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The model (take it or leave it)

» The Earth is rotating. Sure
» The Earth is flat. Well, locally yes
» The Sea covers the Earth. Don't despair. We'll sight land

» The Sea is shallow. Compared to wavelength

Incompressible, shallow water equations (preliminary):

on

ot~ Vv
8!_ L
ot gVn—fv

» fields (dynamic): velocity v = v(x,y), height above average
n=n(xy)
> parameters: gravity g, average depth h, angular velocity f/2
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Topology by compactification



A convenient extension

Momentum equations (in dimension 2):

body forces b, stress tensor g.
To ojj = —pdjj (Euler) add either (v;; := 0v;/0x;):
» even viscosity (Navier-Stokes)

_ 2vi,1 viptwa .
g=-1 (V1,2+V2,1 2va 2 ) ) V- g= nAv
» odd viscosity (Avron)
_ —(vi2+w1) vii—w _ 1
g=="n ( viii—Vv22 Vip+wva ) 0 v g= nAy



The model (final form)

Equations of motion
on

ot
ov

ot
with v =n/p.



The model (final form)

Equations of motion

In
= —hV -

ot ¥

ov _ —gVn — fvt—vAvt
with v = n/p. After rescaling (gh = 1)

In

gt~ L

0

o g, L
5 = Vn—(f+vA)v



The model (final form)

Equations of motion

on
=Y.y
N (AR
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By translation invariance (momentum k € Rz), H reduces to fibers

0 K ky L. o
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k, —i(f—vk?) 0

where S is an irreducible spin 1 representation

010 001 000
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Left: w4 as a function of k
Right: projected along k, as a function of k

Remark: Gapisf >0
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(cf. Souslov et al.; Tauber et al.)



The model as a spin 1 bundle

Eigenvectors (only w4 ):
Same as for €- S with €= d/|d|, denoted

&j=1),  k— ék)

Remarks.
» The compactification of R? is S2.
> &(k) — (0,0, —sgnv) as k — oo by d(k) = (k, ky, f — vk?)
> &:R? — 52 extends to a continuous map S — S2

Lemma. Let fv > 0. The line bundle PJ(rl) = |€,1)(€, 1| defined by (k)
on S2 has Chern number
ch(PM) =2

Proof. If S were a spin—% representation, then
ch(P{?) = deg(&) = +1

Now PV = P/ o p1/2) 55 ch(PV) =1 +1 0



Topological phenomena at interfaces
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Topological phenomena at interfaces

f > 0 (< 0) on northern (southern) hemisphere

NOV 12009 = o DEC 12009

(Source: NASA)



The role of the coast

The figure illustrates the clockwise motion of both a particle in a
magnetic field and of a wave in presence of a Coriolis force.
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The role of the coast

The figure illustrates the clockwise motion of both a particle in a
magnetic field and of a wave in presence of a Coriolis force.

Boundary waves are gapless (Halperin 1982, Kelvin 1879).

Halperin's work led to the far reaching bulk-edge correspondence.
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The Hatsugai relation and bulk-edge correspondence

A (projected) band separated from the rest of the bulk spectrum; edge
states (aka evanescent states, bound states).
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nf: signed number of eigenvalues crossing the fiducial line +£.



The Hatsugai relation and bulk-edge correspondence

A (projected) band separated from the rest of the bulk spectrum; edge
states (aka evanescent states, bound states).

|
: 7-th band
- T~
Lo -2 - - = J—
-7 —=k ™
ch(P;) = njr —n;

nj—L: signed number of eigenvalues crossing the fiducial line +.

Alternatively: merging with the band from above/below



The Hatsugai relation and bulk-edge correspondence

A (projected) band separated from the rest of the bulk spectrum; edge
states (aka evanescent states, bound states).

|
| j-th band

/ \—1‘

Lo -2 - = J_

7 — Lk ™

N — nt
ch(Pj) = n’ —n;
nf: signed number of eigenvalues crossing the fiducial line +£.
Do~ — pt
» Remark: n;=n_,



The Hatsugai relation and bulk-edge correspondence

A (projected) band separated from the rest of the bulk spectrum; edge
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|
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nf: signed number of eigenvalues crossing the fiducial line +£.
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> Bulk-edge correspondence: N = A\/*



The Hatsugai relation and bulk-edge correspondence

A (projected) band separated from the rest of the bulk spectrum; edge
states (aka evanescent states, bound states).

H_

n;: signed number of eigenvalues crossing the fiducial line +.
C o —

Remark: n;=n_,
Edge index: N := nf for uppermost occupied band j
Bulk index: N := 3", ch(Py)

Bulk-edge correspondence: N = A/*

Proof: Telescoping sum.

vvyyvyvyy
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Sea restricted to upper half-space y > 0.
Boundary condition at y = 0 (parametrized by real parameter a):
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(boundary condition defines self-adjoint operator H,).
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Bulk-edge correspondence?

Sea restricted to upper half-space y > 0.
Boundary condition at y = 0 (parametrized by real parameter a):

v=0, Oxu+ad,v =0

(boundary condition defines self-adjoint operator H,).

Bulk-edge correspondence predicts: The signed number of eigenstates
merging with the band w, (k) is +2.

Remark. Merging with the band from below, but boundary is negatively
oriented.



Bulk-edge correspondence?

Spectra of H,

a=—1.25

C =(+2

Qe
I

-5

C =|-2

-5

C=

2

w
Lk -5 0

w
T—»k -5 0

» Kelvin waves are seen in all cases

» Bulk-edge correspondence is violated!

» There are edge states never merging with a band

» There are edge states “merging at infinity”




Bulk-edge correspondence?

a=—1.25 a=1.25

) =[+2 C
5

+2

w ' =|—2 w .
L’kr -5 0 5 T—Jc, -5

2 w ' 2
0 5 T—~k -5 0 5
r

Theorem. (Violation of correspondence) As a function of the boundary
parameter a, the edge index takes the values

2
N =

N kP W

Recall: The bulk index is N = 2.

(a< —V2)
(—V2 < a<0)
(0 < a<v?2)
(a>V2)
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Back to the Hatsugai relation

defines scattering map
S : |in) + |out)
and scattering phase S(k, E) = (inJout) (k: longitudinal momentum)



Back to the Hatsugai relation

Relation can be split in two (Porta, G.):

ch(P) = N(5T) = N(S7)
N(5%) = n*  (Levinson theorem)
where

> St = S*(k) = S(k,ET(k)F0), (k€ St)
» AN(f) winding number of f : St — St
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Pictures of torus (Brillouin zone; ky, k, longitudinal/transversal

momentum)
ky

|out)

/\/

|in)

—

kl’

Regions of |out), |in) states



What goes wrong?
s it?
ch(P) = N(ST) - N(57)
Pictures of torus (Brillouin zone; ky, k, longitudinal/transversal
momentum)

by by b

N \/\
= N \\\/////§f’\
NNISNANNNNN -
NNNNNNNNNNN
NANNNNNNNNYN .
AR NNNNNN S

NANN\N /\/
N\
— — -
ks ki ko

Left: Region admitting (extended) section of states |in)
Middle: Region admitting (extended) section of states |out)
Right: The scattering phases ST (k) as transition functions
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—
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—
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Left: Region admitting (extended) section of states |in)
Middle: Region admitting (extended) section of states |out)

Right: The scattering phases ST (k) as transition functions

That still holds for waves: On the compactified sphere (instead of torus)
one hemisphere contains incoming states, one outgoing.



What goes wrong?
s it?
ch(P) = N(ST) - N(57)
Pictures of torus (Brillouin zone; ky, k, longitudinal/transversal
momentum)

b by b
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NNNNNNNNNNN .
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NN\ ////—\\\\\v/
N\
o — -
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That still holds for waves: On the compactified sphere (instead of torus)
one hemisphere contains incoming states, one outgoing.
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What goes wrong?

Is it Levinson’s theorem?

N(S)=n

More precisely: Suppose H(k) depends on some parameter k € R
ﬂ\ FE
N

ik ks K

The scattering phase jumps when a bound state reaches threshold

= F2r

ko
l S(k.E
Jim arg (k, )k1



The Levinson scenario
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The Levinson scenario

k2
l Sk, E)| =2
Jim arg S(k, E)| = F2m

1

Structure of scattering phase
S(ky, E) = —=———=%

where

> /;y and k, are the incoming/outgoing momenta with
E(ke, ky) = E(kx, ky) = E
> k, = —k, if E is even
» g is analytic in k,
Bound states of H(k,) correspond to poles of S(k, E) with Imk, <0
(“bound out-state without in state”); i.e. to g(k«, k,) =0



The Levinson scenario

Bound states of H(k,) correspond to complex zeros k, of g(ky, k)

Im k, Im k,
Re k, Re k,
(ky < k) (kx > ki)

Fact 1: As k, crosses zero, a bound state disappears.



The Levinson scenario
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Bound states of H(k,) correspond to complex zeros k, of g(ky, k)

Im k, Im k,
—e Re k, —e Re k,

(kx < k*) (kx > k*)

Fact 2: As ky crosses zero, arg g(ky, k, = —¢) changes by — (and
arg g(ky,€) by m), hence S winds by —27.



The Levinson scenario

Bound states of H(k,) correspond to complex zeros k, of g(ky, k)

Im k, Im k,

—e Re k, —e Re k,

(kx < k*) (kx > k*)

Fact 2: As ky crosses zero, arg g(ky, k, = —¢) changes by — (and
arg g(ky,€) by m), hence S winds by —27.

As for waves, this is the relevant scenario for (almost) all critical, finite
momenta k.



Waves at infinite momentum

A convenient, orientation preserving change of coordinates on
compactified momentum space S? is

ks k
Ax = L Ay =T
kK2 Y k2 + k2

The map k — A maps co — 0. (Antipodal map in stereographic
coordinates.)



Not the Levinson scenario

Ax = 0 is always critical (regardless of whether an edge state merges
there).
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Ax = 0 is always critical (regardless of whether an edge state merges
there).

Structure of g(Ax, Ay) for A« fixed, small: Two sheets joined by slits.
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Re ),




Not the Levinson scenario

Ax = 0 is always critical (regardless of whether an edge state merges
there).

Structure of g(Ax, Ay) for A« fixed, small: Two sheets joined by slits.

Im A,

Re ),

<

Im A,

Re ),

It takes two zeros, both with Im A\, < 0, to make a bound state
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It takes two zeros, both with Im A, < 0, to make a bound state. At
Ax = 0 the slits touch.
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It takes two zeros, both with Im A, < 0, to make a bound state. At
Ax = 0 the slits touch.
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Re ), Re ),
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Fact 1: A bound state is destroyed at transition



Not the Levinson scenario: Alternative Il

It takes two zeros, both with Im A, < 0, to make a bound state. At
Ax = 0 the slits touch.

Im A, Im A,
Re ), Re ),
Im A, Im A,
¢ Re ), Re ),
(>\X < O) ()\X > O)

Fact 1: A bound state is destroyed at transition
Fact 2: There is no jump of argg and hence S does not wind.



Back to Theorem

Edge:
2 (a < —V2)
;)3 (—v2 < a<0)
NF = 1 (0 < a<+v?2)
2 (a>2)
Bulk:

N=2



Back to Theorem, case by case
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o
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NF=2, (a < —V2)

Alternative Il: Edge state merging at infinity; no winding of S there



Back to Theorem, case by case

a=-1.25

| 4
LA

N =3, (—V2<a<0)

Alternative I: No edge state merging at infinity; winding of S by —1

o

o




Back to Theorem, case by case

a=1.25

4
LA

N=1, (0<a<V?2)

Alternative I: No edge state merging at infinity; winding of S by +1

o

o




Back to Theorem, case by case

NE=2, (a>V2)

Alternative Il: Edge state merging at infinity; no winding of S there

o

o




The transition at a =0

=025

~—1 7 ~— s g
3 3

P AT P

VWV
4
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o B = ) s =

a=—-0.25 a=20 a=0.25

» The transition occurs within Alternative 1.

» Winding of S at infinity changes from —1 to +1

» The fibers H,(ky) of the edge Hamiltonian are self-adjoint for
almost all ky (as it must)



The transition at a =0

=025

~— 7 ~1 7 7

P AT P

VWV
4

-5 / . /
\ } }
o B = ) s =

a=—-0.25 a=20 a=0.25

» The transition occurs within Alternative 1.

» Winding of S at infinity changes from —1 to +1

» The fibers H,(ky) of the edge Hamiltonian are self-adjoint for
almost all ky (as it must), but not for a =0, k, = 0.



The transition at a =0
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» The transition occurs within Alternative 1.
» Winding of S at infinity changes from —1 to +1
» The fibers H,(ky) of the edge Hamiltonian are self-adjoint for
almost all ky (as it must), but not for a =0, kx = 0. In fact the
boundary condition
ikcu+ad,v =0

becomes empty.



Summary

» The shallow water model has edge states in presence of Coriolis
forces.

The model is topological if compactified by odd viscosity
The model violates bulk-boundary correspondence
Scattering theory (of waves hitting shore) clarifies the cause

Levinson's theorem does not apply in its usual form
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