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Introduction

Motivation: proposal for experimental setup to perform a
calorimeteric measurement of work on a driven qubit1
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Problem: How to model evolution of small quantum system while
continuously measuring a macroscopic property of the bath
Two cases:

• Weak coupling, based on the Lindblad equation 2

• Strong coupling: path integral formalism and filtering

1Pekola et al (New. J. Phys. 2013)
2A. Kupiainen et al PRE (2016), B. D. et al, PRA (2018) and B. D. et al,

PRA (2019)
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Figure: Experimental setup
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Time scales

I τee = O(100)ns: Landau quasi-particle relaxation rate to
Fermi–Dirac equilibrium in a metallic wire

I τep = O(104): Electron-phonon interactions

I τR = 2− 5× O(105)ns: Transmon qubit relaxation times 3

I τeq ≈ g−2: Fermi’s golden rule estimate of characteristic
qubit-calorimeter time scale

Time scale separations

τee � τeq � τep � τR

We assume that the qubit is interacting with the calorimeter at a
well-defined temperature

3Wang et al., Appl. Phys. Let., (2015)
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Weak coupling: Stochastic Jump Process

The evolution of a closed quantum system is described by the
Schrödinger equation

ψ(t + dt)− ψ(t) = dψ(t) = −iHψ dt

For an open system the Schrödinger equation is modified

I Dissipative terms are added to the Hamiltonian

Hψ(t)dt → G (ψ(t))dt

I Addition of jump terms

(|+〉 − ψ(t))dN↑, dN↑ = 0, 1,

(|−〉 − ψ(t))dN↓, dN↓ = 0, 1,

Eψ(dN↑/↓) = γ↑/↓‖σ±ψ‖2 dt
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Temperature Process
Using the Sommerfeld expansion we find the dependence of the
temperature on the change in internal energy E of the calorimeter

dT 2
e =

dE

Nγ
.

The qubit-electron interaction gives dE = ~ω(dN↓ − dN↑)

The final result is the set of coupled equations
dψ(t) = −iG (ψ(t))dt

+

(
|+〉 − ψ(t)

)
dN↑ +

(
|−〉 − ψ(t)

)
dN↓

dTe = ~ω
Nγ (dN↓ − dN↑)
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Add the substrate
A Fröhlich electron-phonon interaction leads to extra terms

dψ(t) = −iG (ψ(t))dt

+

(
|+〉 − ψ(t)

)
dN↑ +

(
|−〉 − ψ(t)

)
dN↓

dTe = ~ω
Nγ (dN↓ − dN↑) +

ΣV (T 5
p−T 5

e )

Nγ dt4 +
√

10ΣVkBT
3
p

Nγ dwt
5
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Effective temperature process

Performing multi-timescale analysis eliminates the jumps process
and adds a correction to the drift and noise

dT 2
e =

1

γ

(
ΣV (T 5

p − T 5
e )dt + J(T 2

e ) dt +
√

10ΣVkBT
3
p dwt +

√
S(T 2

e ) dwt

)
.

J(T 2
e ) = Average heat dissipated by the qubit in a thermal state Te + O(ε)
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Strong Coupling: Central fermion (Work in Progress)

Issues with the strong coupling spin-fermion models:

I Quadratic coupling

I Performing spin path integrals requires ”Non Interacting Blip
Approximation” (NIBA)6 or other approximations

To avoid making non-trivial approximations, we consider the
”central-fermion”-model

H = ω0c
†c︸ ︷︷ ︸

central fermion

+
∑
k

gk(b†kc + c†bk) +
∑
k

ωkb
†
kbk

This Hamiltonian can be used to model a quantum dot

6Leggett et al., Rev. Mod. Phys. (1987)
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Central fermion

Our goal is to find a set of equations which describes the evolution
of the density matrix of the central fermion ρ(t) and the energy of
the bath E (t) {

dρ(t) = Ltρ(t)

dE (t) = tr(E(t)ρ(t))

We calculate both operators separately

I Lt we find by exactly integrating the bath and qubit dynamics

I E(t) is obtained from performing the partial trace

trB(
∑

k ωkb
†
kbkρT (t))
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Fermionic path integral

The dynamics of the full central fermion-bath system can be
represented in terms of a path integral

ρTOT (t) =

∫
d [x ′,X ′, x ,X ]ΦTOT (x ′,X ′|x ,X , t)ρ0(x ,X )

Φ(x ′|x , t) =

∫
D[xt ,Xt ]e

iST [xt ,Xt ]

For linear system-bath coupling, similar to the Caldeira-Leggett
model, the bath fields Xt can be integrated over

ρ(t) =

∫
d(x , x)Φ(x ′|x , t)ρ0(x)

with

Φ(x ′|x , t) =

∫
D[xt ]e

iS[xt ]

The action S [xt ] is now time non-local
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Central fermion: dynamics

Solving the qubit path-integral gives an expression for the
propagator

Φ(x ′|x , t) =
1

N(t)
ex
′K(t)x

Differentiating the propagator leads to a master equation for the
qubit state 7

ρ̇(t) =Ltρ(t)

=Ω[c†c , ρ(t)] + f (t)(c†cρ(t) + ρ(t)c†c)

+ g(t)cρ(t)c† + h(t)c†ρ(t)c + k(t)ρ(t)

7Tu and Zang, PRB, 78 (2008)



Energy of the electron bath

The energy of the electron bath is given by the operator∑
k ωkb

†
kbk . Using similar path integral techniques as before, we

find A(t) such that

E (t) = tr(
∑
k

ωkb
†
kbkρT (t)) = trS(A(t)ρ(t))

Thus, we have the set of equations{
∂tρ(t) = L̄tρt
∂tE (t) = tr((∂t + L†t)A(t)ρ(t))



Continuous measurement of the bath: filtering
Consider the energy operator A(t) continuously being measured.
The measurement is imperfect and distributed as

P(a, t) =
√

8k exp(−4k(〈A(t)〉 − a)2)

where k is the measurement rate.

The continuous measurement induces a back action on the fermion
8

dρ(t) =L̄tρ(t)dt

=Lρ(t)dt − k[A(t), [A(t), ρ(t)]dt

+ (2k)1/2(A(t)ρ(t) + ρ(t)A(t)− 2〈A(t)〉ρ(t))dwt

Our final result is{
∂tρ(t) = L̄tρt
∂tE (t) = tr((∂t + L̄†t)A(t)ρ(t))

8Jacobs and Steck, Cont. Phys., 47 (2006)
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Summary

I In case of the weak coupling, we modelled the
qubit-calorimeter system as two coupled jump processes

I We studied the setup for physically relevant parameters

I For strong coupling, we used path integral methods to obtain
a joint evolution for the energy of the bath

I Using filtering methods, we introduced the continuous energy
measurement of the bath



Fermionic coherent states

A bosonic coherent state is defined as

|φ〉 = exp(φa†)|0〉 such that a|φ〉 = φ|φ〉

for a complex number φ

Similarly, one can define fermionic coherent states

|ψ〉 = exp(−ψc†)|0〉 such that c |ψ〉 = ψ|ψ〉

In this case ψ is not a complex number, but a Grassmann number.
Grassmann numbers ψ, χ have the properties

I ψχ = −χψ (cb = −bc)

I ψ2 = 0 (c2 = 0)
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Central fermion: dynamics
We want to obtain a differential equation for ρ(t) = trB(ρT (t)).
Integrating out the bath gives a path integral representation for

ρ(t) =

∫
d(ψ, χ, φ, ξ)Φ(ψ, χ, φ, ξ, t)|ψ〉〈χ| 〈φ|ρ|ξ〉

The propagator is defined in terms of a path integral

Φ(ψ, χ, φ, ξ, t) =

∫
D[ψ+

t , ψ
−
t ]e iS[ψ+,ψ−]

with action

S [ψ+, ψ−] =

∫ tf

ti

dt ψ̄+(t)(i∂t − ω0)ψ+(t)− ψ̄−(t)(i∂t − ω0)ψ−(t)︸ ︷︷ ︸
free fermion dynamics

+ i

∫ tf

ti

dtds

(
ψ̄+(t)
ψ̄−(t)

)T

G (t − s)

(
ψ+(s)
ψ−(s)

)
︸ ︷︷ ︸

interaction with the bath
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