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The periodic table of topological matter
Symmetry d

Class Θ Σ Π 1 2 3 4 5 6 7 8
A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Notation for symmetries:
I Θ (time-reversal): antiunitary, HΘ = ΘH, Θ2 = ±1
I Σ (charge-conjugation): antiunitary, HΣ = −ΣH, Σ2 = ±1
I Π = ΘΣ = ΣΘ: unitary
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First version: Schnyder et al.; then Kitaev based on
Altland-Zirnbauer; based on Bloch theory
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A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
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BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
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DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
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By now: Non-commutative (bulk) index formulae have been found in
all cases (Prodan, Schulz-Baldes)



Basic symmetries

V : complex Euclidean vector space

Symmetries: (anti-)unitary maps U : V → V (names conventional)
1. Time-reversal Θ : V → V antiunitary, Θ2 =: α = ±1

If V = V+ ⊕ V−:
2. Particle-hole Σ : V± → V∓ antiunitary, Σ2 =: β = ±1
3. Chiral symmetry Π : V± → V∓ unitary

Remarks. 1) Let U : V → V with U2 = γ; consider Ũ := cU with
c ∈ C, |c| = 1 to be chosen. Then
I U unitary: Ũ2 = c2γ. W.l.o.g. γ arbitrary.
I U antiunitary: By U2U = UU2 we have γ = γ̄, i.e. γ = ±1.

Intrinsic γ: Ũ2 = |c|2γ = γ

2) For items 2, 3: dim V+ = dim V−.
3) Σ qualifies as Θ, so far.



Combination of symmetries

V = V+ ⊕ V−
1’. Θ : V± → V±

2. Σ : V± → V∓
3. Π : V± → V∓

Let
Π = ΘΣ , [Θ,Σ] = 0

Then any two symmetries imply the third; moreover Π2 = αβ = ±1

Remarks. 1) Σ 6= Θ (flip/no flip)

2) Π 6= Σ,Θ (unitary/antiunitary)

3) Possible combinations (none, one, three): 1 + 5 + 4 = 10
symmetry classes
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The classification

I Each entry of the table shows a group G = 0,Z,Z2 (index group)
I Vector bundles over Td (torus) of a given symmetry class

(“topological insulators”) are assigned an index I ∈ G
I If two of them (with indices I, I′) are homotopy equivalent (within

the class), then I = I′ (strong index).
I However, this is true only if their restrictions to all tori Td ′ ⊂ Td ,

(d ′ < d) are homotopy equivalent (weak indices).
I However, also non homotopy equivalent bundles may have I = I′,

if they are so upon addition of trivial ones (stably homotopic→
K-theory)



The K-theoretic point of view
Example: Integers k ∈ Z may be identified with pairs (n+,n−) ∈ N2 of
naturals, up to equivalence (n′+,n′−) ∼ (n′′+,n′′−) defined by

(n′+ + ñ,n′− + ñ) = (n′′+ + ˜̃n,n′′− + ˜̃n)

for some ñ, ˜̃n ∈ N.

Idea: k = n+ − n−

Here: Pairs of vector spaces V = (V+,V−) instead of V = V+ ⊕ V−.

Say V ′ ∼ V ′′ if

(V ′+ ⊕ Ṽ ,V ′− ⊕ Ṽ ) ∼= (V ′′+ ⊕
˜̃V ,V ′′− ⊕

˜̃V )
(homotopy). In case of symmetry U = Θ,Σ,Π, the map
U : V± → V±/∓ is augmented to U ⊕ Ũ with Ũ : Ṽ → Ṽ , Ũ2 = ±1

Remarks. 1) Dimension redefined (only here):
dim V = dim V+ − dim V−

2) If Σ,Π are symmetries, dim V = 0.

3) Notions extended to vector bundles
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Remarks. 1) Dimension redefined (only here):
dim V = dim V+ − dim V−

2) If Σ,Π are symmetries, dim V = 0.

3) Notions extended to vector bundles



The derivation of the table

One more column d = 0: Vector bundles over a point ≡ vector spaces

Symmetry d
Class Θ Σ Π 0

A 0 0 0 Z
AIII 0 0 1 0
AI 1 0 0 Z

BDI 1 1 1 Z2
D 0 1 0 Z2

DIII -1 1 1 0
AII -1 0 0 Z
CII -1 -1 1 0
C 0 -1 0 0
CI 1 -1 1 0

(Same as claimed for d = 8).

We’ll derive it.
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Normal forms of lone symmetries
Let

ε =
( 0 −1

1 0

)
, ω = i

(
0 1
1 0

)
det ε = detω = 1

We’ll see: Depending on classes, N := dim V = n,2n,4n,
(n = 1,2, . . .).

We’ll construct adapted orthonormal bases V = (vj)
k
j=1 = (v1, . . . , vk )

of invariant subspaces of V of dimension k = 1,2,4; generated by
arbitrary v1, (‖v1‖ = 1).

Exhaust the complement.

Left action: UV = (Uv1, . . . ,Uvk ) (U : V → V map)

Right action: VM = (
∑

i viMij)
k
j=1 (M: matrix of order k )

I Θ (α = +1) has k = 1: v1 such that Θv1 = v1, i.e.

ΘV = V

I Θ (α = −1) has k = 2: v2 := Θv1, Θv2 = −v1; then

ΘV = (Θv1,Θv2) = (v2,−v1) = Vε
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Normal forms of lone symmetries (cont.)

I Σ (β = +1) has k = 2:

v1 ∈ V+, v2 := −iΣv1 ∈ V−; then

ΣV = (iv2, iv1) = Vω

I Σ (β = −1) has k = 2: v1 ∈ V+, v2 := Σv1 ∈ V−; then

ΣV = (v2,−v1) = Vε

I Π (γ = −1 w.l.o.g.) has k = 2: v1 ∈ V+, v2 := −iΠv1 ∈ V−; then

ΠV = (iv2, iv1) = Vω
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Normal forms of lone symmetries (cont.)
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Normal forms of combined symmetries Θ, Σ

I α = +1, β = ±1 has k = 2:

ΘV = V , ΣV = V

{
ω (β = +1)

ε (β = −1)

I α = −1, β = ±1 has k = 4:

ΘV = V
(
ε 0
0 ε

)
, ΣV = V

(
0 β12
12 0

)



Normal forms of combined symmetries Θ, Σ
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The identification V ∼= CN

Let K : CN → CN be the standard complex conjugation

Claim: Lone symmetries U = Θ,Σ (U2 = γ = ±1; γ = α or β, hence
2 + 2 cases) on V can be brought to the following form on CN

I γ = +1 (N = n,2n): U = K
I γ = −1 (N = 2n): U = εK

Remarks. 1) Note that Σ qualifies as Θ (see earlier remark)
2) For U = Σ the split V = V+ ⊕ V− is compatibly realized as

V± = {(v ,±iv) | v ∈ Cn} ⊂ Cn ⊕ Cn = CN , (or flipped)
3) Proof:
I In the cases α = ±1, the claim is seen by mapping an adapted

basis V to the standard basis of CN

I In the cases β = ±1 the mapping is (e.g.) v1 7→
(

1
i

)
,

v2 7→ −iβ
(

1
−i

)
, compatibly with the stated V± (unflipped)

4) This foreshadows: The lone symmetry Θ will not contribute to G
(to be checked).
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The classification task in general
Any (symmetry equipped) vector space V can be identified with CN

(symmetry equipped as explained).

However this does not imply that
any two of them are homotopic, as the identifications might be non
homotopic.

Viewed through CN , the setting and the task become
I Bases (unrestricted) are matrices V ∈ U(N) (unitary group as a

set)
I Change of basis (in general) is by action of T ∈ U(N) (unitary

group as a group): V 7→ VT
I Adapted bases form the set

B = {V ∈ U(N) | symmetry constraint}

I Change of adapted basis is by action of

T = {T ∈ U(N) | symmetry constraint preserving}

I Classification: Right cosets B/T , connected components
thereof.
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Class A: no symmetry

B = U(N), T = U(N), hence B/T trivial.

Only obstruction is N = dim V . So index group is G = Z

Remarks. 1) The index trivializes for Σ,Π by dim V+ − dim V− = 0.
Do new indices appear?

2) The index survives for just Θ (classes AI, AII). Does the group
become larger? (Likely not by earlier remark)
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Class AI: Θ with α = +1

I Basis (normal form): V = ΘV

I Concretely: Θ = K , so V = V̄
I So: B = O(N). Index Z2 by det V = ±1?
I Change of basis V → VT . “Is vs. Ought”:

VT = (ΘV )T , VT = Θ(VT ) = (ΘV )T̄

I So T = T̄ , T = O(N) and B/T is trivial
I Index group remains G = Z
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Class D: Σ with β = +1

I Basis (normal form): ΣV = Vω (or V = −(ΣV )ω)

I Concretely: Σ = K , so V̄ = Vω
I So B = {V | V unitary, V̄ = Vω}
I det V = det V , hence det V = ±1. Index Z2?
I Change of basis V → VT , T = diag(T+,T−). “Is vs. Ought”:

ωT = T̄ω , i.e. T− = T+

I So T = U(n)

I Index group is G = Z2
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I Basis (normal form): ΣV = Vε
I Concretely: Σ = εK , so εV̄ = Vε

I So B = {V | V unitary,VεV T = ε}
I V symplectic, so det V = +1. (Use pf(ABAT ) = det A · pf (B))
I Change of basis V → VT , T = diag(T+,T−). “Is vs. Ought”:

εT = Tε , i.e. T− = T+

I So T = U(n)

I Index group is G = 0.
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Classes involving Π (AIII, BDI, CI, DIII, CII)

An alternate procedure is available. Recall bases adapted to Θ or Σ
(but not to Π = ΘΣ).

Change to a basis adapted to Π (or iΠ):

Π =
( 1 0

0 −1
)
, (1 = 1n,12n)

Let K be complex conjugation in that basis (thus real).

In presence of Θ or Σ (and hence all three with α, β = ±1):
I α = +1 (N = 2n)

I β = +1: Θ =
(

1 0
0 1

)
K

I β = −1: Θ =
(

0 1
1 0

)
K

I α = −1 (N = 4n)
I β = +1: Θ =

(
0 ε
ε 0

)
K

I β = −1: Θ =
(
ε 0
0 ε

)
K

(ε composite as a rule)
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The classification task involving Π

Setting: Vector space V = V+ ⊕ V−,

split encoded in projections P±
onto V± (hence ΠP± = P∓Π), or in ”flattened Hamiltonian”

H = H∗ = P+ − P− , H2 = 1
hence with

{H,Π} = 0

Equivalently (recall Π =
( 1 0

0 −1
)

in adapted basis)

H =
(

0 U∗
U 0

)
, U ∈ U(n),U(2n)

If further symmetries: [H,Θ] = 0.
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Aside: Normal form of matrices

I (Takagi) Every complex symmetric matrix A = AT is of the form

A = UNUT

with U unitary and N = NT diagonal.

I Obviously conversely
I The set of such matrices is connected
I So is its subset of unitary matrices.

I (Youla) Likewise for complex skew-symmetric matrices A = −AT :
Here N = −NT block diagonal with blocks of order 2, i.e. ∝ ε. Its
subset of unitary matrices is connected (blocks zε with |z| = 1).

I The group Sp(2n) of complex symplectic matrices U of order 2n,
i.e.,

UεUT = ε

(with composite ε), is connected. Same for Sp(2n) ∩ U(2n)
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Class AIII: Lone Π

H =
(

0 U∗
U 0

)
, (U ∈ U(n))

U(n) is connected, hence index group G = 0.



Class AIII: Lone Π

H =
(

0 U∗
U 0

)
, (U ∈ U(n))

U(n) is connected, hence index group G = 0.



Class BDI: α = +1, β = +1

H =
(

0 U∗
U 0

)
, (U ∈ U(n)) , Θ =

(
1 0
0 1

)
K

[H,Θ] = 0

means:
U = Ū

I So U ∈ O(n)

I G = π0(O(n)) = Z2 by det U = ±1
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Class CI: α = +1, β = −1

H =
(

0 U∗
U 0

)
, (U ∈ U(n)) , Θ =

(
0 1
1 0

)
K

[H,Θ] = 0

means:
U = UT

I So U unitary and symmetric: Connected set.
I Hence G = 0
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I Hence G = 0
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)
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0 1
1 0

)
K

[H,Θ] = 0 means:
U = UT

I So U unitary and symmetric: Connected set.
I Hence G = 0



Class DIII: α = −1, β = +1

H =
(

0 U∗
U 0

)
, (U ∈ U(2n)) , Θ =

(
0 ε
ε 0

)
K

[H,Θ] = 0

means:
Uε = εUT

I For Ũ := Uε it means Ũ = −ŨT

I So Ũ unitary and skew-symmetric: Connected set.
I Hence G = 0



Class DIII: α = −1, β = +1

H =
(

0 U∗
U 0

)
, (U ∈ U(2n)) , Θ =

(
0 ε
ε 0

)
K

[H,Θ] = 0 means:
Uε = εUT

I For Ũ := Uε it means Ũ = −ŨT

I So Ũ unitary and skew-symmetric: Connected set.
I Hence G = 0
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K
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K

[H,Θ] = 0 means:
Uε = εUT

I For Ũ := Uε it means Ũ = −ŨT

I So Ũ unitary and skew-symmetric: Connected set.
I Hence G = 0



Class CII: α = −1, β = −1

H =
(

0 U∗
U 0

)
, (U ∈ U(2n)) , Θ =

(
ε 0
0 ε

)
K

[H,Θ] = 0

means:
Uε = εŪ

I So UεUT = ε , i.e.
I U ∈ Sp(2n) ∩ U(2n), which is a connected group.
I Hence G = 0



Class CII: α = −1, β = −1

H =
(

0 U∗
U 0

)
, (U ∈ U(2n)) , Θ =

(
ε 0
0 ε

)
K

[H,Θ] = 0 means:
Uε = εŪ

I So UεUT = ε , i.e.
I U ∈ Sp(2n) ∩ U(2n), which is a connected group.
I Hence G = 0



Class CII: α = −1, β = −1

H =
(
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)
, (U ∈ U(2n)) , Θ =

(
ε 0
0 ε

)
K

[H,Θ] = 0 means:
Uε = εŪ

I So UεUT = ε

, i.e.
I U ∈ Sp(2n) ∩ U(2n), which is a connected group.
I Hence G = 0



Class CII: α = −1, β = −1

H =
(

0 U∗
U 0

)
, (U ∈ U(2n)) , Θ =

(
ε 0
0 ε

)
K

[H,Θ] = 0 means:
Uε = εŪ

I So UεUT = ε , i.e.
I U ∈ Sp(2n) ∩ U(2n), which is a connected group.
I Hence G = 0



Conclusion

Symmetry d
Class Θ Σ Π 0

A 0 0 0 Z
AIII 0 0 1 0
AI 1 0 0 Z

BDI 1 1 1 Z2
D 0 1 0 Z2

DIII -1 1 1 0
AII -1 0 0 Z
CII -1 -1 1 0
C 0 -1 0 0
CI 1 -1 1 0


