Violation of bulk-edge correspondence in a hydrodynamic model

Gian Michele Graf ETH Zurich

PhD School: September 16-20, 2019 @Università degli Studi Roma Tre

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Violation of bulk-edge correspondence in a hydrodynamic model

Gian Michele Graf ETH Zurich

PhD School: September 16-20, 2019 @Università degli Studi Roma Tre

based on joint work with Hansueli Jud, Clément Tauber

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

A hydrodynamic model

Topology by compactification

The Hatsugai relation

Violation

What goes wrong?

The Great Wave off Kanagawa

(by K. Hokusai, \sim 1831)

A hydrodynamic model

Topology by compactification

The Hatsugai relation

Violation

What goes wrong?

The Earth is rotating.

► The Earth is rotating. *Sure*

► The Earth is rotating. *Sure*

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

► The Earth is flat.

- ► The Earth is rotating. *Sure*
- ▶ The Earth is flat. Well, locally yes

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- ▶ The Earth is rotating. Sure
- ▶ The Earth is flat. Well, locally yes

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The Sea covers the Earth.

- ► The Earth is rotating. *Sure*
- ▶ The Earth is flat. Well, locally yes
- ▶ The Sea covers the Earth. Don't despair. We'll sight land

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ▶ The Earth is rotating. *Sure*
- ▶ The Earth is flat. Well, locally yes
- ▶ The Sea covers the Earth. Don't despair. We'll sight land

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Sea is shallow.

- ▶ The Earth is rotating. *Sure*
- ▶ The Earth is flat. Well, locally yes
- ▶ The Sea covers the Earth. Don't despair. We'll sight land

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▶ The Sea is shallow. Compared to wavelength

- The Earth is rotating. Sure
- The Earth is flat. Well, locally yes
- The Sea covers the Earth. Don't despair. We'll sight land
- The Sea is shallow. Compared to wavelength

Incompressible, shallow water equations (preliminary):

$$\frac{\partial \eta}{\partial t} = -h\underline{\nabla} \cdot \underline{v}$$
$$\frac{\partial \underline{v}}{\partial t} = -g\underline{\nabla}\eta - f\underline{v}^{\perp}$$

Fields (dynamic): velocity <u>v</u> = <u>v</u>(x, y), height above average η = η(x, y)

• parameters: gravity g, average depth h, angular velocity f/2

Starting point: Euler equations for an incompressible fluid in dimension 3.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Starting point: Euler equations for an incompressible fluid in dimension 3.

$$\vec{\nabla} \cdot \vec{v} = 0, \qquad \rho \frac{D\vec{v}}{Dt} = \rho \vec{g} - \rho \vec{f} \wedge \vec{v} - \vec{\nabla} p$$
$$p = 0 \quad \text{at} \quad z = \eta(x, y)$$
$$\frac{D\eta}{Dt} = v$$

fields: velocity v = v(x, y, z) =: (v, v), pressure p = p(x, y, z)
 parameters: density ρ; gravity in z-direction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Starting point: Euler equations for an incompressible fluid in dimension 3.

$$\vec{\nabla} \cdot \vec{v} = 0, \qquad \rho \frac{D\vec{v}}{Dt} = \rho \vec{g} - \rho \vec{f} \wedge \vec{v} - \vec{\nabla} \rho$$
$$p = 0 \quad \text{at} \quad z = \eta(x, y)$$
$$\frac{D\eta}{Dt} = v$$

▶ fields: velocity v = v(x, y, z) =: (v, v), pressure p = p(x, y, z)
 ▶ parameters: density ρ; gravity in z-direction
 Steps: (a) Linearization, (b) (2 + 1)-split, and (c) dimensional reduction

Starting point: Euler equations for an incompressible fluid in dimension 3.

$$\vec{\nabla} \cdot \vec{v} = 0, \qquad \rho \frac{D\vec{v}}{Dt} = \rho \vec{g} - \rho \vec{f} \wedge \vec{v} - \vec{\nabla} \rho$$
$$p = 0 \quad \text{at} \quad z = \eta(x, y)$$
$$\frac{D\eta}{Dt} = v$$

Steps: (a) Linearization, (b) (2+1)-split, and (c) dimensional reduction (a) $\eta \ll h$, $\vec{v} \cdot \vec{\nabla} \ll \partial/\partial t$. Hence $D/Dt \approx \partial/\partial t$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Starting point: Euler equations for an incompressible fluid in dimension 3.

$$\vec{\nabla} \cdot \vec{v} = 0, \qquad \rho \frac{D\vec{v}}{Dt} = \rho \vec{g} - \rho \vec{f} \wedge \vec{v} - \vec{\nabla} \rho$$
$$p = 0 \quad \text{at} \quad z = \eta(x, y)$$
$$\frac{D\eta}{Dt} = v$$

Steps: (a) Linearization, (b) (2+1)-split, and (c) dimensional reduction (a) $\eta \ll h$, $\vec{v} \cdot \vec{\nabla} \ll \partial/\partial t$. Hence $D/Dt \approx \partial/\partial t$ (b) $\vec{v} = \vec{v}(x, y, z) =: (\underline{v}, v)$

Starting point: Euler equations for an incompressible fluid in dimension 3.

$$\vec{\nabla} \cdot \vec{v} = 0, \qquad \rho \frac{D\vec{v}}{Dt} = \rho \vec{g} - \rho \vec{f} \wedge \vec{v} - \vec{\nabla} \rho$$
$$p = 0 \quad \text{at} \quad z = \eta(x, y)$$
$$\frac{D\eta}{Dt} = v$$

Steps: (a) Linearization, (b) (2+1)-split, and (c) dimensional reduction (a) $\eta \ll h$, $\vec{v} \cdot \vec{\nabla} \ll \partial/\partial t$. Hence $D/Dt \approx \partial/\partial t$ (b) $\vec{v} = \vec{v}(x, y, z) =: (\underline{v}, v);$ $\vec{g} = (\underline{0}, -g), \vec{f} = (\underline{0}, f)$, hence $\vec{f} \wedge \vec{v} = (f \underline{v}^{\perp}, *)$

A D N A 目 N A E N A E N A B N A C N

Starting point: Euler equations for an incompressible fluid in dimension 3.

$$\vec{\nabla} \cdot \vec{v} = 0, \qquad \rho \frac{D\vec{v}}{Dt} = \rho \vec{g} - \rho \vec{f} \wedge \vec{v} - \vec{\nabla} \rho$$
$$p = 0 \quad \text{at} \quad z = \eta(x, y)$$
$$\frac{D\eta}{Dt} = v$$

Steps: (a) Linearization, (b) (2 + 1)-split, and (c) dimensional reduction (a) $\eta \ll h, \vec{v} \cdot \vec{\nabla} \ll \partial/\partial t$. Hence $D/Dt \approx \partial/\partial t$ (b) $\vec{v} = \vec{v}(x, y, z) =: (\underline{v}, v);$ $\vec{g} = (\underline{0}, -g), \vec{f} = (\underline{0}, f)$, hence $\vec{f} \wedge \vec{v} = (f \underline{v}^{\perp}, *);$ to leading order $\rho g + \partial p/\partial z = 0, \quad p = \rho g(\eta - z), \quad \underline{\nabla} p = -\rho g \underline{\nabla} \eta$ (c) Replace v by its average over 0 < z < h:

Starting point: Euler equations for an incompressible fluid in dimension 3.

$$\vec{\nabla} \cdot \vec{v} = 0, \qquad \rho \frac{D\vec{v}}{Dt} = \rho \vec{g} - \rho \vec{f} \wedge \vec{v} - \vec{\nabla} \rho$$
$$p = 0 \quad \text{at} \quad z = \eta(x, y)$$
$$\frac{D\eta}{Dt} = v$$

Steps: (a) Linearization, (b) (2 + 1)-split, and (c) dimensional reduction (a) $\eta \ll h$, $\vec{v} \cdot \vec{\nabla} \ll \partial/\partial t$. Hence $D/Dt \approx \partial/\partial t$ (b) $\vec{v} = \vec{v}(x, y, z) =: (\underline{v}, v);$ $\vec{g} = (\underline{0}, -g), \vec{f} = (\underline{0}, f)$, hence $\vec{f} \wedge \vec{v} = (f \underline{v}^{\perp}, *);$ to leading order $\rho g + \partial p/\partial z = 0, \quad p = \rho g(\eta - z), \quad \underline{\nabla} p = -\rho g \underline{\nabla} \eta$ (c) Replace v by its average over $0 < z < h: \rightsquigarrow v = v(x, y)$

$$\frac{\partial \eta}{\partial t} = -h\underline{\nabla} \cdot \underline{v}, \qquad \rho \frac{\partial \underline{v}}{\partial t} = -\rho f \underline{v}^{\perp} - \rho g \underline{\nabla} \eta$$

Starting point: Euler equations for an incompressible fluid in dimension 3.

$$\vec{\nabla} \cdot \vec{v} = 0, \qquad \rho \frac{D\vec{v}}{Dt} = \rho \vec{g} - \rho \vec{f} \wedge \vec{v} - \vec{\nabla} \rho$$
$$p = 0 \quad \text{at} \quad z = \eta(x, y)$$
$$\frac{D\eta}{Dt} = v$$

Steps: (a) Linearization, (b) (2 + 1)-split, and (c) dimensional reduction (a) $\eta \ll h$, $\vec{v} \cdot \vec{\nabla} \ll \partial/\partial t$. Hence $D/Dt \approx \partial/\partial t$ (b) $\vec{v} = \vec{v}(x, y, z) =: (\underline{v}, v);$ $\vec{g} = (\underline{0}, -g), \vec{f} = (\underline{0}, f)$, hence $\vec{f} \wedge \vec{v} = (f \underline{v}^{\perp}, *);$ to leading order $\rho g + \partial p/\partial z = 0, \quad p = \rho g(\eta - z), \quad \underline{\nabla} p = -\rho g \underline{\nabla} \eta$ (c) Replace v by its average over $0 \le z \le h: \rightsquigarrow v = v(x, y)$

$$\frac{\partial \eta}{\partial t} = -h\underline{\nabla} \cdot \underline{v}, \qquad \rho \frac{\partial \underline{v}}{\partial t} = -\rho f \underline{v}^{\perp} - \rho g \underline{\nabla} \eta$$

A hydrodynamic model

Topology by compactification

The Hatsugai relation

Violation

What goes wrong?

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

A convenient extension

Momentum equations (in dimension 2):

$$\rho \frac{D\underline{v}}{Dt} = \underline{b} + \underline{\nabla} \cdot \underline{\underline{\sigma}}$$

body forces \vec{b} , stress tensor $\underline{\sigma}$.

To
$$\sigma_{ij} = -p\delta_{ij}$$
 (Euler) add either $(v_{i,j} := \partial v_i / \partial x_j)$:
• even viscosity (Navier-Stokes)

$$\underline{\underline{\sigma}} = -\eta \begin{pmatrix} 2\mathbf{v}_{1,1} & \mathbf{v}_{1,2} + \mathbf{v}_{2,1} \\ \mathbf{v}_{1,2} + \mathbf{v}_{2,1} & 2\mathbf{v}_{2,2} \end{pmatrix} , \qquad \underline{\nabla} \cdot \underline{\underline{\sigma}} = \eta \Delta \underline{\mathbf{v}}$$

odd viscosity (Avron)

$$\underline{\underline{\sigma}} = -\eta \left(\begin{smallmatrix} -(\mathbf{v}_{1,2} + \mathbf{v}_{2,1}) & \mathbf{v}_{1,1} - \mathbf{v}_{2,2} \\ \mathbf{v}_{1,1} - \mathbf{v}_{2,2} & \mathbf{v}_{1,2} + \mathbf{v}_{2,1} \end{smallmatrix} \right) , \qquad \underline{\nabla} \cdot \underline{\underline{\sigma}} = -\eta \Delta \underline{\underline{v}}^{\perp}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The model (final form)

Equations of motion

$$\begin{aligned} \frac{\partial \eta}{\partial t} &= -h\underline{\nabla} \cdot \underline{v} \\ \frac{\partial \underline{v}}{\partial t} &= -g\underline{\nabla}\eta - f\underline{v}^{\perp} - \nu\Delta\underline{v}^{\perp} \end{aligned}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

with $\nu = \eta / \rho$.

The model (final form)

Equations of motion

$$\begin{aligned} \frac{\partial \eta}{\partial t} &= -h\underline{\nabla} \cdot \underline{v} \\ \frac{\partial \underline{v}}{\partial t} &= -g\underline{\nabla}\eta - f\underline{v}^{\perp} - \nu\Delta\underline{v}^{\perp} \end{aligned}$$

with $\nu = \eta/\rho$. After rescaling (gh = 1)

$$\begin{aligned} \frac{\partial \eta}{\partial t} &= -\underline{\nabla} \cdot \underline{\nu} \\ \frac{\partial \underline{\nu}}{\partial t} &= -\underline{\nabla} \eta - (f + \nu \Delta) \underline{\nu}^{\perp} \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The model (final form)

Equations of motion

$$\begin{aligned} \frac{\partial \eta}{\partial t} &= -\underline{\nabla} \cdot \underline{\nu} \\ \frac{\partial \underline{\nu}}{\partial t} &= -\underline{\nabla} \eta - (f + \nu \Delta) \underline{\nu}^{\perp} \end{aligned}$$

In Hamiltonian form ($\underline{v} =: (u, v)$, $p_x := -i\partial/\partial x$)

$$i\frac{\partial\psi}{\partial t} = H\psi$$

$$\psi = \begin{pmatrix} \eta\\ u\\ v \end{pmatrix}, \qquad H = \begin{pmatrix} 0 & p_x & p_y\\ p_x & 0 & i(f - \nu \underline{p}^2)\\ p_y & -i(f - \nu \underline{p}^2) & 0 \end{pmatrix} = H^*$$

By translation invariance (momentum $\underline{k} \in \mathbb{R}^2$), H reduces to fibers

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

$$H = \begin{pmatrix} 0 & k_{x} & k_{y} \\ k_{x} & 0 & i(f - \nu \underline{k}^{2}) \\ k_{y} & -i(f - \nu \underline{k}^{2}) & 0 \end{pmatrix}$$

By translation invariance (momentum $\underline{k} \in \mathbb{R}^2$), H reduces to fibers

$$H = \begin{pmatrix} 0 & k_x & k_y \\ k_x & 0 & i(f - \nu \underline{k}^2) \\ k_y & -i(f - \nu \underline{k}^2) & 0 \end{pmatrix} = \vec{d} \cdot \vec{S}, \qquad \vec{d}(\underline{k}) = (k_x, k_y, f - \nu \underline{k}^2)$$

where \vec{S} is an irreducible spin 1 representation

$$S_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad S_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad S_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix}$$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

By translation invariance (momentum $\underline{k} \in \mathbb{R}^2$), H reduces to fibers

$$H = \begin{pmatrix} 0 & k_x & k_y \\ k_x & 0 & i(f - \nu \underline{k}^2) \\ k_y & -i(f - \nu \underline{k}^2) & 0 \end{pmatrix} = \vec{d} \cdot \vec{S}, \qquad \vec{d}(\underline{k}) = (k_x, k_y, f - \nu \underline{k}^2)$$

where \vec{S} is an irreducible spin 1 representation

$$S_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad S_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad S_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ 0 & -i & 0 \end{pmatrix}$$

Eigenvalues

$$\omega_0(\underline{k}) = 0, \qquad \omega_{\pm}(\underline{k}) = \pm |\vec{d}(\underline{k})| = \pm (\underline{k}^2 + (f - \nu \underline{k}^2)^2)^{1/2}$$

$$H = \vec{d} \cdot \vec{S}$$
, $\vec{d}(\underline{k}) = (k_x, k_y, f - \nu \underline{k}^2)$

Eigenvalues

$$\omega_0(\underline{k}) = 0, \qquad \omega_{\pm}(\underline{k}) = \pm |\vec{d}(\underline{k})| = \pm (\underline{k}^2 + (f - \nu \underline{k}^2)^2)^{1/2}$$

(ロ)、(型)、(E)、(E)、(E)、(O)()

$$H = \vec{d} \cdot \vec{S}$$
, $\vec{d}(\underline{k}) = (k_x, k_y, f - \nu \underline{k}^2)$

Eigenvalues

$$\omega_0(\underline{k}) = 0, \qquad \omega_{\pm}(\underline{k}) = \pm |\vec{d}(\underline{k})| = \pm (\underline{k}^2 + (f - \nu \underline{k}^2)^2)^{1/2}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Left: ω_+ as a function of \underline{k} Right: projected along k_y as a function of k_x Remark: Gap is f > 0

$$H = \vec{d} \cdot \vec{S}$$
, $\vec{d}(\underline{k}) = (k_x, k_y, f - \nu \underline{k}^2)$

Eigenvalues

$$\omega_0(\underline{k}) = 0, \qquad \omega_{\pm}(\underline{k}) = \pm |\vec{d}(\underline{k})| = \pm (\underline{k}^2 + (f - \nu \underline{k}^2)^2)^{1/2}$$

Eigenvectors (only ω_+): Same as for $\vec{e} \cdot \vec{S}$ with $\vec{e} = \vec{d}/|\vec{d}|$, denoted

$$|ec{e},j=1
angle \ , \qquad \underline{k}\mapsto ec{e}(\underline{k})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The model as a spin 1 bundle Eigenvectors (only ω_+): Same as for $\vec{e} \cdot \vec{S}$ with $\vec{e} = \vec{d}/|\vec{d}|$, denoted

$$|\vec{e}, j = 1\rangle$$
, $\underline{k} \mapsto \vec{e}(\underline{k})$

Remarks.

• The compactification of \mathbb{R}^2 is S^2 .

•
$$\vec{e}(\underline{k}) \mapsto (0, 0, -\operatorname{sgn} \nu)$$
 as $\underline{k} \to \infty$ by $\vec{d}(\underline{k}) = (k_x, k_y, f - \nu \underline{k}^2)$

• $\vec{e}: \mathbb{R}^2 \to S^2$ extends to a continuous map $S^2 \to S^2$

Lemma. Let $f\nu > 0$. The line bundle $P^{(1)}_+ = |\vec{e}, 1\rangle \langle \vec{e}, 1|$ defined by $\vec{e}(\underline{k})$ on S^2 has Chern number

$$\mathsf{ch}(P_+^{(1)})=2$$

Eigenvectors (only ω_+): Same as for $\vec{e} \cdot \vec{S}$ with $\vec{e} = \vec{d}/|\vec{d}|$, denoted

$$|ec{e},j=1
angle\;,\qquad \underline{k}\mapstoec{e}(\underline{k})$$

Remarks.

• The compactification of \mathbb{R}^2 is S^2 .

•
$$\vec{e}(\underline{k}) \mapsto (0, 0, -\operatorname{sgn} \nu)$$
 as $\underline{k} \to \infty$ by $\vec{d}(\underline{k}) = (k_x, k_y, f - \nu \underline{k}^2)$
• $\vec{e} \in \mathbb{P}^2$ automore to a continuous map $S^2 \to S^2$

• $\vec{e}: \mathbb{R}^2 \to S^2$ extends to a continuous map $S^2 \to S^2$

Lemma. Let $f\nu > 0$. The line bundle $P^{(1)}_+ = |\vec{e}, 1\rangle \langle \vec{e}, 1|$ defined by $\vec{e}(\underline{k})$ on S^2 has Chern number

$$\mathsf{ch}(P^{(1)}_+)=2$$

(cf. Souslov et al.; Tauber et al.)
The model as a spin 1 bundle Eigenvectors (only ω_+): Same as for $\vec{e} \cdot \vec{S}$ with $\vec{e} = \vec{d}/|\vec{d}|$, denoted

$$|\vec{e}, j = 1\rangle$$
, $\underline{k} \mapsto \vec{e}(\underline{k})$

Remarks.

- The compactification of \mathbb{R}^2 is S^2 .
- $\vec{e}(\underline{k}) \mapsto (0, 0, -\operatorname{sgn} \nu)$ as $\underline{k} \to \infty$ by $\vec{d}(\underline{k}) = (k_x, k_y, f \nu \underline{k}^2)$

• $ec{e}:\mathbb{R}^2 o S^2$ extends to a continuous map $S^2 o S^2$

Lemma. Let $f\nu > 0$. The line bundle $P^{(1)}_+ = |\vec{e}, 1\rangle \langle \vec{e}, 1|$ defined by $\vec{e}(\underline{k})$ on S^2 has Chern number

$$\mathsf{ch}(P_+^{(1)}) = 2$$

Proof. If \vec{S} were a spin- $\frac{1}{2}$ representation, then

$$\mathsf{ch}(P_+^{(1/2)}) = \mathsf{deg}(\vec{e}) = +1$$

Now $P_+^{(1)} = P_+^{(1/2)} \otimes P_+^{(1/2)}$, so $ch(P_+^{(1)}) = 1 + 1$

Topological phenomena at interfaces

f > 0 (< 0) on northern (southern) hemisphere

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Topological phenomena at interfaces

f > 0 (< 0) on northern (southern) hemisphere

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(Source: NASA)

The role of the coast

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The figure illustrates the clockwise motion of both a particle in a magnetic field and of a wave in presence of a Coriolis force.

The role of the coast

(日) (四) (日) (日) (日)

The figure illustrates the clockwise motion of both a particle in a magnetic field and of a wave in presence of a Coriolis force.

Boundary waves are gapless (Halperin 1982, Kelvin 1879).

The role of the coast

The figure illustrates the clockwise motion of both a particle in a magnetic field and of a wave in presence of a Coriolis force. Boundary waves are gapless (Halperin 1982, Kelvin 1879).

Halperin's work led to the far reaching bulk-edge correspondence.

A hydrodynamic model

Topology by compactification

The Hatsugai relation

Violation

What goes wrong?

A (projected) band separated from the rest of the bulk spectrum; edge states (aka evanescent states, bound states).

$$\mathsf{ch}(P_j) = n_j^+ - n_j^-$$

 n_j^{\pm} : signed number of eigenvalues crossing the fiducial line \pm .

A (projected) band separated from the rest of the bulk spectrum; edge states (aka evanescent states, bound states).

$$\mathsf{ch}(P_j) = \mathit{n}_j^+ - \mathit{n}_j^-$$

 n_j^{\pm} : signed number of eigenvalues crossing the fiducial line \pm . Alternatively: merging with the band from above/below

A (projected) band separated from the rest of the bulk spectrum; edge states (aka evanescent states, bound states).

$$\mathsf{ch}(P_j) = n_j^+ - n_j^-$$

人口 医水黄 医水黄 医水黄素 化甘油

n_j[±]: signed number of eigenvalues crossing the fiducial line ±.
▶ Remark: n_j⁻ = n_{j-1}⁺

A (projected) band separated from the rest of the bulk spectrum; edge states (aka evanescent states, bound states).

$$\mathsf{ch}(P_j) = \mathit{n}_j^+ - \mathit{n}_j^-$$

 n_j^{\pm} : signed number of eigenvalues crossing the fiducial line \pm .

- Remark: $n_j^- = n_{j-1}^+$
- Edge index: $\mathcal{N}^{\sharp} := n_i^+$ for uppermost occupied band j
- Bulk index: $\mathcal{N} := \sum_{j' \leq j} \operatorname{ch}(P_{j'})$
- Bulk-edge correspondence: $\mathcal{N} = \mathcal{N}^{\sharp}$

A (projected) band separated from the rest of the bulk spectrum; edge states (aka evanescent states, bound states).

$$\mathsf{ch}(P_j) = \mathit{n}_j^+ - \mathit{n}_j^-$$

 n_i^{\pm} : signed number of eigenvalues crossing the fiducial line \pm .

- $\blacktriangleright \text{ Remark: } n_j^- = n_{j-1}^+$
- Edge index: $\mathcal{N}^{\sharp} := n_i^+$ for uppermost occupied band j
- Bulk index: $\mathcal{N} := \sum_{j' \leq j} \operatorname{ch}(P_{j'})$
- Bulk-edge correspondence: $\mathcal{N} = \mathcal{N}^{\sharp}$
- Proof: Telescoping sum.

A hydrodynamic model

Topology by compactification

The Hatsugai relation

Violation

What goes wrong?

Sea restricted to upper half-space y > 0. Boundary condition at y = 0 (parametrized by real parameter *a*):

$$v = 0$$
, $\partial_x u + a \partial_y v = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(boundary condition defines self-adjoint operator H_a).

Sea restricted to upper half-space y > 0. Boundary condition at y = 0 (parametrized by real parameter *a*):

$$v = 0$$
, $\partial_x u + a \partial_y v = 0$

(boundary condition defines self-adjoint operator H_a).

Bulk-edge correspondence predicts: The signed number of eigenstates merging with the band $\omega_+(\underline{k})$ is +2.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sea restricted to upper half-space y > 0. Boundary condition at y = 0 (parametrized by real parameter *a*):

$$v = 0$$
, $\partial_x u + a \partial_y v = 0$

(boundary condition defines self-adjoint operator H_a).

Bulk-edge correspondence predicts: The signed number of eigenstates merging with the band $\omega_{+}(\underline{k})$ is +2.

Remark. Merging with the band from below, but boundary is negatively oriented.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spectra of H_a

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Kelvin waves are seen in all cases
- Bulk-edge correspondence is violated!
- There are edge states never merging with a band
- There are edge states "merging at infinity"

Theorem. (Violation of correspondence) As a function of the boundary parameter *a*, the edge index takes the values

$$\mathcal{N}^{\sharp} = egin{cases} 2 & (a < -\sqrt{2}) \ 3 & (-\sqrt{2} < a < 0) \ 1 & (0 < a < \sqrt{2}) \ 2 & (a > \sqrt{2}) \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall: The bulk index is $\mathcal{N} = 2$.

Back to the Hatsugai relation

$$\mathsf{ch}(P) = n^+ - n^-$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Back to the Hatsugai relation

$$\mathsf{ch}(P) = n^+ - n^-$$

Relation to scattering from inside the bulk:

defines scattering map

 $S: |\text{in}\rangle \mapsto |\text{out}\rangle$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

and scattering phase $S(k, E) = \langle in | out \rangle$ (k: longitudinal momentum)

Back to the Hatsugai relation

$$\mathsf{ch}(P) = n^+ - n^-$$

Relation can be split in two (Porta, G.):

$${
m ch}(P) = \mathcal{N}(S^+) - \mathcal{N}(S^-)$$

 $\mathcal{N}(S^\pm) = n^\pm$ (Levinson theorem)

ロト・日本・日本・日本・日本・ション

where

A hydrodynamic model

Topology by compactification

The Hatsugai relation

Violation

What goes wrong?

$$\mathsf{ch}(P) = \mathcal{N}(S^+) - \mathcal{N}(S^-)$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

$$\mathsf{ch}(P) = \mathcal{N}(S^+) - \mathcal{N}(S^-)$$

Pictures of torus (Brillouin zone; k_x , k_y longitudinal/transversal momentum)

Regions of $|\mathrm{out}\rangle$, $|\mathrm{in}\rangle$ states

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\mathsf{ch}(P) = \mathcal{N}(S^+) - \mathcal{N}(S^-)$$

Pictures of torus (Brillouin zone; k_x , k_y longitudinal/transversal momentum)

Left: Region admitting (extended) section of states $|in\rangle$ Middle: Region admitting (extended) section of states $|out\rangle$ Right: The scattering phases $S^{\pm}(k)$ as transition functions

$$\mathsf{ch}(P) = \mathcal{N}(S^+) - \mathcal{N}(S^-)$$

Pictures of torus (Brillouin zone; k_x , k_y longitudinal/transversal momentum)

Left: Region admitting (extended) section of states $|in\rangle$ Middle: Region admitting (extended) section of states $|out\rangle$ Right: The scattering phases $S^{\pm}(k)$ as transition functions

That still holds for waves: On the compactified sphere (instead of torus) one hemisphere contains incoming states, one outgoing.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

$$\mathsf{ch}(P) = \mathcal{N}(S^+) - \mathcal{N}(S^-)$$

Pictures of torus (Brillouin zone; k_x , k_y longitudinal/transversal momentum)

That still holds for waves: On the compactified sphere (instead of torus) one hemisphere contains incoming states, one outgoing.

$$ch(P) = \mathcal{N}(S)$$

What goes wrong?

Is it Levinson's theorem?

$$\mathcal{N}(S) = n$$

What goes wrong?

Is it Levinson's theorem?

 $\mathcal{N}(S) = n$

More precisely: Suppose H(k) depends on some parameter $k \in \mathbb{R}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What goes wrong?

Is it Levinson's theorem?

 $\mathcal{N}(S) = n$

More precisely: Suppose H(k) depends on some parameter $k \in \mathbb{R}$

The scattering phase jumps when a bound state reaches threshold

$$\lim_{E\to 0} \arg S(k,E)\Big|_{k_1}^{k_2} = \mp 2\pi$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\lim_{E\to 0} \arg S(k_x, E)\Big|_{k_1}^{k_2} = \mp 2\pi$$

Structure of scattering phase

$$S(k_x, E) = -rac{g(k_x, ilde{k}_y)}{g(k_x, k_y)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where

• \tilde{k}_y and k_y are the incoming/outgoing momenta with $E(k_x, k_y) = E(k_x, \tilde{k}_y) = E$

$$\lim_{E\to 0} \arg S(k_x, E)\Big|_{k_1}^{k_2} = \mp 2\pi$$

Structure of scattering phase

$$S(k_x,E) = -rac{g(k_x, ilde k_y)}{g(k_x,k_y)}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

where

$$\lim_{E\to 0} \arg S(k_x, E)\Big|_{k_1}^{k_2} = \mp 2\pi$$

Structure of scattering phase

$$S(k_x, E) = -rac{g(k_x, \tilde{k}_y)}{g(k_x, k_y)}$$

where

- *k̃_y* and *k_y* are the incoming/outgoing momenta with E(k_x, k_y) = E(k_x, *k̃_y*) = E
 k̃_y = −k_y if E is even
- \triangleright g is analytic in k_y

$$\lim_{E\to 0} \arg S(k_x, E)\Big|_{k_1}^{k_2} = \mp 2\pi$$

Structure of scattering phase

$$S(k_x, E) = -rac{g(k_x, \tilde{k}_y)}{g(k_x, k_y)}$$

where

- *k̃_y* and *k_y* are the incoming/outgoing momenta with E(k_x, k_y) = E(k_x, *k̃_y*) = E
 k̃_y = −k_y if E is even
- \triangleright g is analytic in k_v

Bound states of $H(k_x)$ correspond to poles of $S(k_x, E)$ with $\text{Im } k_y < 0$ ("bound out-state without in state")

$$\lim_{E\to 0} \arg S(k_x, E)\Big|_{k_1}^{k_2} = \mp 2\pi$$

Structure of scattering phase

$$S(k_x, E) = -rac{g(k_x, \tilde{k}_y)}{g(k_x, k_y)}$$

where

- *k̃_y* and *k_y* are the incoming/outgoing momenta with E(k_x, k_y) = E(k_x, *k̃_y*) = E
 k̃_y = −k_y if E is even
- \triangleright g is analytic in k_y

Bound states of $H(k_x)$ correspond to poles of $S(k_x, E)$ with $\text{Im } k_y < 0$ ("bound out-state without in state"); i.e. to $g(k_x, k_y) = 0$

Bound states of $H(k_x)$ correspond to complex zeros k_y of $g(k_x, k_y)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fact 1: As k_x crosses zero, a bound state disappears.
The Levinson scenario

Bound states of $H(k_x)$ correspond to complex zeros k_y of $g(k_x, k_y)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fact 2: As k_x crosses zero, $\arg g(k_x, k_y = -\varepsilon)$ changes by $-\pi$ (and $\arg g(k_x, \varepsilon)$ by π), hence S winds by -2π .

The Levinson scenario

Bound states of $H(k_x)$ correspond to complex zeros k_y of $g(k_x, k_y)$

Fact 2: As k_x crosses zero, $\arg g(k_x, k_y = -\varepsilon)$ changes by $-\pi$ (and $\arg g(k_x, \varepsilon)$ by π), hence S winds by -2π . As for waves, this is the relevant scenario for (almost) all critical, finite momenta k_x . A convenient, orientation preserving change of coordinates on compactified momentum space S^2 is

$$\lambda_x = \frac{k_x}{k_x^2 + k_y^2}, \quad \lambda_y = -\frac{k_y}{k_x^2 + k_y^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The map $\underline{k} \mapsto \underline{\lambda}$ maps $\infty \to 0$. (Antipodal map in stereographic coordinates.)

Not the Levinson scenario

 $\lambda_{\rm x}=0$ is always critical (regardless of whether an edge state merges there).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Not the Levinson scenario

 $\lambda_{\rm x}=0$ is always critical (regardless of whether an edge state merges there).

Structure of $g(\lambda_x, \lambda_y)$ for λ_x fixed, small: Two sheets joined by slits.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Not the Levinson scenario

 $\lambda_x = 0$ is always critical (regardless of whether an edge state merges there).

Structure of $g(\lambda_x, \lambda_y)$ for λ_x fixed, small: Two sheets joined by slits.

It takes two zeros, both with ${\rm Im}\,\lambda_y<$ 0, to make a bound state .

Not the Levinson scenario: Alternative I

It takes two zeros, both with ${\rm Im}\,\lambda_y<$ 0, to make a bound state. At $\lambda_x=$ 0 the slits touch.

Not the Levinson scenario: Alternative I

It takes two zeros, both with Im $\lambda_y < 0$, to make a bound state. At $\lambda_x = 0$ the slits touch.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fact 1: No bound state is created nor destroyed at transition.

Not the Levinson scenario: Alternative I

It takes two zeros, both with Im $\lambda_y < 0$, to make a bound state. At $\lambda_x = 0$ the slits touch.

Fact 1: No bound state is created nor destroyed at transition. Fact 2: There is a jump of arg g by $\pm \pi$, hence S winds by $\pm 2\pi$

Not the Levinson scenario: Alternative II

It takes two zeros, both with ${\rm Im}\,\lambda_y<$ 0, to make a bound state. At $\lambda_x=$ 0 the slits touch.

Not the Levinson scenario: Alternative II

It takes two zeros, both with Im $\lambda_y < 0$, to make a bound state. At $\lambda_x = 0$ the slits touch.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fact 1: A bound state is destroyed at transition

Not the Levinson scenario: Alternative II

It takes two zeros, both with Im $\lambda_y < 0$, to make a bound state. At $\lambda_x = 0$ the slits touch.

Fact 1: A bound state is destroyed at transition Fact 2: There is no jump of $\arg g$ and hence S does not wind.

Back to Theorem

Edge:

$$\mathcal{N}^{\sharp} = egin{cases} 2 & (a < -\sqrt{2}) \ 3 & (-\sqrt{2} < a < 0) \ 1 & (0 < a < \sqrt{2}) \ 2 & (a > \sqrt{2}) \end{cases}$$

Bulk:

 $\mathcal{N}=2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathcal{N}^{\sharp} = 2, \qquad (a < -\sqrt{2})$

Alternative II: Edge state merging at infinity; no winding of S there $(\Box) (\Box)$

 $\mathcal{N}^{\sharp} = 3\,, \qquad (-\sqrt{2} < a < 0)$

Alternative I: No edge state merging at infinity; winding of S by -1

 $\mathcal{N}^{\sharp} = 1\,, \qquad (0 < a < \sqrt{2})$

Alternative I: No edge state merging at infinity; winding of S by +1

 $\mathcal{N}^{\sharp} = 2$, $(a > \sqrt{2})$

Alternative II: Edge state merging at infinity; no winding of S there

The transition at a = 0

- The transition occurs within Alternative 1.
- Winding of S at infinity changes from -1 to +1
- The fibers H_a(k_x) of the edge Hamiltonian are self-adjoint for almost all k_x (as it must)

The transition at a = 0

- The transition occurs within Alternative 1.
- Winding of S at infinity changes from -1 to +1
- The fibers H_a(k_x) of the edge Hamiltonian are self-adjoint for almost all k_x (as it must), but not for a = 0, k_x = 0.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The transition at a = 0

- The transition occurs within Alternative 1.
- Winding of S at infinity changes from -1 to +1
- ▶ The fibers $H_a(k_x)$ of the edge Hamiltonian are self-adjoint for almost all k_x (as it must), but not for a = 0, $k_x = 0$. In fact the boundary condition

$$ik_x u + a\partial_y v = 0$$

becomes empty.

Summary

- The shallow water model has edge states in presence of Coriolis forces.
- The model is topological if compactified by odd viscosity
- The model violates bulk-boundary correspondence
- Scattering theory (of waves hitting shore) clarifies the cause

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Levinson's theorem does not apply in its usual form