=—".
7=

The qubit-electron interaction gives dE = fuww(dN| — dNy)
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Add the substrate

A Frohlich electron-phonon interaction leads to extra terms

dy(t) = —iG(y(t))dt
+<|+> - @”(t)) dN; + <|—> - (t)> dn,
dTeZNM(dM—dNT)JFMd 4 m 2 dw

*Kaganov, Lifshitz and Tanatarov (1956)
®Pekola and Karimi (2018)
*Kaganov, Lifshitz and Tanatarov (1956)
5Pekola and Karimi (2018)



Add the substrate

A Frohlich electron-phonon interaction leads to extra terms

d(t) = —iG( (1)) dt
#1000 ) am+ (1) - (o)) ang
AT, = B2 (AN, — dNy) + 25T gpe oy VIO ST g,
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Effective temperature process

Performing multi-timescale analysis eliminates the jumps process
and adds a correction to the drift and noise

dT? = %(ZV(T,? — T2)dt + J(T2)dt + /10Z Vkg T, dw; + \/S(Tﬁ)dwt)

J(T?) = Average heat dissipated by the qubit in a thermal state T, + O(e)
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Strong Coupling: Central fermion (Work in Progress)

Issues with the strong coupling spin-fermion models:
» Quadratic coupling

» Performing spin path integrals requires "Non Interacting Blip
Approximation” (NIBA)® or other approximations

®leggett et al., Rev. Mod. Phys. (1987)



Strong Coupling: Central fermion (Work in Progress)

Issues with the strong coupling spin-fermion models:
» Quadratic coupling

» Performing spin path integrals requires "Non Interacting Blip
Approximation” (NIBA)® or other approximations

To avoid making non-trivial approximations, we consider the
" central-fermion” -model

H= woclc + bic+clb) + ) webfb
0 ng(k k) Z k Dy Dk

central fermion k k

This Hamiltonian can be used to model a quantum dot

®leggett et al., Rev. Mod. Phys. (1987)



Central fermion

Our goal is to find a set of equations which describes the evolution
of the density matrix of the central fermion p(t) and the energy of
the bath E(t)

dE(t) = tr(E(t)p(1))

We calculate both operators separately

{dp(t) = Lep(t)
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Central fermion

Our goal is to find a set of equations which describes the evolution
of the density matrix of the central fermion p(t) and the energy of
the bath E(t)

dE(t) = tr(E(t)p(1))

We calculate both operators separately

{dp(t) = Lep(t)

» £(t) is obtained from performing the partial trace
tra( Lk wibibipT(1))



Fermionic path integral

The dynamics of the full central fermion-bath system can be
represented in terms of a path integral

pTOT(t) = /d[X/7X/>X7X]¢TOT(X/7X/|X>X1 t)PO(XaX)

O(x|x, t) = / D[xe, X;]e™TbeX]



Fermionic path integral

The dynamics of the full central fermion-bath system can be
represented in terms of a path integral

PTOT(t) = /d[X/7X/>X7X]¢TOT(X/>X/|X>X1 t)PO(XaX)

Mﬂ&ﬂ:/Dmxm&WM

For linear system-bath coupling, similar to the Caldeira-Leggett
model, the bath fields X; can be integrated over

(0) = [ dlxX)0(x. o)

with
Mﬂ&ﬂ—/DMWWJ

The action S[x] is now time non-local



Central fermion: dynamics

Solving the qubit path-integral gives an expression for the
propagator
x'K(t)x

O(X |x, t) = e

N(t)
Differentiating the propagator leads to a master equation for the
qubit state 7

p(t) =Lep(t)
~Qclc, p(6)] + F(£)(cTep(t) + plt)cTc)
+g(t)ep(t)ct + h(t)ctp(t)e + k(t)o(t)

"Tu and Zang, PRB, 78 (2008)



Energy of the electron bath

The energy of the electron bath is given by the operator
kakblbk. Using similar path integral techniques as before, we
find A(t) such that

E(t) = (3 wiblbrpr(£)) = trs(A(£)p(1))
k

Thus, we have the set of equations

dep(t) = Lep:
0eE(t) = tr((0: + LDA(t)p(t))



Continuous measurement of the bath: filtering
Consider the energy operator A(t) continuously being measured.
The measurement is imperfect and distributed as

P(a,t) = V8k exp(—4k({A(t)) — a)?)

where k is the measurement rate.

8 Jacobs and Steck, Cont. Phys., 47 (2006)
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Our final result is

dep(t) = Lepe
O:E(t) = tr((0: + LDA(t)p(t))

8 Jacobs and Steck, Cont. Phys., 47 (2006)



Summary

» In case of the weak coupling, we modelled the
qubit-calorimeter system as two coupled jump processes

» We studied the setup for physically relevant parameters

» For strong coupling, we used path integral methods to obtain
a joint evolution for the energy of the bath

» Using filtering methods, we introduced the continuous energy
measurement of the bath
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Fermionic coherent states

A bosonic coherent state is defined as

|¢) = exp(¢a')|0) such that a|¢) = ¢|¢)

for a complex number ¢
Similarly, one can define fermionic coherent states

|¥) = exp(—1pc’)|0) such that c|ih) = b[v))

In this case % is not a complex number, but a Grassmann number.
Grassmann numbers v, x have the properties

> ¢x = —x¢ (cb= —bc)
> 42 =0(c>=0)



Central fermion: dynamics

We want to obtain a differential equation for p(t) = trg(p7(t)).
Integrating out the bath gives a path integral representation for

p(6) = [ (1. 6,000 x.0.€ 16) (D)
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Central fermion: dynamics

We want to obtain a differential equation for p(t) = trg(p7(t)).
Integrating out the bath gives a path integral representation for

p(6) = [ (1. 6,000 x.0.€ 16) (D)
The propagator is defined in terms of a path integral
S0 x,6,6,) = [ D 0]t

with action

St ] = /tf dt T () (i0y — wo )t (t) — ¥~ (£)(i0r — wo)v ™ (t)

ti

free fermion dynamics

+ i/: dtds (gfﬁg) ' G(t—s) (;ﬁfgz;)

interaction with the bath
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