A (partial) discussion of the Kitaev table

Gian Michele Graf, ETH Zurich

PhD School: September 16-20, 2019 @Università degli Studi Roma Tre

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A (partial) discussion of the Kitaev table

Gian Michele Graf, ETH Zurich

PhD School: September 16-20, 2019 @Università degli Studi Roma Tre

based on discussions with J. Haag, B. Roos

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

<ロ>

The periodic table of topological matter

Symmetry				d							
Class	Θ	Σ	Π	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
C	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

Notation for symmetries:

- ▶ Θ (time-reversal): antiunitary, $H\Theta = \Theta H$, $\Theta^2 = \pm 1$
- ► Σ (charge-conjugation): antiunitary, $H\Sigma = -\Sigma H$, $\Sigma^2 = \pm 1$

 $\blacktriangleright \Pi = \Theta \Sigma = \Sigma \Theta$: unitary

The periodic table of topological matter

Symmetry				d							
Class	Θ	Σ	П	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

First version: Schnyder et al.; then Kitaev based on Altland-Zirnbauer; based on Bloch theory

The periodic table of topological matter

Symmetry				d							
Class	Θ	Σ	П	1	2	3	4	5	6	7	8
A	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

By now: Non-commutative (bulk) index formulae have been found in all cases (Prodan, Schulz-Baldes)

Basic symmetries

V: complex Euclidean vector space

Symmetries: (anti-)unitary maps $U: V \rightarrow V$ (names conventional)

1. Time-reversal $\Theta: V \rightarrow V$ antiunitary, $\Theta^2 =: \alpha = \pm 1$

If $V = V_+ \oplus V_-$:

- 2. Particle-hole $\Sigma: V_{\pm} \rightarrow V_{\mp}$ antiunitary, $\Sigma^2 =: \beta = \pm 1$
- 3. Chiral symmetry $\Pi: V_{\pm} \rightarrow V_{\mp}$ unitary

Remarks. 1) Let $U : V \to V$ with $U^2 = \gamma$; consider $\tilde{U} := cU$ with $c \in \mathbb{C}$, |c| = 1 to be chosen. Then

- *U* unitary: $\tilde{U}^2 = c^2 \gamma$. W.I.o.g. γ arbitrary.
- *U* antiunitary: By $U^2 U = UU^2$ we have $\gamma = \overline{\gamma}$, i.e. $\gamma = \pm 1$. Intrinsic γ : $\tilde{U}^2 = |c|^2 \gamma = \gamma$

- 2) For items 2, 3: dim $V_{+} = \dim V_{-}$.
- 3) Σ qualifies as Θ , so far.

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

 $V = V_+ \oplus V_-$ 1'. $\Theta: V_{\pm} \rightarrow V_{\pm}$

 $V = V_+ \oplus V_-$ 1'. $\Theta: V_{\pm} \rightarrow V_{\pm}$ (item 1' generalizes 1 through $V_+ = V, V_- = \{0\}$)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 $V = V_{+} \oplus V_{-}$ 1'. $\Theta: V_{\pm} \rightarrow V_{\pm}$ 2. $\Sigma: V_{\pm} \rightarrow V_{\mp}$ 3. $\Pi: V_{\pm} \rightarrow V_{\mp}$

 $V = V_{+} \oplus V_{-}$ 1'. $\Theta : V_{\pm} \rightarrow V_{\pm}$ 2. $\Sigma : V_{\pm} \rightarrow V_{\mp}$ 3. $\Pi : V_{\pm} \rightarrow V_{\mp}$ Let

 $\Pi=\Theta\Sigma\,,\qquad [\Theta,\Sigma]=0$

Then any two symmetries imply the third; moreover $\Pi^2 = \alpha\beta = \pm 1$

Remarks. 1) $\Sigma \neq \Theta$ (flip/no flip)

2) $\Pi \neq \Sigma, \Theta$ (unitary/antiunitary)

3) Possible combinations (none, one, three): 1 + 5 + 4 = 10 symmetry classes

The classification

- Each entry of the table shows a group $G = 0, \mathbb{Z}, \mathbb{Z}_2$ (index group)
- Vector bundles over T^d (torus) of a given symmetry class ("topological insulators") are assigned an index *I* ∈ *G*
- If two of them (with indices I, I') are homotopy equivalent (within the class), then I = I' (strong index).
- However, this is true only if their restrictions to all tori T^{d'} ⊂ T^d, (d' < d) are homotopy equivalent (weak indices).</p>
- ► However, also non homotopy equivalent bundles may have *I* = *I'*, if they are so upon addition of trivial ones (stably homotopic → K-theory)

Example: Integers $k \in \mathbb{Z}$ may be identified with pairs $(n_+, n_-) \in \mathbb{N}^2$ of naturals, up to equivalence $(n'_+, n'_-) \sim (n''_+, n''_-)$ defined by

$$(n'_+ + \tilde{n}, n'_- + \tilde{n}) = (n''_+ + \tilde{\tilde{n}}, n''_- + \tilde{\tilde{n}})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

for some $\tilde{n}, \tilde{\tilde{n}} \in \mathbb{N}$.

Example: Integers $k \in \mathbb{Z}$ may be identified with pairs $(n_+, n_-) \in \mathbb{N}^2$ of naturals, up to equivalence $(n'_+, n'_-) \sim (n''_+, n''_-)$ defined by

(日) (日) (日) (日) (日) (日) (日)

$$(n'_+ + \tilde{n}, n'_- + \tilde{n}) = (n''_+ + \tilde{\tilde{n}}, n''_- + \tilde{\tilde{n}})$$

for some $\tilde{n}, \tilde{n} \in \mathbb{N}$. Idea: $k = n_+ - n_-$

Example: Integers $k \in \mathbb{Z}$ may be identified with pairs $(n_+, n_-) \in \mathbb{N}^2$ of naturals, up to equivalence $(n'_+, n'_-) \sim (n''_+, n''_-)$ defined by

$$(n'_+ + \tilde{n}, n'_- + \tilde{n}) = (n''_+ + \tilde{\tilde{n}}, n''_- + \tilde{\tilde{n}})$$

for some $\tilde{n}, \tilde{\tilde{n}} \in \mathbb{N}$. Idea: $k = n_+ - n_-$

Here: Pairs of vector spaces $V = (V_+, V_-)$ instead of $V = V_+ \oplus V_-$.

(日) (日) (日) (日) (日) (日) (日)

Example: Integers $k \in \mathbb{Z}$ may be identified with pairs $(n_+, n_-) \in \mathbb{N}^2$ of naturals, up to equivalence $(n'_+, n'_-) \sim (n''_+, n''_-)$ defined by

$$(n'_+ + \tilde{n}, n'_- + \tilde{n}) = (n''_+ + \tilde{\tilde{n}}, n''_- + \tilde{\tilde{n}})$$

for some $\tilde{n}, \tilde{\tilde{n}} \in \mathbb{N}$. Idea: $k = n_+ - n_-$

Here: Pairs of vector spaces $V = (V_+, V_-)$ instead of $V = V_+ \oplus V_-$. Say $V' \sim V''$ if

$$(V'_+ \oplus \tilde{V}, V'_- \oplus \tilde{V}) \cong (V''_+ \oplus \tilde{\tilde{V}}, V''_- \oplus \tilde{\tilde{V}})$$

A D F A 同 F A E F A E F A Q A

(homotopy).

Example: Integers $k \in \mathbb{Z}$ may be identified with pairs $(n_+, n_-) \in \mathbb{N}^2$ of naturals, up to equivalence $(n'_+, n'_-) \sim (n''_+, n''_-)$ defined by

$$(n'_++\tilde{n},n'_-+\tilde{n})=(n''_++\tilde{\tilde{n}},n''_-+\tilde{\tilde{n}})$$

for some $\tilde{n}, \tilde{\tilde{n}} \in \mathbb{N}$. Idea: $k = n_+ - n_-$

Here: Pairs of vector spaces $V = (V_+, V_-)$ instead of $V = V_+ \oplus V_-$. Say $V' \sim V''$ if

$$(V'_{+} \oplus \tilde{V}, V'_{-} \oplus \tilde{V}) \cong (V''_{+} \oplus \tilde{\tilde{V}}, V''_{-} \oplus \tilde{\tilde{V}})$$

(homotopy). In case of symmetry $U = \Theta, \Sigma, \Pi$, the map
 $U : V_{\pm} \to V_{\pm/\mp}$ is augmented to $U \oplus \tilde{U}$ with $\tilde{U} : \tilde{V} \to \tilde{V}, \tilde{U}^{2} = \pm 1$

Remarks. 1) Dimension redefined (only here): dim $V = \dim V_+ - \dim V_-$

2) If Σ , Π are symmetries, dim V = 0.

3) Notions extended to vector bundles

The derivation of the table

One more column d = 0: Vector bundles over a point \equiv vector spaces

Sy	d			
Class	Θ	Σ	П	0
А	0	0	0	\mathbb{Z}
AIII	0	0	1	0
AI	1	0	0	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2
DIII	-1	1	1	0
All	-1	0	0	\mathbb{Z}
CII	-1	-1	1	0
С	0	-1	0	0
CI	1	-1	1	0

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(Same as claimed for d = 8).

The derivation of the table

One more column d = 0: Vector bundles over a point \equiv vector spaces

Sy	d			
Class	Θ	Σ	П	0
А	0	0	0	\mathbb{Z}
AIII	0	0	1	0
AI	1	0	0	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2
DIII	-1	1	1	0
All	-1	0	0	\mathbb{Z}
CII	-1	-1	1	0
С	0	-1	0	0
CI	1	-1	1	0

(Same as claimed for d = 8). We'll derive it.

$$\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \omega = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\det \varepsilon = \det \omega = 1$$

We'll see: Depending on classes, $N := \dim V = n, 2n, 4n$, (n = 1, 2, ...).

We'll construct adapted orthonormal bases $\underline{V} = (v_j)_{j=1}^k = (v_1, \dots, v_k)$ of invariant subspaces of *V* of dimension k = 1, 2, 4; generated by arbitrary v_1 , $(||v_1|| = 1)$.

(日) (日) (日) (日) (日) (日) (日)

$$\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \omega = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\det \varepsilon = \det \omega = 1$$

We'll see: Depending on classes, $N := \dim V = n, 2n, 4n$, (n = 1, 2, ...).

We'll construct adapted orthonormal bases $\underline{V} = (v_j)_{j=1}^k = (v_1, \dots, v_k)$ of invariant subspaces of V of dimension k = 1, 2, 4; generated by arbitrary v_1 , ($||v_1|| = 1$). Exhaust the complement.

(日) (日) (日) (日) (日) (日) (日)

$$\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \omega = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\det \varepsilon = \det \omega = 1$$

We'll see: Depending on classes, $N := \dim V = n, 2n, 4n$, (n = 1, 2, ...).

We'll construct adapted orthonormal bases $\underline{V} = (v_j)_{j=1}^k = (v_1, \dots, v_k)$ of invariant subspaces of *V* of dimension k = 1, 2, 4; generated by arbitrary v_1 , ($||v_1|| = 1$). Exhaust the complement.

Left action: $U\underline{V} = (Uv_1, \dots, Uv_k) (U : V \rightarrow V \text{ map})$

Right action: $\underline{V}M = (\sum_{i} v_i M_{ij})_{i=1}^k (M: \text{ matrix of order } k)$

$$\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \omega = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\det \varepsilon = \det \omega = 1$$

We'll see: Depending on classes, $N := \dim V = n, 2n, 4n$, (n = 1, 2, ...).

We'll construct adapted orthonormal bases $\underline{V} = (v_j)_{j=1}^k = (v_1, \dots, v_k)$ of invariant subspaces of *V* of dimension k = 1, 2, 4; generated by arbitrary v_1 , ($||v_1|| = 1$). Exhaust the complement.

Left action: $U\underline{V} = (Uv_1, \dots, Uv_k) (U : V \rightarrow V \text{ map})$

Right action: $\underline{V}M = (\sum_{i} v_i M_{ij})_{j=1}^k$ (*M*: matrix of order *k*) $\triangleright \quad \Theta \ (\alpha = +1)$ has k = 1:

$$\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \omega = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\det \varepsilon = \det \omega = 1$$

We'll see: Depending on classes, $N := \dim V = n, 2n, 4n$, (n = 1, 2, ...).

We'll construct adapted orthonormal bases $\underline{V} = (v_j)_{j=1}^k = (v_1, \dots, v_k)$ of invariant subspaces of *V* of dimension k = 1, 2, 4; generated by arbitrary v_1 , ($||v_1|| = 1$). Exhaust the complement.

Left action: $U\underline{V} = (Uv_1, \ldots, Uv_k) (U : V \rightarrow V \text{ map})$

Right action: $\underline{V}M = (\sum_{i} v_i M_{ij})_{j=1}^k (M: \text{ matrix of order } k)$ $\blacktriangleright \Theta (\alpha = +1) \text{ has } k = 1: v_1 \text{ such that } \Theta v_1 = v_1,$

$$\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \omega = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\det \varepsilon = \det \omega = 1$$

We'll see: Depending on classes, $N := \dim V = n, 2n, 4n$, (n = 1, 2, ...).

We'll construct adapted orthonormal bases $\underline{V} = (v_j)_{j=1}^k = (v_1, \dots, v_k)$ of invariant subspaces of *V* of dimension k = 1, 2, 4; generated by arbitrary v_1 , ($||v_1|| = 1$). Exhaust the complement.

Left action: $U\underline{V} = (Uv_1, \ldots, Uv_k) (U : V \rightarrow V \text{ map})$

Right action: $\underline{V}M = (\sum_{i} v_i M_{ij})_{j=1}^k$ (*M*: matrix of order *k*) $\triangleright \Theta (\alpha = +1)$ has k = 1: v_1 such that $\Theta v_1 = v_1$, i.e.

$$\Theta \underline{V} = \underline{V}$$

$$\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \omega = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\det \varepsilon = \det \omega = 1$$

We'll see: Depending on classes, $N := \dim V = n, 2n, 4n$, (n = 1, 2, ...).

We'll construct adapted orthonormal bases $\underline{V} = (v_j)_{j=1}^k = (v_1, \dots, v_k)$ of invariant subspaces of *V* of dimension k = 1, 2, 4; generated by arbitrary v_1 , ($||v_1|| = 1$). Exhaust the complement.

Left action: $U\underline{V} = (Uv_1, \ldots, Uv_k) (U : V \rightarrow V \text{ map})$

Right action: $\underline{V}M = (\sum_{i} v_i M_{ij})_{j=1}^k$ (*M*: matrix of order *k*) $\triangleright \ \Theta (\alpha = +1)$ has k = 1: v_1 such that $\Theta v_1 = v_1$, i.e.

$$\Theta \underline{V} = \underline{V}$$

•
$$\Theta$$
 ($\alpha = -1$) has $k = 2$:

$$\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad \omega = i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\det \varepsilon = \det \omega = 1$$

We'll see: Depending on classes, $N := \dim V = n, 2n, 4n$, (n = 1, 2, ...).

We'll construct adapted orthonormal bases $\underline{V} = (v_j)_{j=1}^k = (v_1, \dots, v_k)$ of invariant subspaces of V of dimension k = 1, 2, 4; generated by arbitrary v_1 , ($||v_1|| = 1$). Exhaust the complement.

Left action: $U\underline{V} = (Uv_1, \ldots, Uv_k) (U : V \rightarrow V \text{ map})$

Right action: $\underline{V}M = (\sum_{i} v_i M_{ij})_{j=1}^k$ (*M*: matrix of order *k*) $\triangleright \Theta (\alpha = +1)$ has k = 1: v_1 such that $\Theta v_1 = v_1$, i.e.

$$\Theta \underline{V} = \underline{V}$$

• Θ ($\alpha = -1$) has k = 2: $v_2 := \Theta v_1, \Theta v_2 = -v_1$; then $\Theta \underline{V} = (\Theta v_1, \Theta v_2) = (v_2, -v_1) = \underline{V}\varepsilon$

►
$$\Sigma$$
 (β = +1) has *k* = 2:

•
$$\Sigma$$
 (β = +1) has k = 2: $v_1 \in V_+$, $v_2 := -i\Sigma v_1 \in V_-$; then
 $\Sigma \underline{V} = (iv_2, iv_1) = \underline{V}\omega$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

•
$$\Sigma$$
 (β = +1) has k = 2: $v_1 \in V_+$, $v_2 := -i\Sigma v_1 \in V_-$; then
 $\Sigma \underline{V} = (iv_2, iv_1) = \underline{V}\omega$

 \blacktriangleright Σ ($\beta = -1$) has k = 2:

$$\Sigma (\beta = +1) \text{ has } k = 2: v_1 \in V_+, v_2 := -i\Sigma v_1 \in V_-; \text{ then}$$
$$\Sigma \underline{V} = (iv_2, iv_1) = \underline{V}\omega$$

• Σ ($\beta = -1$) has k = 2: $v_1 \in V_+$, $v_2 := \Sigma v_1 \in V_-$; then $\Sigma \underline{V} = (v_2, -v_1) = \underline{V}\varepsilon$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

•
$$\Sigma$$
 (β = +1) has k = 2: $v_1 \in V_+$, $v_2 := -i\Sigma v_1 \in V_-$; then
 $\Sigma \underline{V} = (iv_2, iv_1) = \underline{V}\omega$

►
$$\Sigma$$
 (β = -1) has k = 2: $v_1 \in V_+$, $v_2 := \Sigma v_1 \in V_-$; then
 $\Sigma \underline{V} = (v_2, -v_1) = \underline{V}\varepsilon$

▶ Π ($\gamma = -1$ w.l.o.g.) has k = 2:

•
$$\Sigma$$
 (β = +1) has k = 2: $v_1 \in V_+$, $v_2 := -i\Sigma v_1 \in V_-$; then
 $\Sigma \underline{V} = (iv_2, iv_1) = \underline{V}\omega$

► Σ (β = -1) has k = 2: $v_1 \in V_+$, $v_2 := \Sigma v_1 \in V_-$; then $\Sigma \underline{V} = (v_2, -v_1) = \underline{V}\varepsilon$

► Π ($\gamma = -1$ w.l.o.g.) has k = 2: $v_1 \in V_+$, $v_2 := -i\Pi v_1 \in V_-$; then $\Pi \underline{V} = (iv_2, iv_1) = \underline{V}\omega$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Normal forms of combined symmetries Θ , Σ

$$\blacktriangleright \alpha = +1, \beta = \pm 1$$
 has $k = 2$:

$$\Theta \underline{V} = \underline{V}, \qquad \Sigma \underline{V} = \underline{V} \begin{cases} \omega & (\beta = +1) \\ \varepsilon & (\beta = -1) \end{cases}$$

Normal forms of combined symmetries Θ , Σ

$$\begin{aligned} & \alpha = \pm 1, \beta = \pm 1 \text{ has } k = 2; \\ & \Theta \underline{V} = \underline{V}, \qquad \Sigma \underline{V} = \underline{V} \begin{cases} \omega & (\beta = \pm 1) \\ \varepsilon & (\beta = -1) \end{cases} \\ & \delta = \pm 1 \text{ has } k = 4; \\ & \Theta \underline{V} = \underline{V} \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon \end{pmatrix}, \qquad \Sigma \underline{V} = V \begin{pmatrix} 0 & \beta \mathbf{1}_2 \\ \mathbf{1}_2 & 0 \end{pmatrix} \end{aligned}$$

The identification $V \cong \mathbb{C}^N$

Let $K : \mathbb{C}^N \to \mathbb{C}^N$ be the standard complex conjugation
Let $K : \mathbb{C}^N \to \mathbb{C}^N$ be the standard complex conjugation

Claim: Lone symmetries $U = \Theta$, Σ ($U^2 = \gamma = \pm 1$; $\gamma = \alpha$ or β , hence 2 + 2 cases) on *V* can be brought to the following form on \mathbb{C}^N

(ロ) (同) (三) (三) (三) (三) (○) (○)

▶
$$\gamma = +1$$
 (*N* = *n*, 2*n*): *U* = *K*

$$\triangleright \ \gamma = -1 \ (N = 2n): \ U = \varepsilon K$$

Let $K : \mathbb{C}^N \to \mathbb{C}^N$ be the standard complex conjugation

Claim: Lone symmetries $U = \Theta$, Σ ($U^2 = \gamma = \pm 1$; $\gamma = \alpha$ or β , hence 2 + 2 cases) on *V* can be brought to the following form on \mathbb{C}^N

(日) (日) (日) (日) (日) (日) (日)

•
$$\gamma = +1$$
 (*N* = *n*, 2*n*): *U* = *K*

Remarks. 1) Note that Σ qualifies as Θ (see earlier remark)

Let $K : \mathbb{C}^N \to \mathbb{C}^N$ be the standard complex conjugation

Claim: Lone symmetries $U = \Theta$, Σ ($U^2 = \gamma = \pm 1$; $\gamma = \alpha$ or β , hence 2 + 2 cases) on *V* can be brought to the following form on \mathbb{C}^N

Remarks. 1) Note that Σ qualifies as Θ (see earlier remark) 2) For $U = \Sigma$ the split $V = V_+ \oplus V_-$ is compatibly realized as

$$\mathcal{V}_{\pm} = \{ (m{v},\pm \mathrm{i}m{v}) \mid m{v} \in \mathbb{C}^n \} \subset \mathbb{C}^n \oplus \mathbb{C}^n = \mathbb{C}^N \,, \qquad ext{(or flipped)}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Let $K : \mathbb{C}^N \to \mathbb{C}^N$ be the standard complex conjugation

Claim: Lone symmetries $U = \Theta$, Σ ($U^2 = \gamma = \pm 1$; $\gamma = \alpha$ or β , hence 2 + 2 cases) on *V* can be brought to the following form on \mathbb{C}^N

$$\gamma = +1$$
 (N = n, 2n): U = K
 $\gamma = -1$ (N = 2n): U = εK

Remarks. 1) Note that Σ qualifies as Θ (see earlier remark) 2) For $U = \Sigma$ the split $V = V_+ \oplus V_-$ is compatibly realized as

 $V_{\pm} = \{ (v, \pm iv) \mid v \in \mathbb{C}^n \} \subset \mathbb{C}^n \oplus \mathbb{C}^n = \mathbb{C}^N, \quad \text{(or flipped)}$ 3) Proof:

In the cases α = ±1, the claim is seen by mapping an adapted basis <u>V</u> to the standard basis of C^N

Let $K : \mathbb{C}^N \to \mathbb{C}^N$ be the standard complex conjugation

Claim: Lone symmetries $U = \Theta$, Σ ($U^2 = \gamma = \pm 1$; $\gamma = \alpha$ or β , hence 2 + 2 cases) on *V* can be brought to the following form on \mathbb{C}^N

$$\gamma = +1$$
 (N = n, 2n): U = K
 $\gamma = -1$ (N = 2n): U = εK

Remarks. 1) Note that Σ qualifies as Θ (see earlier remark) 2) For $U = \Sigma$ the split $V = V_+ \oplus V_-$ is compatibly realized as

 $V_{\pm} = \{ (v, \pm iv) \mid v \in \mathbb{C}^n \} \subset \mathbb{C}^n \oplus \mathbb{C}^n = \mathbb{C}^N, \quad \text{(or flipped)}$ 3) Proof:

In the cases α = ±1, the claim is seen by mapping an adapted basis <u>V</u> to the standard basis of C^N

▶ In the cases $\beta = \pm 1$ the mapping is (e.g.) $v_1 \mapsto \begin{pmatrix} 1 \\ i \end{pmatrix}$, $v_2 \mapsto -i\beta \begin{pmatrix} 1 \\ -i \end{pmatrix}$, compatibly with the stated V_{\pm} (unflipped)

Let $K : \mathbb{C}^N \to \mathbb{C}^N$ be the standard complex conjugation

Claim: Lone symmetries $U = \Theta$, Σ ($U^2 = \gamma = \pm 1$; $\gamma = \alpha$ or β , hence 2 + 2 cases) on *V* can be brought to the following form on \mathbb{C}^N

$$\gamma = +1$$
 (N = n, 2n): U = K
 $\gamma = -1$ (N = 2n): U = εK

Remarks. 1) Note that Σ qualifies as Θ (see earlier remark) 2) For $U = \Sigma$ the split $V = V_+ \oplus V_-$ is compatibly realized as

 $V_{\pm} = \{ (v, \pm iv) \mid v \in \mathbb{C}^n \} \subset \mathbb{C}^n \oplus \mathbb{C}^n = \mathbb{C}^N, \quad \text{(or flipped)}$ 3) Proof:

In the cases α = ±1, the claim is seen by mapping an adapted basis <u>V</u> to the standard basis of C^N

In the cases β = ±1 the mapping is (e.g.) v₁ → (¹/_i), v₂ → −iβ(¹/_{-i}), compatibly with the stated V_± (unflipped)
4) This foreshadows: The lone symmetry Θ will not contribute to *G* (to be checked).

Any (symmetry equipped) vector space *V* can be identified with \mathbb{C}^N (symmetry equipped as explained).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Any (symmetry equipped) vector space V can be identified with \mathbb{C}^N (symmetry equipped as explained). However this does not imply that any two of them are homotopic, as the identifications might be non homotopic.

Any (symmetry equipped) vector space V can be identified with \mathbb{C}^N (symmetry equipped as explained). However this does not imply that any two of them are homotopic, as the identifications might be non homotopic.

Viewed through \mathbb{C}^N , the setting and the task become

► Bases (unrestricted) are matrices <u>V</u> ∈ U(N) (unitary group as a set)

(ロ) (同) (三) (三) (三) (三) (○) (○)

Any (symmetry equipped) vector space V can be identified with \mathbb{C}^N (symmetry equipped as explained). However this does not imply that any two of them are homotopic, as the identifications might be non homotopic.

Viewed through \mathbb{C}^N , the setting and the task become

- ► Bases (unrestricted) are matrices <u>V</u> ∈ U(N) (unitary group as a set)
- Change of basis (in general) is by action of *T* ∈ *U*(*N*) (unitary group as a group): <u>*V*</u> → <u>*V*</u>*T*

(ロ) (同) (三) (三) (三) (三) (○) (○)

Any (symmetry equipped) vector space V can be identified with \mathbb{C}^N (symmetry equipped as explained). However this does not imply that any two of them are homotopic, as the identifications might be non homotopic.

Viewed through \mathbb{C}^N , the setting and the task become

- ► Bases (unrestricted) are matrices <u>V</u> ∈ U(N) (unitary group as a set)
- ► Change of basis (in general) is by action of $T \in U(N)$ (unitary group as a group): $\underline{V} \mapsto \underline{V}T$
- Adapted bases form the set

 $\mathcal{B} = \{ \underline{V} \in U(N) \mid \text{symmetry constraint} \}$

(日) (日) (日) (日) (日) (日) (日)

Any (symmetry equipped) vector space *V* can be identified with \mathbb{C}^N (symmetry equipped as explained). However this does not imply that any two of them are homotopic, as the identifications might be non homotopic.

Viewed through \mathbb{C}^N , the setting and the task become

- ► Bases (unrestricted) are matrices <u>V</u> ∈ U(N) (unitary group as a set)
- Change of basis (in general) is by action of *T* ∈ *U*(*N*) (unitary group as a group): <u>*V*</u> → <u>*V*</u>*T*
- Adapted bases form the set

 $\mathcal{B} = \{ \underline{V} \in U(N) \mid \text{symmetry constraint} \}$

Change of adapted basis is by action of

 $\mathcal{T} = \{ T \in U(N) \mid \text{symmetry constraint preserving} \}$

Any (symmetry equipped) vector space *V* can be identified with \mathbb{C}^N (symmetry equipped as explained). However this does not imply that any two of them are homotopic, as the identifications might be non homotopic.

Viewed through \mathbb{C}^N , the setting and the task become

- ► Bases (unrestricted) are matrices <u>V</u> ∈ U(N) (unitary group as a set)
- ► Change of basis (in general) is by action of $T \in U(N)$ (unitary group as a group): $\underline{V} \mapsto \underline{V}T$
- Adapted bases form the set

 $\mathcal{B} = \{ \underline{V} \in U(N) \mid \text{symmetry constraint} \}$

Change of adapted basis is by action of

 $\mathcal{T} = \{ T \in U(N) \mid \text{symmetry constraint preserving} \}$

Classification: Right cosets B/T, connected components thereof.

Class A: no symmetry

 $\mathcal{B} = U(N), \mathcal{T} = U(N)$, hence \mathcal{B}/\mathcal{T} trivial.

Class A: no symmetry

 $\mathcal{B} = U(N), \mathcal{T} = U(N)$, hence \mathcal{B}/\mathcal{T} trivial.

Only obstruction is $N = \dim V$. So index group is $G = \mathbb{Z}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Class A: no symmetry

 $\mathcal{B} = U(N), \mathcal{T} = U(N)$, hence \mathcal{B}/\mathcal{T} trivial.

Only obstruction is $N = \dim V$. So index group is $G = \mathbb{Z}$

Remarks. 1) The index trivializes for Σ , Π by dim V_+ – dim V_- = 0. Do new indices appear?

2) The index survives for just Θ (classes AI, AII). Does the group become larger? (Likely not by earlier remark)

(ロ) (同) (三) (三) (三) (三) (○) (○)

• Basis (normal form): $\underline{V} = \Theta \underline{V}$

- **b** Basis (normal form): $\underline{V} = \Theta \underline{V}$
- Concretely: $\Theta = K$, so $\underline{V} = \underline{\overline{V}}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Basis (normal form): $\underline{V} = \Theta \underline{V}$
- Concretely: $\Theta = K$, so $\underline{V} = \underline{\overline{V}}$
- So: $\mathcal{B} = O(N)$. Index \mathbb{Z}_2 by det $\underline{V} = \pm 1$?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Basis (normal form): $\underline{V} = \Theta \underline{V}$
- Concretely: $\Theta = K$, so $\underline{V} = \underline{V}$
- So: $\mathcal{B} = O(N)$. Index \mathbb{Z}_2 by det $\underline{V} = \pm 1$?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Change of basis $\underline{V} \rightarrow \underline{V}T$.

- Basis (normal form): $\underline{V} = \Theta \underline{V}$
- Concretely: $\Theta = K$, so $\underline{V} = \underline{V}$
- So: $\mathcal{B} = O(N)$. Index \mathbb{Z}_2 by det $\underline{V} = \pm 1$?
- Change of basis $\underline{V} \rightarrow \underline{V}T$. "Is vs. Ought":

$$\underline{V}T = (\Theta \underline{V})T, \qquad \underline{V}T = \Theta(\underline{V}T) = (\Theta \underline{V})\overline{T}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Basis (normal form): $\underline{V} = \Theta \underline{V}$
- Concretely: $\Theta = K$, so $\underline{V} = \underline{V}$
- So: $\mathcal{B} = O(N)$. Index \mathbb{Z}_2 by det $\underline{V} = \pm 1$?
- Change of basis $\underline{V} \rightarrow \underline{V}T$. "Is vs. Ought":

$$\underline{V}T = (\Theta \underline{V})T, \qquad \underline{V}T = \Theta(\underline{V}T) = (\Theta \underline{V})\overline{T}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

► So $T = \overline{T}$,

• Basis (normal form):
$$\underline{V} = \Theta \underline{V}$$

• Concretely:
$$\Theta = K$$
, so $\underline{V} = \underline{V}$

So:
$$\mathcal{B} = O(N)$$
. Index \mathbb{Z}_2 by det $\underline{V} = \pm 1$?

• Change of basis $\underline{V} \rightarrow \underline{V}T$. "Is vs. Ought":

$$\underline{V}T = (\Theta \underline{V})T, \qquad \underline{V}T = \Theta(\underline{V}T) = (\Theta \underline{V})\overline{T}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

So $T = \overline{T}$, T = O(N)

• Basis (normal form):
$$\underline{V} = \Theta \underline{V}$$

- Concretely: $\Theta = K$, so $\underline{V} = \underline{V}$
- So: $\mathcal{B} = O(N)$. Index \mathbb{Z}_2 by det $\underline{V} = \pm 1$?
- Change of basis $\underline{V} \rightarrow \underline{V}T$. "Is vs. Ought":

$$\underline{V}T = (\Theta \underline{V})T, \qquad \underline{V}T = \Theta(\underline{V}T) = (\Theta \underline{V})\overline{T}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

So
$$T = \overline{T}$$
, $T = O(N)$ and \mathcal{B}/T is trivial

• Basis (normal form):
$$\underline{V} = \Theta \underline{V}$$

- Concretely: $\Theta = K$, so $\underline{V} = \underline{V}$
- So: $\mathcal{B} = O(N)$. Index \mathbb{Z}_2 by det $\underline{V} = \pm 1$?
- Change of basis $\underline{V} \rightarrow \underline{V}T$. "Is vs. Ought":

$$\underline{V}T = (\Theta \underline{V})T, \qquad \underline{V}T = \Theta(\underline{V}T) = (\Theta \underline{V})\overline{T}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

So
$$T = \overline{T}$$
, $T = O(N)$ and \mathcal{B}/T is trivial

▶ Index group remains $G = \mathbb{Z}$

• Basis (normal form): $\Theta \underline{V} = \underline{V}\varepsilon$ (or $\underline{V} = -\Theta \underline{V}\varepsilon$)

► Basis (normal form): $\Theta \underline{V} = \underline{V}\varepsilon$ (or $\underline{V} = -\Theta \underline{V}\varepsilon$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Concretely: $\Theta = \varepsilon K$, so $\varepsilon \underline{V} = \underline{V} \varepsilon$

• Basis (normal form): $\Theta \underline{V} = \underline{V}\varepsilon$ (or $\underline{V} = -\Theta \underline{V}\varepsilon$)

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Concretely: $\Theta = \varepsilon K$, so $\varepsilon \underline{V} = \underline{V} \varepsilon$
- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \varepsilon \overline{\underline{V}} = \underline{V} \varepsilon \}$

• Basis (normal form): $\Theta \underline{V} = \underline{V}\varepsilon$ (or $\underline{V} = -\Theta \underline{V}\varepsilon$)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Concretely: $\Theta = \varepsilon K$, so $\varepsilon \underline{V} = \underline{V} \varepsilon$
- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \varepsilon \overline{\underline{V}} = \underline{V} \varepsilon \}$
- Change of basis $\underline{V} \rightarrow \underline{V}T$.

- Basis (normal form): $\Theta \underline{V} = \underline{V}\varepsilon$ (or $\underline{V} = -\Theta \underline{V}\varepsilon$)
- Concretely: $\Theta = \varepsilon K$, so $\varepsilon \underline{V} = \underline{V} \varepsilon$
- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \varepsilon \underline{\overline{V}} = \underline{V} \varepsilon \}$
- Change of basis $\underline{V} \rightarrow \underline{V}T$. "Is vs. Ought":

$$\underline{V}T = -(\Theta \underline{V}\varepsilon)T, \qquad \underline{V}T = -\Theta(\underline{V}T)\varepsilon = -(\Theta \underline{V})\overline{T}\varepsilon$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- ► Basis (normal form): $\Theta \underline{V} = \underline{V}\varepsilon$ (or $\underline{V} = -\Theta \underline{V}\varepsilon$)
- Concretely: $\Theta = \varepsilon K$, so $\varepsilon \underline{V} = \underline{V} \varepsilon$
- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \varepsilon \overline{\underline{V}} = \underline{V} \varepsilon \}$
- Change of basis $\underline{V} \rightarrow \underline{V}T$. "Is vs. Ought":

$$\underline{V}T = -(\Theta \underline{V}\varepsilon)T, \qquad \underline{V}T = -\Theta(\underline{V}T)\varepsilon = -(\Theta \underline{V})\overline{T}\varepsilon$$

• So $\varepsilon T = \overline{T}\varepsilon$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

- Basis (normal form): $\Theta \underline{V} = \underline{V}\varepsilon$ (or $\underline{V} = -\Theta \underline{V}\varepsilon$)
- Concretely: $\Theta = \varepsilon K$, so $\varepsilon \underline{V} = \underline{V} \varepsilon$
- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \varepsilon \overline{\underline{V}} = \underline{V} \varepsilon \}$
- Change of basis $\underline{V} \rightarrow \underline{V}T$. "Is vs. Ought":

$$\underline{V}T = -(\Theta \underline{V}\varepsilon)T, \qquad \underline{V}T = -\Theta(\underline{V}T)\varepsilon = -(\Theta \underline{V})\overline{T}\varepsilon$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

So
$$\varepsilon T = \overline{T}\varepsilon$$
, $T = \mathcal{B}$ and \mathcal{B}/T is trivial

- ► Basis (normal form): $\Theta \underline{V} = \underline{V}\varepsilon$ (or $\underline{V} = -\Theta \underline{V}\varepsilon$)
- Concretely: $\Theta = \varepsilon K$, so $\varepsilon \underline{V} = \underline{V} \varepsilon$
- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \varepsilon \overline{\underline{V}} = \underline{V} \varepsilon \}$
- Change of basis $\underline{V} \rightarrow \underline{V}T$. "Is vs. Ought":

$$\underline{V}T = -(\Theta \underline{V}\varepsilon)T, \qquad \underline{V}T = -\Theta(\underline{V}T)\varepsilon = -(\Theta \underline{V})\overline{T}\varepsilon$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• So
$$\varepsilon T = \overline{T}\varepsilon$$
, $T = B$ and B/T is trivial

▶ Index group remains $G = \mathbb{Z}$

Class D: Σ with $\beta = +1$

► Basis (normal form):
$$\Sigma \underline{V} = \underline{V}\omega$$
 (or $\underline{V} = -(\Sigma \underline{V})\omega$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Class D: Σ with $\beta = +1$

► Basis (normal form): $\Sigma \underline{V} = \underline{V}\omega$ (or $\underline{V} = -(\Sigma \underline{V})\omega$)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Concretely: $\Sigma = K$, so $\underline{V} = \underline{V}\omega$

Class D: Σ with $\beta = +1$

► Basis (normal form): $\Sigma \underline{V} = \underline{V}\omega$ (or $\underline{V} = -(\Sigma \underline{V})\omega$)

• Concretely:
$$\Sigma = K$$
, so $\underline{V} = \underline{V}\omega$

• So
$$\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \overline{\underline{V}} = \underline{V}\omega \}$$
► Basis (normal form): $\Sigma \underline{V} = \underline{V}\omega$ (or $\underline{V} = -(\Sigma \underline{V})\omega$)

• Concretely:
$$\Sigma = K$$
, so $\underline{V} = \underline{V}\omega$

- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \underline{\overline{V}} = \underline{V}\omega \}$
- $\overline{\det V} = \det V$, hence $\det V = \pm 1$. Index \mathbb{Z}_2 ?

► Basis (normal form): $\Sigma \underline{V} = \underline{V}\omega$ (or $\underline{V} = -(\Sigma \underline{V})\omega$)

• Concretely:
$$\Sigma = K$$
, so $\underline{V} = \underline{V}\omega$

- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \underline{\overline{V}} = \underline{V}\omega \}$
- $\overline{\det V} = \det V$, hence $\det V = \pm 1$. Index \mathbb{Z}_2 ?
- Change of basis $\underline{V} \rightarrow \underline{V}T$, $T = \text{diag}(T_+, T_-)$.

► Basis (normal form): $\Sigma \underline{V} = \underline{V}\omega$ (or $\underline{V} = -(\Sigma \underline{V})\omega$)

• Concretely:
$$\Sigma = K$$
, so $\underline{V} = \underline{V}\omega$

- So $\mathcal{B} = \{\underline{V} \mid \underline{V} \text{ unitary}, \underline{\overline{V}} = \underline{V}\omega\}$
- $\overline{\det V} = \det V$, hence $\det V = \pm 1$. Index \mathbb{Z}_2 ?
- ▶ Change of basis $\underline{V} \rightarrow \underline{V}T$, $T = \text{diag}(T_+, T_-)$. "Is vs. Ought":

$$\omega T = \overline{T} \omega$$
, i.e. $T_{-} = \overline{T_{+}}$

► Basis (normal form): $\Sigma \underline{V} = \underline{V}\omega$ (or $\underline{V} = -(\Sigma \underline{V})\omega$)

• Concretely:
$$\Sigma = K$$
, so $\underline{V} = \underline{V}\omega$

- So $\mathcal{B} = \{\underline{V} \mid \underline{V} \text{ unitary}, \underline{\overline{V}} = \underline{V}\omega\}$
- det \underline{V} = det \underline{V} , hence det \underline{V} = ±1. Index \mathbb{Z}_2 ?
- ▶ Change of basis $\underline{V} \rightarrow \underline{V}T$, $T = \text{diag}(T_+, T_-)$. "Is vs. Ought":

$$\omega T = \overline{T} \omega$$
, i.e. $T_{-} = \overline{T_{+}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

So $\mathcal{T} = U(n)$

► Basis (normal form): $\Sigma \underline{V} = \underline{V}\omega$ (or $\underline{V} = -(\Sigma \underline{V})\omega$)

• Concretely:
$$\Sigma = K$$
, so $\underline{V} = \underline{V}\omega$

- So $\mathcal{B} = \{\underline{V} \mid \underline{V} \text{ unitary}, \underline{\overline{V}} = \underline{V}\omega\}$
- det \underline{V} = det \underline{V} , hence det \underline{V} = ±1. Index \mathbb{Z}_2 ?
- ▶ Change of basis $\underline{V} \rightarrow \underline{V}T$, $T = \text{diag}(T_+, T_-)$. "Is vs. Ought":

$$\omega T = \overline{T} \omega$$
, i.e. $T_{-} = \overline{T_{+}}$

A D F A 同 F A E F A E F A Q A

- So $\mathcal{T} = U(n)$
- Index group is $G = \mathbb{Z}_2$

• Basis (normal form): $\Sigma \underline{V} = \underline{V}\varepsilon$

• Concretely:
$$\Sigma = \varepsilon K$$
, so $\varepsilon \underline{V} = \underline{V} \varepsilon$

- Basis (normal form): $\Sigma \underline{V} = \underline{V}\varepsilon$
- Concretely: $\Sigma = \varepsilon K$, so $\varepsilon \underline{V} = \underline{V} \varepsilon$
- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \underline{V} \varepsilon \underline{V}^T = \varepsilon \}$

(ロ) (同) (三) (三) (三) (○) (○)

• Basis (normal form):
$$\Sigma \underline{V} = \underline{V}\varepsilon$$

• Concretely:
$$\Sigma = \varepsilon K$$
, so $\varepsilon \underline{V} = \underline{V} \varepsilon$

• So
$$\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \underline{V} \varepsilon \underline{V}^T = \varepsilon \}$$

• <u>V</u> symplectic, so det $\underline{V} = +1$.

- Basis (normal form): $\Sigma \underline{V} = \underline{V}\varepsilon$
- Concretely: $\Sigma = \varepsilon K$, so $\varepsilon \underline{V} = \underline{V} \varepsilon$
- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \underline{V} \varepsilon \underline{V}^T = \varepsilon \}$
- <u>V</u> symplectic, so det $\underline{V} = +1$. (Use $pf(ABA^T) = det A \cdot pf(B)$)

• Basis (normal form): $\Sigma \underline{V} = \underline{V}\varepsilon$

• Concretely:
$$\Sigma = \varepsilon K$$
, so $\varepsilon \underline{V} = \underline{V} \varepsilon$

- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \underline{V} \varepsilon \underline{V}^T = \varepsilon \}$
- <u>V</u> symplectic, so det $\underline{V} = +1$. (Use $pf(ABA^T) = det A \cdot pf(B)$)

A D F A 同 F A E F A E F A Q A

• Change of basis $\underline{V} \rightarrow \underline{V}T$, $T = \text{diag}(T_+, T_-)$.

• Basis (normal form): $\Sigma \underline{V} = \underline{V}\varepsilon$

• Concretely:
$$\Sigma = \varepsilon K$$
, so $\varepsilon \underline{V} = \underline{V} \varepsilon$

- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \underline{V} \varepsilon \underline{V}^T = \varepsilon \}$
- <u>V</u> symplectic, so det $\underline{V} = +1$. (Use $pf(ABA^T) = det A \cdot pf(B)$)
- ▶ Change of basis $\underline{V} \rightarrow \underline{V}T$, $T = \text{diag}(T_+, T_-)$. "Is vs. Ought":

$$\varepsilon T = T \varepsilon$$
, i.e. $T_- = T_+$

• Basis (normal form):
$$\Sigma \underline{V} = \underline{V}\varepsilon$$

• Concretely:
$$\Sigma = \varepsilon K$$
, so $\varepsilon \underline{V} = \underline{V} \varepsilon$

• So
$$\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \underline{V} \varepsilon \underline{V}^T = \varepsilon \}$$

- <u>V</u> symplectic, so det $\underline{V} = +1$. (Use $pf(ABA^T) = det A \cdot pf(B)$)
- ▶ Change of basis $\underline{V} \rightarrow \underline{V}T$, $T = \text{diag}(T_+, T_-)$. "Is vs. Ought":

$$arepsilon T = Tarepsilon\,, \qquad$$
 i.e. $T_- = T_+$

A D F A 同 F A E F A E F A Q A

► So $\mathcal{T} = U(n)$

• Basis (normal form):
$$\Sigma \underline{V} = \underline{V}\varepsilon$$

• Concretely:
$$\Sigma = \varepsilon K$$
, so $\varepsilon \underline{V} = \underline{V} \varepsilon$

- So $\mathcal{B} = \{ \underline{V} \mid \underline{V} \text{ unitary}, \underline{V} \varepsilon \underline{V}^T = \varepsilon \}$
- <u>V</u> symplectic, so det $\underline{V} = +1$. (Use $pf(ABA^T) = det A \cdot pf(B)$)
- ▶ Change of basis $\underline{V} \rightarrow \underline{V}T$, $T = \text{diag}(T_+, T_-)$. "Is vs. Ought":

$$\varepsilon T = T \varepsilon$$
, i.e. $T_- = T_+$

- So $\mathcal{T} = U(n)$
- lndex group is G = 0.

An alternate procedure is available. Recall bases adapted to Θ or Σ (but not to $\Pi = \Theta \Sigma$).

An alternate procedure is available. Recall bases adapted to Θ or Σ (but not to $\Pi = \Theta \Sigma$).

(ロ) (同) (三) (三) (三) (○) (○)

Change to a basis adapted to Π (or i Π):

 $\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1 = 1_n, 1_{2n})$ Let *K* be complex conjugation in that basis (thus real).

An alternate procedure is available. Recall bases adapted to Θ or Σ (but not to $\Pi = \Theta \Sigma$).

Change to a basis adapted to Π (or i Π):

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1 = \mathbf{1}_n, \mathbf{1}_{2n})$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let *K* be complex conjugation in that basis (thus real).

In presence of Θ or Σ (and hence all three with $\alpha, \beta = \pm 1$):

An alternate procedure is available. Recall bases adapted to Θ or Σ (but not to $\Pi = \Theta \Sigma$).

Change to a basis adapted to Π (or i Π):

 $\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1 = 1_n, 1_{2n})$ Let *K* be complex conjugation in that basis (thus real).

A D F A 同 F A E F A E F A Q A

An alternate procedure is available. Recall bases adapted to Θ or Σ (but not to $\Pi = \Theta \Sigma$).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Change to a basis adapted to Π (or i Π):

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1 = 1_n, 1_{2n})$$

Let *K* be complex conjugation in that basis (thus real).

In presence of Θ or Σ (and hence all three with $\alpha, \beta = \pm 1$):

$$\alpha = +1 (N = 2n)$$

$$\beta = +1: \Theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} K$$

An alternate procedure is available. Recall bases adapted to Θ or Σ (but not to $\Pi = \Theta \Sigma$).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Change to a basis adapted to Π (or i Π):

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1 = 1_n, 1_{2n})$$

Let *K* be complex conjugation in that basis (thus real).

In presence of Θ or Σ (and hence all three with $\alpha, \beta = \pm 1$):

$$\alpha = +1 (N = 2n)$$

$$\beta = +1: \Theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} K$$

$$\beta = -1: \Theta = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} K$$

An alternate procedure is available. Recall bases adapted to Θ or Σ (but not to $\Pi = \Theta \Sigma$).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Change to a basis adapted to Π (or i Π):

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1 = 1_n, 1_{2n})$$

be complex conjugation in that basis (thus real).

In presence of Θ or Σ (and hence all three with $\alpha, \beta = \pm 1$):

•
$$\alpha = +1 \ (N = 2n)$$

• $\beta = +1: \Theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} K$
• $\beta = -1: \Theta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} K$
• $\alpha = -1 \ (N = 4n)$

Let K

An alternate procedure is available. Recall bases adapted to Θ or Σ (but not to $\Pi = \Theta \Sigma$).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Change to a basis adapted to Π (or i Π):

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1 = 1_n, 1_{2n})$$

Let *K* be complex conjugation in that basis (thus real).

In presence of Θ or Σ (and hence all three with $\alpha, \beta = \pm 1$):

$$\alpha = +1 (N = 2n)$$

$$\beta = +1: \Theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} K$$

$$\beta = -1: \Theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} K$$

$$\alpha = -1 (N = 4n)$$

$$\beta = +1: \Theta = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix} K$$

An alternate procedure is available. Recall bases adapted to Θ or Σ (but not to $\Pi = \Theta \Sigma$).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Change to a basis adapted to Π (or i Π):

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad (1 = 1_n, 1_{2n})$$

Let *K* be complex conjugation in that basis (thus real).

In presence of Θ or Σ (and hence all three with $\alpha, \beta = \pm 1$):

•
$$\alpha = +1$$
 ($N = 2n$)
• $\beta = +1$: $\Theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} K$
• $\beta = -1$: $\Theta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} K$
• $\alpha = -1$ ($N = 4n$)
• $\beta = +1$: $\Theta = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix} K$
• $\beta = -1$: $\Theta = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix} K$
(ε composite as a rule)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Setting: Vector space $V = V_+ \oplus V_-$,

Setting: Vector space $V = V_+ \oplus V_-$, split encoded in projections P_{\pm} onto V_{\pm} (hence $\Pi P_{\pm} = P_{\mp} \Pi$),

Setting: Vector space $V = V_+ \oplus V_-$, split encoded in projections P_{\pm} onto V_{\pm} (hence $\Pi P_{\pm} = P_{\mp}\Pi$), or in "flattened Hamiltonian"

$$H = H^* = P_+ - P_-, \qquad H^2 = 1$$

hence with

$$\{H,\Pi\}=0$$

Setting: Vector space $V = V_+ \oplus V_-$, split encoded in projections P_{\pm} onto V_{\pm} (hence $\Pi P_{\pm} = P_{\mp}\Pi$), or in "flattened Hamiltonian"

$$H = H^* = P_+ - P_-, \qquad H^2 = 1$$

hence with

$$\{H,\Pi\}=0$$

Equivalently (recall $\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ in adapted basis)

$$H = \left(\begin{smallmatrix} 0 & U^* \\ U & 0 \end{smallmatrix} \right) \,, \qquad U \in U(n), U(2n)$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Setting: Vector space $V = V_+ \oplus V_-$, split encoded in projections P_{\pm} onto V_{\pm} (hence $\Pi P_{\pm} = P_{\mp}\Pi$), or in "flattened Hamiltonian"

$$H = H^* = P_+ - P_-, \qquad H^2 = 1$$

hence with

$$\{H,\Pi\}=0$$

Equivalently (recall $\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ in adapted basis)

 $H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \qquad U \in U(n), U(2n)$ If further symmetries: $[H, \Theta] = 0.$

• (Takagi) Every complex symmetric matrix $A = A^T$ is of the form

 $A = UNU^{T}$ with U unitary and $N = N^{T}$ diagonal.

• (Takagi) Every complex symmetric matrix $A = A^T$ is of the form

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $A = UNU^{T}$ with U unitary and $N = N^{T}$ diagonal.

Obviously conversely

• (Takagi) Every complex symmetric matrix $A = A^T$ is of the form

 $A = UNU^{T}$ with U unitary and $N = N^{T}$ diagonal.

- Obviously conversely
- The set of such matrices is connected

• (Takagi) Every complex symmetric matrix $A = A^T$ is of the form

 $A = UNU^T$

with *U* unitary and $N = N^T$ diagonal.

- Obviously conversely
- The set of such matrices is connected
- So is its subset of unitary matrices.
- (Youla) Likewise for complex skew-symmetric matrices $A = -A^T$: Here $N = -N^T$ block diagonal with blocks of order 2, i.e. $\propto \varepsilon$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• (Takagi) Every complex symmetric matrix $A = A^T$ is of the form

 $A = UNU^T$

with *U* unitary and $N = N^T$ diagonal.

- Obviously conversely
- The set of such matrices is connected
- So is its subset of unitary matrices.

▶ (Youla) Likewise for complex skew-symmetric matrices $A = -A^T$: Here $N = -N^T$ block diagonal with blocks of order 2, i.e. $\propto \varepsilon$. Its subset of unitary matrices is connected (blocks $z\varepsilon$ with |z| = 1).

• (Takagi) Every complex symmetric matrix $A = A^T$ is of the form

 $A = UNU^T$

with *U* unitary and $N = N^T$ diagonal.

- Obviously conversely
- The set of such matrices is connected
- So is its subset of unitary matrices.
- ▶ (Youla) Likewise for complex skew-symmetric matrices $A = -A^T$: Here $N = -N^T$ block diagonal with blocks of order 2, i.e. $\propto \varepsilon$. Its subset of unitary matrices is connected (blocks $z\varepsilon$ with |z| = 1).
- The group Sp(2n) of complex symplectic matrices U of order 2n, i.e.,

$$\boldsymbol{U}\boldsymbol{\varepsilon}\boldsymbol{U}^{T}=\boldsymbol{\varepsilon}$$

(with composite ε), is connected.

• (Takagi) Every complex symmetric matrix $A = A^T$ is of the form

 $A = UNU^T$

with *U* unitary and $N = N^T$ diagonal.

- Obviously conversely
- The set of such matrices is connected
- So is its subset of unitary matrices.
- ▶ (Youla) Likewise for complex skew-symmetric matrices $A = -A^T$: Here $N = -N^T$ block diagonal with blocks of order 2, i.e. $\propto \varepsilon$. Its subset of unitary matrices is connected (blocks $z\varepsilon$ with |z| = 1).
- The group Sp(2n) of complex symplectic matrices U of order 2n, i.e.,

$$\boldsymbol{U}\boldsymbol{\varepsilon}\boldsymbol{U}^{T}=\boldsymbol{\varepsilon}$$

(with composite ε), is connected. Same for $Sp(2n) \cap U(2n)$

Class AIII: Lone П

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \qquad (U \in U(n))$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Class AIII: Lone П

$$H = \left(\begin{smallmatrix} 0 & U^* \\ U & 0 \end{smallmatrix}\right) \,, \qquad (U \in U(n))$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

U(n) is connected, hence index group G = 0.
$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \quad (U \in U(n)), \qquad \Theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} K$$
$$[H, \Theta] = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}$$
, $(U \in U(n))$, $\Theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} K$
 $[H, \Theta] = 0$ means:
 $U = \overline{U}$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

So U ∈ O(n)

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}$$
, $(U \in U(n))$, $\Theta = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} K$
 $[H, \Theta] = 0$ means:
 $U = \overline{U}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

So U ∈ O(n)
G =
$$\pi_0(O(n)) = \mathbb{Z}_2$$
 by det U = ±1

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \quad (U \in U(n)), \qquad \Theta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} K$$
$$[H, \Theta] = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}$$
, $(U \in U(n))$, $\Theta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} K$
 $[H, \Theta] = 0$ means:
 $U = U^T$

So *U* unitary and symmetric:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}$$
, $(U \in U(n))$, $\Theta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} K$
 $[H, \Theta] = 0$ means:
 $U = U^T$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

So U unitary and symmetric: Connected set.

• Hence G = 0

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \quad (U \in U(2n)), \qquad \Theta = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix} K$$
$$[H, \Theta] = 0$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}$$
, $(U \in U(2n))$, $\Theta = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix} K$
 $[H, \Theta] = 0$ means:
 $U\varepsilon = \varepsilon U^T$

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \quad (U \in U(2n)), \qquad \Theta = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix} K$$

 $[H, \Theta] = 0$ means:
 $U\varepsilon = \varepsilon U^T$

<ロ> < 団> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

• For
$$\tilde{U} := U\varepsilon$$
 it means $\tilde{U} = -\tilde{U}^T$

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \quad (U \in U(2n)), \qquad \Theta = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix} K$$

 $[H, \Theta] = 0$ means:
 $U\varepsilon = \varepsilon U^T$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}$$
, $(U \in U(2n))$, $\Theta = \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & 0 \end{pmatrix} K$
 $[H, \Theta] = 0$ means:
 $U \varepsilon = \varepsilon U^T$

• For
$$\tilde{U} := U\varepsilon$$
 it means $\tilde{U} = -\tilde{U}^T$

So \tilde{U} unitary and skew-symmetric: Connected set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Hence G = 0

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \quad (U \in U(2n)), \qquad \Theta = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon \end{pmatrix} K$$
$$[H, \Theta] = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}$$
, $(U \in U(2n))$, $\Theta = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon \end{pmatrix} K$
 $[H, \Theta] = 0$ means:
 $U\varepsilon = \varepsilon \overline{U}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \quad (U \in U(2n)), \qquad \Theta = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon \end{pmatrix} K$$
$$[H, \Theta] = 0 \text{ means:}$$

$$\mathbf{U}\varepsilon = \varepsilon \mathbf{U}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

So
$$U \varepsilon U^T = \varepsilon$$

$$H = \begin{pmatrix} 0 & U^* \\ U & 0 \end{pmatrix}, \quad (U \in U(2n)), \qquad \Theta = \begin{pmatrix} \varepsilon & 0 \\ 0 & \varepsilon \end{pmatrix} K$$

 $[H, \Theta] = 0$ means:
 $U\varepsilon = \varepsilon \overline{U}$

So
$$U \varepsilon U^T = \varepsilon$$
, i.e.

▶ $U \in Sp(2n) \cap U(2n)$, which is a connected group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Hence G = 0

Conclusion

Symmetry				d
Class	Θ	Σ	Π	0
A	0	0	0	\mathbb{Z}
AIII	0	0	1	0
AI	1	0	0	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2
DIII	-1	1	1	0
All	-1	0	0	\mathbb{Z}
CII	-1	-1	1	0
С	0	-1	0	0
CI	1	-1	1	0

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○