Quantum Transport and Universality From Topological Materials to Quantum Hydrodynamics

Gian Michele Graf ETH Zurich

PhD School: September 16-20, 2019 @Università degli Studi Roma Tre

Quantum Transport and Universality From Topological Materials to Quantum Hydrodynamics

Gian Michele Graf ETH Zurich

PhD School: September 16-20, 2019 @Università degli Studi Roma Tre

based on joint works with A. Elgart, J. Schenker, M. Porta, J. Shapiro; C. Tauber and on discussions with Y. Avron, J. Fröhlich

Jutline
Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerice

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matte

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

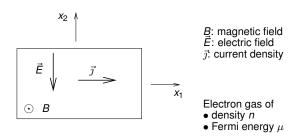
A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The phenomenon



Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\ -\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

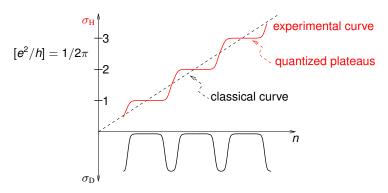
 $\sigma_{\rm D}$: dissipative conductance, ideally = 0

Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\ -\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

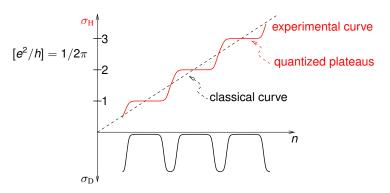
 $\sigma_{\rm D}$: dissipative conductance, ideally = 0



Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\ -\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}} \end{pmatrix}$

 $σ_H$: Hall conductance $σ_D$: dissipative conductance, ideally = 0



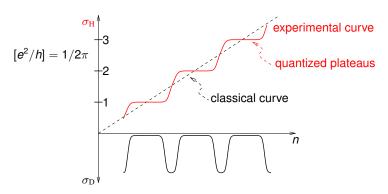
Fractional Quantum Hall effect not discussed

Hall-Ohm law

$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\ -\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

 $\sigma_{\rm D}$: dissipative conductance, ideally = 0



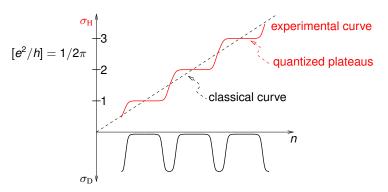
Width of plateaus increases with disorder

Hall-Ohm law

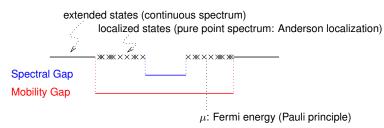
$$\vec{j} = \underline{\sigma}\vec{E}$$
, $\underline{\sigma} = \begin{pmatrix} \sigma_{\mathrm{D}} & \sigma_{\mathrm{H}} \\ -\sigma_{\mathrm{H}} & \sigma_{\mathrm{D}} \end{pmatrix}$

 $\sigma_{\rm H}$: Hall conductance

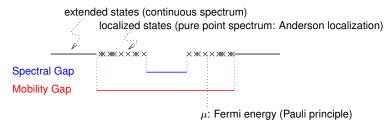
 $\sigma_{\rm D}$: dissipative conductance, ideally = 0



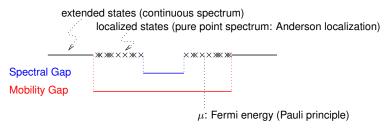
Experiment: $h/e^2 = 25'812.807'4555(59)$ Ohm



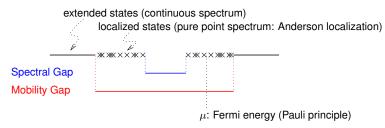
The spectrum of a single-particle Hamiltonian



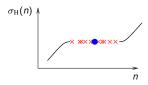
• (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise



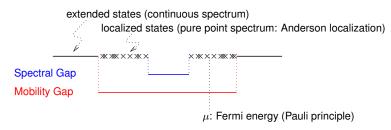
- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- ▶ Hall conductance $\sigma_H(\mu)$ is constant for μ in a Mobility Gap



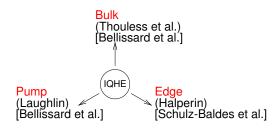
- (integrated) density of states $n(\mu)$ is constant for μ in a Spectral Gap, and strictly increasing otherwise
- ▶ Hall conductance $\sigma_H(\mu)$ is constant for μ in a Mobility Gap

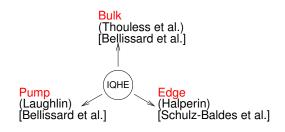


The role of disorder



- For a periodic (crystalline) medium:
 - Method of choice: Bloch theory and vector bundles (Thouless et al.)
 - Gap is spectral
- For a disordered medium:
 - Method of choice: Non-commutative geometry (Bellissard; Avron et al.)
 - Fermi energy may lie in a mobility gap (better) or just in a spectral gap



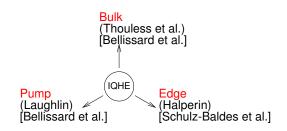


Pump:

 $2\pi\sigma_{\rm P} \equiv$ number *n* of electrons pumped from L to R upon increasing the magnetic flux Φ by 2π . (Note:

$$\Phi \rightsquigarrow \Phi + 2\pi \text{ implies } H \rightsquigarrow UHU^*.$$

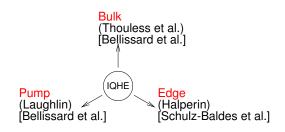
Quantization: n is an integer.



Bulk:

 $\sigma_{\rm B}$ conductivity by Kubo formula: Current density $\vec{\jmath}$ as linear response to an applied (weak) electric field \vec{E} in the bulk.

Quantization: $2\pi\sigma_{\rm B}$ is a Chern number.

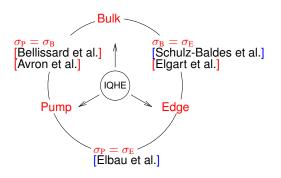


Edge:

σ_E conductance: Current carried by edge states per unit voltage, σ_E = dI/dμ.

Quantization: $2\pi\sigma_{\rm E}$ is the number of edge channels.

Equivalences of interpretations



```
[]: spectral gap
[]: mobility gap
```

Bulk vs. Edge

► (Quantum) Hall as a bulk effect

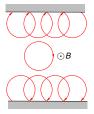
A voltage difference entails an electric field in the bulk

Bulk vs. Edge

(Quantum) Hall as a bulk effect

A voltage difference entails an electric field in the bulk

(Quantum) Hall as an edge effect



A voltage difference entails different Fermi energies of (chiral) edge states at opposite edges

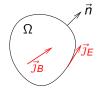
Heuristic argument for $\sigma_{\rm B} = \sigma_{\rm E}$

Bulk: $\vec{\jmath} = -\sigma_{\rm B}\varepsilon\vec{E}$ with $\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (rotation by $\pi/2$) Edge: $\sigma_{\rm E} = dI/d\mu$, i.e. $I = \sigma_{\rm E}(\mu - \varphi)$ with Fermi energy μ and electric potential φ at the edge

Heuristic argument for $\sigma_{\rm B} = \sigma_{\rm E}$

Bulk: $\vec{j} = -\sigma_B \varepsilon \vec{E}$ with $\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (rotation by $\pi/2$)

Edge: $\sigma_{\rm E} = dI/d\mu$, i.e. $I = \sigma_{\rm E}(\mu - \varphi)$ with Fermi energy μ and electric potential φ at the edge

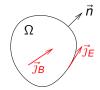


Notation: χ_{Ω} indicator function of Ω , $\delta_{\partial\Omega}$ delta distribution on $\partial\Omega$, \vec{n} normal vector

Heuristic argument for $\sigma_{\rm B}=\sigma_{\rm E}$

Bulk: $\vec{j} = -\sigma_{\rm B} \varepsilon \vec{E}$ with $\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (rotation by $\pi/2$)

Edge: $\sigma_{\rm E} = dI/d\mu$, i.e. $I = \sigma_{\rm E}(\mu - \varphi)$ with Fermi energy μ and electric potential φ at the edge



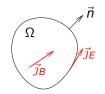
Notation: χ_{Ω} indicator function of Ω , $\delta_{\partial\Omega}$ delta distribution on $\partial\Omega$, \vec{n} normal vector

Note:
$$\vec{\nabla}\chi_{\Omega}=-\vec{n}\delta_{\partial\Omega}$$
, $\vec{E}=-\vec{\nabla}\varphi$

Heuristic argument for $\sigma_{\rm B}=\sigma_{\rm E}$

Bulk: $\vec{j} = -\sigma_{\rm B} \varepsilon \vec{E}$ with $\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (rotation by $\pi/2$)

Edge: $\sigma_{\rm E} = dI/d\mu$, i.e. $I = \sigma_{\rm E}(\mu - \varphi)$ with Fermi energy μ and electric potential φ at the edge



Note:
$$\vec{\nabla}\chi_{\Omega} = -\vec{n}\delta_{\partial\Omega}$$
, $\vec{E} = -\vec{\nabla}\varphi$

$$\vec{\jmath}_{B} = -\chi_{\Omega}\sigma_{B}\varepsilon\vec{E} \qquad \vec{\jmath}_{E} = \sigma_{E}(\mu - \varphi)\varepsilon\vec{n}\delta_{\partial\Omega}$$

$$= \chi_{\Omega}\sigma_{B}\varepsilon\vec{\nabla}\varphi \qquad = -\sigma_{E}(\mu - \varphi)\varepsilon\vec{\nabla}\chi_{\Omega}$$

$$\operatorname{div}(\varepsilon\vec{v}) = -\operatorname{curl}\vec{v} \ (=0 \ \text{for} \ \vec{v} = \vec{\nabla}\varphi)$$

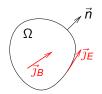
$$\operatorname{div}\vec{\jmath}_{B} = \sigma_{B}\vec{\nabla}\chi_{\Omega} \cdot \varepsilon\vec{\nabla}\varphi$$

$$\operatorname{div}\vec{\jmath}_{E} = \sigma_{E}\vec{\nabla}\varphi \cdot \varepsilon\vec{\nabla}\chi_{\Omega}$$

Heuristic argument for $\sigma_{\rm B}=\sigma_{\rm E}$

Bulk: $\vec{j} = -\sigma_B \varepsilon \vec{E}$ with $\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (rotation by $\pi/2$)

Edge: $\sigma_{\rm E} = dI/d\mu$, i.e. $I = \sigma_{\rm E}(\mu - \varphi)$ with Fermi energy μ and electric potential φ at the edge



Note:
$$\vec{\nabla}\chi_{\Omega} = -\vec{n}\delta_{\partial\Omega}$$
, $\vec{E} = -\vec{\nabla}\varphi$

$$\vec{\jmath}_{B} = -\chi_{\Omega}\sigma_{B}\varepsilon\vec{E} \qquad \vec{\jmath}_{E} = \sigma_{E}(\mu - \varphi)\varepsilon\vec{n}\delta_{\partial\Omega}$$

$$= \chi_{\Omega}\sigma_{B}\varepsilon\vec{\nabla}\varphi \qquad = -\sigma_{E}(\mu - \varphi)\varepsilon\vec{\nabla}\chi_{\Omega}$$

$$\operatorname{div}(\varepsilon\vec{v}) = -\operatorname{curl}\vec{v} \ (=0 \ \text{for} \ \vec{v} = \vec{\nabla}\varphi)$$

$$\operatorname{div}\vec{\jmath}_{B} = \sigma_{B}\vec{\nabla}\chi_{\Omega} \cdot \varepsilon\vec{\nabla}\varphi$$

$$\operatorname{div}\vec{\jmath}_{E} = \sigma_{E}\vec{\nabla}\varphi \cdot \varepsilon\vec{\nabla}\chi_{\Omega}$$

Thus $\operatorname{div}(\vec{\jmath}_B + \vec{\jmath}_E) = 0$ implies $\sigma_E = \sigma_B$.

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matte

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)

- ► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)

- ► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
 - Topological Hamiltonians may be inequivalent. Thus: Classification into classes

- ► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
 - Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- ► Analogy: torus ≠ sphere (differ by genus)

- ► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
 - Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- ► Analogy: torus ≠ sphere (differ by genus)
- ▶ Integer QHE: $2\pi\sigma_{\rm H} \in \mathbb{Z}$ tells classes apart
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations.

- For independent electrons: spectral gap at Fermi energy μ
- ► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open (homotopy equivalence)
 - Ordinary insulator: Can be deformed to the limit of well-separated atoms (or void)
 - Topological Hamiltonians may be inequivalent. Thus: Classification into classes
- ► Analogy: torus ≠ sphere (differ by genus)
- ▶ Integer QHE: $2\pi\sigma_{\rm H} \in \mathbb{Z}$ tells classes apart
- Refinement: The Hamiltonians enjoy a symmetry which is preserved under deformations. (Classification trivially more restrictive, yet potentially richer: Hamiltonians along deformation may not enjoy symmetry even if endpoints do. Thus finer classes.)

Physics background and overview

How it all began: (Integer) Quantum Hall systems Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Fdgg_Bulk

The periodic setting

Bloch bundles and Chern numbers Edge index

Proof of duality

Time-reversal invariant topological insulators

The Fu-Kane index Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

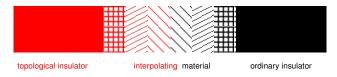
Definitions and results

Some numerics

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

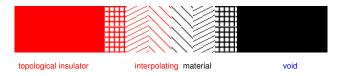
Recall: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and respecting symmetries

Deformation as interpolation in physical space:



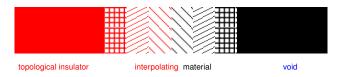
► Gap must close somewhere in between. Hence: Interface states at Fermi energy.

Deformation as interpolation in physical space:



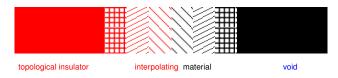
- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- ▶ Ordinary insulator → void: Edge states

Deformation as interpolation in physical space:



- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- ▶ Ordinary insulator → void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states.

Deformation as interpolation in physical space:



- Gap must close somewhere in between. Hence: Interface states at Fermi energy.
- ▶ Ordinary insulator → void: Edge states
- Bulk-edge correspondence: Termination of bulk of a topological insulator implies edge states. (But not conversely!)

In a nutshell: Termination of bulk of a topological insulator implies edge states

► Topological insulators are insulating in the bulk, but conducting on the surface

In a nutshell: Termination of bulk of a topological insulator implies edge states

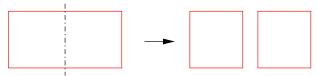
- Topological insulators are insulating in the bulk, but conducting on the surface
- ▶ When breaking them, the newly created surfaces are conducting

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Topological insulators are insulating in the bulk, but conducting on the surface
- When breaking them, the newly created surfaces are conducting

In a nutshell: Termination of bulk of a topological insulator implies edge states

- Topological insulators are insulating in the bulk, but conducting on the surface
- When breaking them, the newly created surfaces are conducting



Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The anomalous phase

The periodic table of topological matter

Sy	d										
Class	Θ	Σ	П	1	2	3	4	5	6	7	8
Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
Al	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

Notation for symmetries:

- ▶ Θ (time-reversal): antiunitary, $H\Theta = \Theta H$, $\Theta^2 = \pm 1$
- ightharpoonup Σ (charge-conjugation): antiunitary, $H\Sigma = -\Sigma H$, $\Sigma^2 = \pm 1$
- \blacksquare Π = ΘΣ = ΣΘ: unitary

The periodic table of topological matter

Sy	d										
Class	Θ	Σ	П	1	2	3	4	5	6	7	8
Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
Al	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

First version: Schnyder et al.; then Kitaev based on

Altland-Zirnbauer; based on Bloch theory

The periodic table of topological matter

Sy	d										
Class	Θ	Σ	П	1	2	3	4	5	6	7	8
Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
Al	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

By now: Non-commutative (bulk) index formulae have been found in all cases (Prodan, Schulz-Baldes)

Special cases to be considered

Sy	d										
Class	Θ	Σ	П	1	2	3	4	5	6	7	8
Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
Al	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

... and one more

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matte

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic settin

Bloch bundles and Chern numbers

Edge index

Proof of duality

Granhene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral system

An experiment

A chiral Hamiltonian and its indices

Time periodic system

Definitions and results

Some numerics

The anomalous phase

Various approaches to the QHE

- Landau Hamiltonians (not discussed)
- ► Periodic Hamiltonians (Thouless et al.)
- The role of disorder and non-commutative geometry
- Effective field theories (important, but not discussed; Fröhlich et al.)

Broad mathematical setting

Definitions of $\sigma_{\rm H}$ and their equivalences should

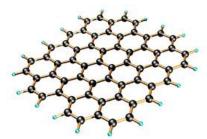
• be based on a microscopic model (Schrödinger operator), as opposed to an effective theory (conformal or topological field theory).

Broad mathematical setting

Definitions of $\sigma_{\rm H}$ and their equivalences should

• be based on a microscopic model (Schrödinger operator), as opposed to an effective theory (conformal or topological field theory). Setting:

Plane: lattice $\Gamma \ni x = (x_1, x_2)$, e.g. $\Gamma = \mathbb{Z}^2$ Single-particle Hamiltonian H_B : operator on $\ell^2(\Gamma)$ with $H_B(x', x)$ of short range in |x - x'| (tight binding model).



Broad mathematical setting

Definitions of $\sigma_{\rm H}$ and their equivalences should

• be based on a microscopic model (Schrödinger operator), as opposed to an effective theory (conformal or topological field theory). Setting:

Plane: lattice $\Gamma \ni x = (x_1, x_2)$, e.g. $\Gamma = \mathbb{Z}^2$ Single-particle Hamiltonian H_B : operator on $\ell^2(\Gamma)$ with $H_B(x', x)$ of short range in |x - x'| (tight binding model).

- apply to infinite systems (thermodynamic limit)
- preferably, be compatible with disorder: Fermi energy μ lies in a Mobility Gap (as opposed to a Spectral Gap).

Mobility gap, technically speaking

Hamiltonian H_B on $\ell^2(\mathbb{Z}^d)$ $P_\mu = E_{(-\infty,\mu)}(H_B)$ Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:

$$\sup_{\mathbf{X}'} \mathrm{e}^{-\varepsilon |\mathbf{X}'|} \sum_{\mathbf{X}} \mathrm{e}^{\nu |\mathbf{X} - \mathbf{X}'|} |P_{\mu}(\mathbf{X}, \mathbf{X}')| < \infty$$

(some $\nu > 0$, all $\varepsilon > 0$)

Mobility gap, technically speaking

Hamiltonian H_B on $\ell^2(\mathbb{Z}^d)$ $P_\mu = E_{(-\infty,\mu)}(H_B)$ Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:

$$\sup_{\mathsf{x}'} \mathrm{e}^{-\varepsilon |\mathsf{x}'|} \sum_{\mathsf{x}} \mathrm{e}^{\nu |\mathsf{x}-\mathsf{x}'|} |P_{\mu}(\mathsf{x},\mathsf{x}')| < \infty$$

(some $\nu > 0$, all $\varepsilon > 0$)

- Trivially true for H_B a multiplication operator in position space
- ▶ Trivially false for H_B a function of momentum $(P_\mu(x,0) \sim |x|^{-d})$
- Proven in (virtually) all cases where localization is known.

DL of a random Schrödinger operator H_{ω} , $(\omega \in \Omega)$ in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}\big(\sup_{g\in\mathcal{B}_1(\Delta)}|\langle x|g(\mathcal{H}_\omega)|x'\rangle|\big)\leq C\mathrm{e}^{-2\nu|x-x'|}$$

$$B_1(\Delta) = \{g : \mathbb{R} \to \mathbb{C} \mid |g(\lambda)| \le 1, g \text{ constant on } \lambda \geqslant \Delta\}$$

DL of a random Schrödinger operator H_{ω} , $(\omega \in \Omega)$ in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}\big(\sup_{g\in B_1(\Delta)}|\langle x|g(H_\omega)|x'\rangle|\big)\leq C\mathrm{e}^{-2\nu|x-x'|}$$

$$B_1(\Delta) = \{g: \mathbb{R} o \mathbb{C} \mid |g(\lambda)| \le 1, g ext{ constant on } \lambda \gtrless \Delta \}$$
 Let $g(\lambda) = \mathrm{e}^{-\mathrm{i}t\lambda} E_\Delta(\lambda) \ (\in B_1(\Delta)) ext{ for } t \in \mathbb{R}. ext{ By DL}$ $\mathbb{E} ig(\sup_{t \in \mathbb{R}} |\langle x | \mathrm{e}^{-\mathrm{i}tH_\omega} E_\Delta(H_\omega) | x'
angle | ig) \le C \mathrm{e}^{-2\nu|x-x'|}$

DL of a random Schrödinger operator H_{ω} , $(\omega \in \Omega)$ in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}\big(\sup_{g\in B_1(\Delta)}|\langle x|g(H_\omega)|x'\rangle|\big)\leq C\mathrm{e}^{-2\nu|x-x'|}$$

$$B_1(\Delta) = \{g : \mathbb{R} \to \mathbb{C} \mid |g(\lambda)| \le 1, g \text{ constant on } \lambda \gtrless \Delta\}$$

Let
$$g(\lambda)=\mathrm{e}^{-\mathrm{i}t\lambda} extstyle E_{\Delta}(\lambda)$$
 $(\in B_1(\Delta))$ for $t\in\mathbb{R}.$ By DL

$$\mathbb{E} \big(\sup_{t \in \mathbb{D}} |\langle x| \mathrm{e}^{-\mathrm{i}tH_{\omega}} E_{\Delta}(H_{\omega}) | x' \rangle| \big) \leq C \mathrm{e}^{-2\nu|x-x'|}$$

- explains name "DL"
- implies spectral localization

DL of a random Schrödinger operator H_{ω} , $(\omega \in \Omega)$ in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}\big(\sup_{g\in\mathcal{B}_1(\Delta)}|\langle x|g(\mathcal{H}_\omega)|x'\rangle|\big)\leq C\mathrm{e}^{-2\nu|x-x'|}$$

$$B_1(\Delta)=\{g:\mathbb{R} o\mathbb{C}\mid |g(\lambda)|\leq 1, g ext{ constant on }\lambda\gtrless\Delta\}$$
 Let $g(\lambda)=E_{(-\infty,\mu)}(\lambda),$ i.e. $g(H_\omega)=P_\mu(H_\omega)\equiv P_{\mu,\omega}.$ By DL, for any $arepsilon>0$
$$\mathbb{E}\big(\sum_{x,x'\in\mathbb{Z}^d}|\langle x|P_{\mu,\omega}|x'
angle|\mathrm{e}^{
u|x-x'|}\mathrm{e}^{-arepsilon|x'|}\big)\leq C<+\infty$$

DL of a random Schrödinger operator H_{ω} , $(\omega \in \Omega)$ in an interval Δ means (or could equivalently mean) that for some $\nu > 0$ (Notation: $K(x, x') = \langle x | K | x' \rangle$)

$$\mathbb{E}\big(\sup_{g\in B_1(\Delta)}|\langle x|g(H_\omega)|x'\rangle|\big)\leq C\mathrm{e}^{-2\nu|x-x'|}$$

where

$$B_1(\Delta) = \{g : \mathbb{R} \to \mathbb{C} \mid |g(\lambda)| \le 1, g \text{ constant on } \lambda \geqslant \Delta\}$$

Let
$$g(\lambda)=E_{(-\infty,\mu)}(\lambda)$$
, i.e. $g(H_\omega)=P_\mu(H_\omega)\equiv P_{\mu,\omega}$. By DL, for any $\varepsilon>0$

$$\mathbb{E}\big(\sum_{\textbf{\textit{X}},\textbf{\textit{X}}'\in\mathbb{Z}^d}|\langle\textbf{\textit{X}}|\textbf{\textit{P}}_{\mu,\omega}|\textbf{\textit{X}}'\rangle|e^{\nu|\textbf{\textit{X}}-\textbf{\textit{X}}'|}e^{-\varepsilon|\textbf{\textit{X}}'|}\big)\leq \textbf{\textit{C}}<+\infty$$

In particular (drop \mathbb{E} , $\sum_{x'}$)

$$e^{-\varepsilon |x'|} \sum_{\mathbf{x}} |\langle \mathbf{x} | P_{\mu,\omega} | \mathbf{x}' \rangle| e^{\nu |\mathbf{x} - \mathbf{x}'|} \leq C_{\omega} < +\infty$$

State space $\mathcal H$ state ψ , observable $X=X^*$. Expectation value is $(\psi, X\psi)$

State space $\mathcal H$ state ψ , observable $X=X^*$. Expectation value is $(\psi, X\psi)$

Rate of change of X?

State space \mathcal{H} state ψ , observable $X = X^*$. Expectation value is

$$(\psi, X\psi)$$

Rate of change of *X*?

$$\mathrm{i}[H,X]$$

State space \mathcal{H} state ψ , observable $X = X^*$. Expectation value is

$$(\psi, X\psi)$$

Rate of change of X?

Because evolution is $\psi \mapsto e^{-iHt}\psi$, so

$$\frac{d}{dt}(e^{-iHt}\psi, Xe^{-iHt}\psi)\big|_{t=0} = (\psi, i[H, X]\psi)$$

Aside: Poor man's second quantization for fermions Single particle Hilbert space $\mathcal{H} \in \psi$

Aside: Poor man's second quantization for fermions

Single particle Hilbert space $\mathcal{H} \in \psi$

Many particle state S has single-particle marginal ("density matrix") ρ : operator on $\mathcal H$

$$\rho = \rho^* \,, \qquad \mathbf{0} \le \rho \le \mathbf{1}$$

Meaning: ρ tells expected occupation of any single-particle state $\psi \in \mathcal{H}$, ((ψ, ψ) = 1) in the state S as

$$(\psi, \rho\psi) = \operatorname{tr}(P\rho) \qquad (\in [0, 1])$$

with $P = \psi(\psi, \cdot)$ the projection onto ψ .

Aside: Poor man's second quantization for fermions

Single particle Hilbert space $\mathcal{H} \in \psi$

Many particle state S has single-particle marginal ("density matrix") ρ : operator on $\mathcal H$

$$\rho = \rho^* \,, \qquad 0 \le \rho \le 1$$

Meaning: ρ tells expected occupation of any single-particle state $\psi \in \mathcal{H}$, ((ψ, ψ) = 1) in the state S as

$$(\psi, \rho\psi) = \operatorname{tr}(P\rho) \qquad (\in [0, 1])$$

with $P = \psi(\psi, \cdot)$ the projection onto ψ .

 $X = X^*$ single particle observable with spectral decomposition $X = \sum_i x_i P_i$.

Aside: Poor man's second quantization for fermions

Single particle Hilbert space $\mathcal{H} \in \psi$

Many particle state S has single-particle marginal ("density matrix") ρ : operator on $\mathcal H$

$$\rho = \rho^* \,, \qquad 0 \le \rho \le 1$$

Meaning: ρ tells expected occupation of any single-particle state $\psi \in \mathcal{H}$, ((ψ, ψ) = 1) in the state \mathcal{S} as

$$(\psi, \rho \psi) = \operatorname{tr}(P\rho) \qquad (\in [0, 1])$$

with $P = \psi(\psi, \cdot)$ the projection onto ψ .

 $X = X^*$ single particle observable with spectral decomposition $X = \sum_i x_i P_i$.

Expectation value in S:

$$\sum_{i} x_{i} \operatorname{tr}(P_{i}\rho) = \operatorname{tr}(X\rho)$$

Aside: Gauge transformations

(Units
$$e = \hbar = c = 1$$
)

Electromagnetic (e.m.) fields $\vec{E} = \vec{E}(\vec{x}, t)$, $\vec{B} = \vec{B}(\vec{x}, t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x}, t)$, $\vec{A} = \vec{A}(\vec{x}, t)$

$$\vec{E} = -\vec{\nabla}\varphi - \partial\vec{A}/\partial t$$
, $\vec{B} = \operatorname{curl} \vec{A}$

Aside: Gauge transformations

(Units
$$e = \hbar = c = 1$$
)

Electromagnetic (e.m.) fields $\vec{E} = \vec{E}(\vec{x},t)$, $\vec{B} = \vec{B}(\vec{x},t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x},t)$, $\vec{A} = \vec{A}(\vec{x},t)$

$$\vec{E} = -\vec{\nabla}\varphi - \partial\vec{A}/\partial t$$
, $\vec{B} = \operatorname{curl} \vec{A}$

Gauge transformation generated by $\chi = \chi(\vec{x}, t)$:

$$\varphi \mapsto \varphi' = \varphi - \partial \chi / \partial t, \quad \vec{A} \mapsto \vec{A}' = \vec{A} + \vec{\nabla} \chi$$

leave \vec{E} , \vec{B} invariant.

Aside: Gauge transformations

(Units
$$e = \hbar = c = 1$$
)

Electromagnetic (e.m.) fields $\vec{E} = \vec{E}(\vec{x},t)$, $\vec{B} = \vec{B}(\vec{x},t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x},t)$, $\vec{A} = \vec{A}(\vec{x},t)$

$$ec{E} = - \vec{\nabla} \varphi - \partial \vec{A} / \partial t \,, \quad \vec{B} = \operatorname{curl} \vec{A}$$

Gauge transformation generated by $\chi = \chi(\vec{x}, t)$:

$$\varphi \mapsto \varphi' = \varphi - \partial \chi / \partial t, \quad \vec{A} \mapsto \vec{A}' = \vec{A} + \vec{\nabla} \chi$$

leave \vec{E} , \vec{B} invariant.

Generic Hamiltonian for particle in \mathbb{R}^3 : Operator on $L^2(\mathbb{R}^3)$ given as

$$H = \frac{\vec{p}^2}{2m} + V(\vec{x}), \qquad (\vec{p} = -i\nabla)$$

Aside: Gauge transformations

(Units
$$e = \hbar = c = 1$$
)

Electromagnetic (e.m.) fields $\vec{E} = \vec{E}(\vec{x}, t)$, $\vec{B} = \vec{B}(\vec{x}, t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x}, t)$, $\vec{A} = \vec{A}(\vec{x}, t)$

$$ec{m{E}} = - ec{
abla} arphi - \partial ec{m{A}} / \partial t \,, \quad ec{m{B}} = {
m curl} \, ec{m{A}}$$

Gauge transformation generated by $\chi = \chi(\vec{x}, t)$:

$$\varphi \mapsto \varphi' = \varphi - \partial \chi / \partial t, \quad \vec{A} \mapsto \vec{A}' = \vec{A} + \vec{\nabla} \chi$$

leave \vec{E} , \vec{B} invariant.

Generic Hamiltonian for particle in \mathbb{R}^3 : Operator on $L^2(\mathbb{R}^3)$ given as

$$H=rac{ec{
ho}^2}{2m}+V(ec{x})\,,\qquad (ec{
ho}=-\mathrm{i}
abla)$$

For charged particle in e.m. field

$$H = \frac{1}{2m}(\vec{p} - \vec{A})^2 + \varphi$$

Aside: Gauge transformations

(Units
$$e = \hbar = c = 1$$
)

Electromagnetic (e.m.) fields $\vec{E} = \vec{E}(\vec{x}, t)$, $\vec{B} = \vec{B}(\vec{x}, t)$ expressed in terms of e.m. potentials $\varphi = \varphi(\vec{x}, t)$, $\vec{A} = \vec{A}(\vec{x}, t)$

$$\vec{E} = -\vec{\nabla}\varphi - \partial\vec{A}/\partial t$$
, $\vec{B} = \operatorname{curl} \vec{A}$

Gauge transformation generated by $\chi = \chi(\vec{x}, t)$:

$$\varphi \mapsto \varphi' = \varphi - \partial \chi / \partial t, \quad \vec{A} \mapsto \vec{A}' = \vec{A} + \vec{\nabla} \chi$$

leave \vec{E} , \vec{B} invariant.

For charged particle in e.m. field

$$H = \frac{1}{2m}(\vec{p} - \vec{A})^2 + \varphi$$

Time-independent gauge transformations are realized as unitaries $U: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3), \psi \mapsto e^{i\chi}\psi$

$$H \mapsto UHU^* = e^{i\chi}He^{-i\chi} = H'$$

(by
$$e^{i\chi}(\vec{p}-\vec{A})e^{-i\chi}=\vec{p}-\vec{A}'$$
)

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

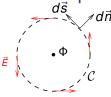
Time periodic systems

Definitions and results

Some numerics

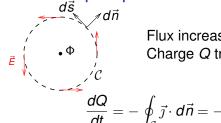
The anomalous phase

IQHE as a pump: Flux insertion



Flux increase from 0 to Φ Charge Q traversing $\mathcal C$ inwards

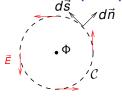
IQHE as a pump: Flux insertion



Flux increase from 0 to Φ Charge Q traversing $\mathcal C$ inwards

$$\frac{dQ}{dt} = -\oint_{\mathcal{C}} \vec{\jmath} \cdot d\vec{n} = -\sigma_{\rm H} \oint_{\mathcal{C}} \vec{E} \cdot d\vec{s} = \sigma_{\rm H} \frac{d\Phi}{dt}$$
$$Q = \sigma_{\rm H} \Phi$$

IQHE as a pump: Flux insertion



Flux increase from 0 to Φ Charge Q traversing C inwards

$$Q = \sigma_{\rm H} \Phi$$

Flux Φ generated by a gauge potential \vec{A} :

$$\oint_{\mathcal{C}} ec{A} \cdot dec{s} = \Phi, \; ext{e.g.} \; ec{A} = ec{
abla}ig(rac{\Phi}{2\pi} \operatorname{arg} ec{x}ig) \equiv ec{
abla}\chi$$

If $\chi(\vec{x})$ were single-valued:

gauge
$$\vec{A}=0$$
 equiv. to $\vec{A}=\vec{\nabla}\chi$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
 Hamiltonian H_B UH_BU^*

with $U = e^{i\chi}$, unitary. For $\Phi = 2\pi$, U is single-valued, though $\chi(\vec{x}) = \arg \vec{x}$ is not.

Charge Q according to quantum mechanics

Fermi energy μ : all single-particle eigenstates of H_B with eigenvalues (energies) $\leq \mu$ are occupied

Fermi projection (FP) of H_B ($\Phi = 0$): $P_{\mu} = E_{(-\infty,\mu)}(H_B)$

FP of UH_BU^* ($\Phi=2\pi$): $UP_\mu U^*$

Evolution of FP as flux $\Phi(t)$ increases from 0 to 2π : $\tilde{U}P_{\mu}\tilde{U}^*$ with propagator \tilde{U}

Tentatively, the charge Q is

$$2\pi\sigma_{
m P}=$$
 " dim $\tilde{U}P_{\mu}\tilde{U}^*$ – dim $UP_{\mu}U^*$ " $=\infty-\infty$

(dim $P=\dim {\sf Ran}\ P$). The (non existent) expression counts difference in number of electrons: After pumping to $\Phi=2\pi$, resp. in equilibrium at $\Phi=2\pi$.

Charge Q according to quantum mechanics

Fermi energy μ : all single-particle eigenstates of H_B with eigenvalues (energies) $\leq \mu$ are occupied

Fermi projection (FP) of H_B ($\Phi = 0$): $P_{\mu} = E_{(-\infty,\mu)}(H_B)$

FP of UH_BU^* ($\Phi = 2\pi$): $UP_\mu U^*$

Evolution of FP as flux $\Phi(t)$ increases from 0 to 2π : $\tilde{U}P_{\mu}\tilde{U}^*$ with propagator \tilde{U}

Tentatively, the charge Q is

$$2\pi\sigma_{
m P}=$$
 " dim $\tilde{U}P_{\mu}\tilde{U}^*-{
m dim}\;UP_{\mu}U^*$ " $=\infty-\infty$

(dim $P=\dim {\sf Ran}\, P$). The (non existent) expression counts difference in number of electrons: After pumping to $\Phi=2\pi$, resp. in equilibrium at $\Phi=2\pi$.

Rightly interpreted, it is an integer.

Charge Q according to quantum mechanics

Fermi energy μ : all single-particle eigenstates of H_B with eigenvalues (energies) $\leq \mu$ are occupied

Fermi projection (FP) of
$$H_B$$
 ($\Phi = 0$): $P_{\mu} = E_{(-\infty,\mu)}(H_B)$

FP of
$$UH_BU^*$$
 ($\Phi=2\pi$): $UP_\mu U^*$

Evolution of FP as flux $\Phi(t)$ increases from 0 to 2π : $\tilde{U}P_{\mu}\tilde{U}^*$ with propagator \tilde{U}

Tentatively, the charge Q is

$$2\pi\sigma_{
m P}=$$
 " dim $\tilde{U}P_{\mu}\tilde{U}^*-$ dim $UP_{\mu}U^*$ " $=\infty-\infty$

(dim $P=\dim {\sf Ran}\ P$). The (non existent) expression counts difference in number of electrons: After pumping to $\Phi=2\pi$, resp. in equilibrium at $\Phi=2\pi$.

Rightly interpreted, it is an integer. Hence

$$2\pi\sigma_{\mathbf{P}} =$$
 " dim P_{μ} – dim $UP_{\mu}U^*$ "

since \tilde{U} is connected to 1 (unlike U)

The index of a pair of projections

Orthogonal projections P, Q on a Hilbert space \mathcal{H} .

Example (Hilbert's hotel): $\mathcal{H} = \ell^2(\mathbb{Z})$, projections P, Q defined by filled dots $n \in \mathbb{Z}$.

$$P$$
 \cdots \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet \cdots

The index of a pair of projections

Orthogonal projections P, Q on a Hilbert space \mathcal{H} .

Example (Hilbert's hotel): $\mathcal{H} = \ell^2(\mathbb{Z})$, projections P, Q defined by filled dots $n \in \mathbb{Z}$.

$$P$$
 \cdots \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet \cdots

Generalizations of $\dim P - \dim Q$:

$$tr(P-Q)$$

since $\operatorname{tr} P = \dim P$

The index of a pair of projections

Orthogonal projections P, Q on a Hilbert space \mathcal{H} .

Example (Hilbert's hotel): $\mathcal{H} = \ell^2(\mathbb{Z})$, projections P, Q defined by filled dots $n \in \mathbb{Z}$.

$$P$$
 \cdots \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet \cdots Q

Generalizations of $\dim P - \dim Q$:

$$tr(P-Q)$$

since tr P = dim P. More generally:

Definition. The Index of a pair of projections is

$$egin{aligned} \operatorname{Ind}(P,Q) &= \dim\{\psi \in \mathcal{H} \mid P\psi = \psi, Q\psi = 0\} + \\ &- \dim\{\psi \in \mathcal{H} \mid Q\psi = \psi, P\psi = 0\} \end{aligned}$$

(if dimensions finite)

Remarks. (i) In the example, both generalizations = 1. (ii) In the IQHE only the index is well-defined

Properties of the Index

- Additivity: Ind(P, Q) = Ind(P, R) + Ind(R, Q)
- ► Stability: $||P Q|| < 1 \Rightarrow Ind(P, Q) = 0$

$$Ind(P,Q) = tr(P-Q)^{2n+1}$$

if
$$P - Q \in \mathcal{J}_{2n+1}$$
 (trace ideals).

Properties of the Index

- Additivity: Ind(P, Q) = Ind(P, R) + Ind(R, Q)
- ► Stability: $||P Q|| < 1 \Rightarrow Ind(P, Q) = 0$

$$Ind(P,Q) = tr(P-Q)^{2n+1}$$

if $P - Q \in \mathcal{J}_{2n+1}$ (trace ideals).

Remarks. (i) Ind(P, Q) = dim P - dim Q (finite-dimensional case)

(ii)
$$tr(P-Q)^3 = tr(P-Q)$$
 if $P-Q \in \mathcal{J}_1$; because

$$(P-Q)-(P-Q)^3=[PQ,[Q,P-Q]]$$

$$AB, BA \in \mathcal{J}_1 \Rightarrow tr[A, B] = 0$$

(iii) Ind(P, Q) = ind(QP) as a map on ran $P \rightarrow ran Q$

Properties of the Index

- ► Additivity: Ind(P, Q) = Ind(P, R) + Ind(R, Q)
- ► Stability: $||P Q|| < 1 \Rightarrow Ind(P, Q) = 0$

$$Ind(P,Q) = tr(P-Q)^{2n+1}$$

if $P - Q \in \mathcal{J}_{2n+1}$ (trace ideals).

Remarks. (i) $Ind(P, Q) = \dim P - \dim Q$ (finite-dimensional case) (ii) $tr(P - Q)^3 = tr(P - Q)$ if $P - Q \in \mathcal{J}_1$; because

$$(P-Q)-(P-Q)^3 = [PQ, [Q, P-Q]]$$

$$AB, BA \in \mathcal{J}_1 \Rightarrow tr[A, B] = 0$$

(iv) If the unitary U has an eigenbasis and $P-UPU^*\in\mathcal{J}_1$, then $\mathrm{tr}(P-UPU^*)=0$. In fact, by $U\psi_n=u_n\psi_n$

$$(\psi_n, (P - UPU^*)\psi_n) = (1 - |u_n|^2)(\psi_n, P\psi_n) = 0$$

IQHE as a pump: Definition of σ_P

Definition.

$$2\pi\sigma_{\rm P} = {\rm Ind}(P_{\mu}, UP_{\mu}U^*)$$
 (Bellissard)
= ${\rm tr}(P_{\mu} - UP_{\mu}U^*)^3$ (Avron et al.)

where $U = e^{i \arg \vec{x}} = z/|z|$.

Remarks. (i) Is a (stable) integer, whenever defined.

(ii)
$$P_{\mu} - UP_{\mu}U^* \notin \mathcal{J}_1$$
.

IQHE as a Bulk effect

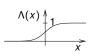
Example: Cyclotron orbit drifting under a electric field \vec{E}

General: Hamiltonian H_B in the plane. Kubo formula (linear response to \vec{E})

$$\sigma_{\mathrm{B}} = \mathrm{i}\,\mathrm{tr}\,P_{\mu}ig[[P_{\mu},\Lambda_{1}],[P_{\mu},\Lambda_{2}]ig]$$

where

$$P_{\mu}=E_{(-\infty,\mu)}(H_B)$$
 Fermi projection, $\Lambda_i=\Lambda(x_i), (i=1,2)$ switches



IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)

$$\sigma_{\mathrm{B}} = \mathrm{i}\,\mathrm{tr}\, P_{\mu} ig[[P_{\mu}, \Lambda_{1}], [P_{\mu}, \Lambda_{2}] ig]$$

extends the formula for the periodic case (Thouless et al., Avron)

$$\sigma_{\mathrm{B}} = -rac{\mathrm{i}}{(2\pi)^2}\int_{\mathbb{T}} d^2k \, \mathrm{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])$$

where \mathbb{T} : Brillouin zone (torus); P(k) Fermi projection on the space of states of quasi-momentum $k = (k_1, k_2)$; $\partial_i = \partial/\partial k_i$

Remarks.

$$2\pi\sigma_{\rm B}={\rm ch}(E)$$

the Chern number of the vector bundle E over \mathbb{T} and fiber range P(k) (see later)

IQHE as a Bulk effect (remarks)

Kubo formula (Bellissard et al., Avron et al.)

$$\sigma_{\mathrm{B}} = \mathrm{i}\,\mathsf{tr}\, P_{\mu} ig[[P_{\mu}, \Lambda_{1}], [P_{\mu}, \Lambda_{2}] ig]$$

extends the formula for the periodic case (Thouless et al., Avron)

$$\sigma_{\mathrm{B}} = -rac{\mathrm{i}}{(2\pi)^2}\int_{\mathbb{T}} d^2k \, \mathrm{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])$$

where \mathbb{T} : Brillouin zone (torus); P(k) Fermi projection on the space of states of quasi-momentum $k = (k_1, k_2)$; $\partial_i = \partial/\partial k_i$

Remarks.

$$2\pi\sigma_{\rm B}={
m ch}(E)$$

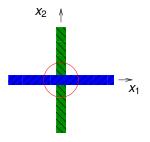
the Chern number of the vector bundle E over \mathbb{T} and fiber range P(k) (see later)

Alternative treatment of disorder (Thouless): Large, but finite system (square); $(k_1, k_2) \rightsquigarrow (\varphi_1, \varphi_2)$ phase slips in boundary conditions

IQHE as a Bulk effect (remarks)

$$\sigma_{\rm B}={\rm i}\,{\rm tr} \textbf{\textit{P}}_{\mu}\big[[\textbf{\textit{P}}_{\mu},\Lambda_{1}],[\textbf{\textit{P}}_{\mu},\Lambda_{2}]\big]$$

where $\Lambda_i = \Lambda(x_i)$, (i = 1, 2) switches. Supports of $\vec{\nabla} \Lambda_i$:



Recall Kubo: $j_1 = -\sigma_B E_2$

Remarks. (i) Λ_1 , Λ_2 : where from? Current operator across $x_1 = 0$: $i[H_B, \Lambda_1]$; field $\vec{E} = -\vec{\nabla}\Lambda_2$

(ii) The trace is well-defined. Roughly: An operator has a well-defined trace if it acts non-trivially on finitely many states only. Here the intersection contains only finitely many sites.

Theorem: Quantization and equivalence

Definition. Ergodic operators H_{ω} , ($\omega \in \Omega$: probability space): actions of (magnetic) \mathbb{Z}^2 -translations on Ω and on $\ell^2(\mathbb{Z}^2)$ compatible.

Theorem [Index= 2π Kubo] (Bellissard, van Elst, Schulz-Baldes) If μ lies in a Mobility Gap, then $\sigma_D(\mu)=0$ and $2\pi\sigma_P(\mu)=2\pi\sigma_B(\mu)$ is an integer and constant.

Proof by non-commutative geometry.

Theorem and proof reformulated

Theorem [Index= 2π Kubo] (Avron, Seiler, Simon) If μ lies in a Mobility Gap, then $2\pi\sigma_P=2\pi\sigma_B$, i.e.

$$\operatorname{tr}(P_{\mu}-\mathit{U}P_{\mu}\mathit{U}^{*})^{3}=2\pi \mathrm{i} \ \operatorname{tr}P_{\mu}[[P_{\mu},\Lambda_{1}],[P_{\mu},\Lambda_{2}]]$$

Remark. No ergodic setting.

Theorem and proof reformulated

Theorem [Index= 2π Kubo] (Avron, Seiler, Simon) If μ lies in a Mobility Gap, then $2\pi\sigma_P=2\pi\sigma_B$, i.e.

$$\operatorname{tr}(P_{\mu}-UP_{\mu}U^{*})^{3}=2\pi \mathrm{i} \,\operatorname{tr}P_{\mu}[[P_{\mu},\Lambda_{1}],[P_{\mu},\Lambda_{2}]]$$

Explicitely,

$$2\mathrm{i} \sum_{x,y,z\in\mathbb{Z}^2} P_\mu(x,y) P_\mu(y,z) P_\mu(z,x) S(x,y,z) =$$

$$-2\pi i \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) [(\Lambda_1(y) - \Lambda_1(x))(\Lambda_2(z) - \Lambda_2(y)) - (1 \leftrightarrow 2)]$$

where

$$S(x, y, z) = -\frac{i}{2} \left(1 - \frac{U(x)}{U(y)} \right) \left(1 - \frac{U(y)}{U(z)} \right) \left(1 - \frac{U(z)}{U(x)} \right)$$
$$= \sin \angle(x, 0, y) + \sin \angle(y, 0, z) + \sin \angle(z, 0, x)$$

Theorem and proof reformulated

Theorem [Index= 2π Kubo] (Avron, Seiler, Simon) If μ lies in a Mobility Gap, then $2\pi\sigma_P=2\pi\sigma_B$, i.e.

$$\operatorname{tr}(P_{\mu}-UP_{\mu}U^{*})^{3}=2\pi \mathrm{i} \,\operatorname{tr}P_{\mu}[[P_{\mu},\Lambda_{1}],[P_{\mu},\Lambda_{2}]]$$

Explicitely,

$$\begin{aligned} &2\mathrm{i} \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) S(x,y,z) = \\ &- 2\pi\mathrm{i} \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) [(\Lambda_1(y) - \Lambda_1(x))(\Lambda_2(z) - \Lambda_2(y)) - (1 \leftrightarrow 2)] \end{aligned}$$

where

$$S(x,y,z) = -\frac{\mathrm{i}}{2} \left(1 - \frac{U(x)}{U(y)} \right) \left(1 - \frac{U(y)}{U(z)} \right) \left(1 - \frac{U(z)}{U(x)} \right)$$
$$= \sin \angle (x,0,y) + \sin \angle (y,0,z) + \sin \angle (z,0,x)$$

Remark. Mobility gap: Substantial contribution only when x, y, z all near 0.

• Flux and cross are centered at the origin p = 0. Take instead $p \in \mathbb{R}^2$ arbitrary: neither side changes. For w = x, y, z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

• Flux and cross are centered at the origin p=0. Take instead $p \in \mathbb{R}^2$ arbitrary: neither side changes. For w=x,y,z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

• Average both sides over $p \in C_L$ (cube of side L):

$$L^{-2} \int_{\rho \in C_L} d^2 \rho$$

• Flux and cross are centered at the origin p=0. Take instead $p\in\mathbb{R}^2$ arbitrary: neither side changes. For w=x,y,z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

• Average both sides over $p \in C_L$ (cube of side L):

$$L^{-2} \int_{\rho \in C_L} d^2 \rho \sum_{x \in \mathbb{Z}^2} \sim L^{-2} \int_{\rho \in \mathbb{R}^2} d^2 \rho \sum_{x \in \mathbb{Z}^2 \cap C_L}$$

(by mobility gap) for L large

• Flux and cross are centered at the origin p=0. Take instead $p \in \mathbb{R}^2$ arbitrary: neither side changes. For w=x,y,z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

• Average both sides over $p \in C_L$ (cube of side L):

$$L^{-2} \int_{\rho \in C_L} d^2 \rho \sum_{x \in \mathbb{Z}^2} \sim L^{-2} \int_{\rho \in \mathbb{R}^2} d^2 \rho \sum_{x \in \mathbb{Z}^2 \cap C_L}$$

• $(p, y, x \in \mathbb{R})$

$$\int dp(\Lambda(y-p)-\Lambda(x-p))=y-x$$

because
$$= f(y - x)$$
, $f(0) = 0$ and $f'(y - x) = \int dp \Lambda'(y - p) = 1$.

• Flux and cross are centered at the origin p=0. Take instead $p \in \mathbb{R}^2$ arbitrary: neither side changes. For w=x,y,z replace

$$\Lambda_i(w) \rightsquigarrow \Lambda_i(w-p), \qquad U(w) \rightsquigarrow U(w-p)$$

and get

$$S(x, y, z) \rightsquigarrow \sin \angle (x, p, y) + \sin \angle (y, p, z) + \sin \angle (z, p, x)$$

• Average both sides over $p \in C_L$ (cube of side L):

$$L^{-2} \int_{\rho \in C_L} d^2 \rho \sum_{\mathbf{x} \in \mathbb{Z}^2} \sim L^{-2} \int_{\rho \in \mathbb{R}^2} d^2 \rho \sum_{\mathbf{x} \in \mathbb{Z}^2 \cap C_L}$$

On r.h.s. use

$$\int dp_1 dp_2 (\Lambda(y_1 - p_1) - \Lambda(x_1 - p_1)) (\Lambda(z_2 - p_2) - \Lambda(y_2 - p_2)) - (1 \leftrightarrow 2)$$

$$= (y_1 - x_1)(z_2 - y_2) - (1 \leftrightarrow 2) = 2 \operatorname{Area}(x, y, z)$$

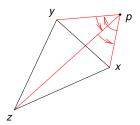
The claim

$$\begin{split} & 2\mathrm{i} \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) S(x,y,z) = \\ & - 2\pi\mathrm{i} \sum_{x,y,z \in \mathbb{Z}^2} P_{\mu}(x,y) P_{\mu}(y,z) P_{\mu}(z,x) [(\Lambda_1(y) - \Lambda_1(x)) (\Lambda_2(z) - \Lambda_2(y)) - (1 \leftrightarrow 2)] \end{split}$$

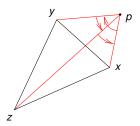
reduces by the above to

$$\int d^2p(\sin\angle(x,p,y)+\sin\angle(y,p,z)+\sin\angle(z,p,x))=2\pi\operatorname{Area}(x,y,z)$$

$$\int d^2p(\sin\angle(x,p,y)+\sin\angle(y,p,z)+\sin\angle(z,p,x))=2\pi\operatorname{Area}(x,y,z)$$
(Connes' triangle formula)



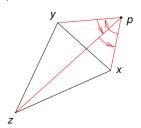
$$\int d^2p(\sin\angle(x,p,y)+\sin\angle(y,p,z)+\sin\angle(z,p,x))=2\pi\operatorname{Area}(x,y,z)$$
(Connes' triangle formula)



Proof: Observation (Colin de Verdière)

• Drop sin: obvious.

$$\int d^2p(\sin\angle(x,p,y)+\sin\angle(y,p,z)+\sin\angle(z,p,x))=2\pi\operatorname{Area}(x,y,z)$$
 (Connes' triangle formula)



Proof: Observation (Colin de Verdière)

- Drop sin: obvious.
- Let f be odd with $f(t) t = O(t^3)$, $(t \to 0)$; e.g. $f = \sin$. Then

$$\int d^2p(f(\angle(x,p,y))-\angle(x,p,y))=0$$

by (i) integrand $0(|p|^{-3})$, $(p \to \infty)$ and (ii) reflection symmetry.

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Chiral systems

An experiment

A chiral Hamiltonian and its indices

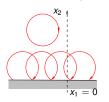
Time periodic systems

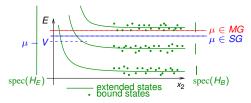
Definitions and results

Some numerics

The anomalous phase

IQHE as an edge effect

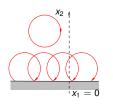


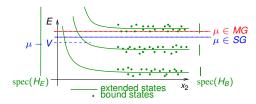


Hamiltonian H_E on the upper half-plane: restriction of H_B through boundary conditions at $x_2 = 0$.

State $\rho(H_E)$: 1-particle density matrix, e.g. $\rho(H_E) = E_{(-\infty,\mu)}(H_E)$, or (actually) smooth

IQHE as an edge effect





Hamiltonian H_E on the upper half-plane: restriction of H_B through boundary conditions at $x_2 = 0$.

State $\rho(H_E)$: 1-particle density matrix, e.g. $\rho(H_E) = E_{(-\infty,\mu)}(H_E)$, or (actually) smooth

Current operator across $x_1 = 0$: $i[H_E, \Lambda_1]$

$$I = i \operatorname{tr}(\rho(H_E + V) - \rho(H_E))[H_E, \Lambda_1]$$

As
$$V \rightarrow$$
 0: $I/V \rightarrow \sigma_{\rm E}$

$$\sigma_{\rm E} = i \operatorname{tr}(\rho'(H_E)[H_E, \Lambda_1])$$

Equality of conductances

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the Fermi energy μ lies in a Spectral Gap of H_B , then

$$\sigma_{\rm E} = \sigma_{\rm B}$$
.

In particular, σ_E does not depend on ρ' , nor on boundary conditions.

ls

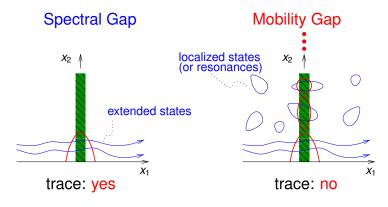
$$\sigma_{\rm E} = -i \operatorname{tr}(\rho'(H_E)[H_E, \Lambda_1])$$

well-defined? (Here, switches Λ_i (i = 1, 2) with flipped orientations)

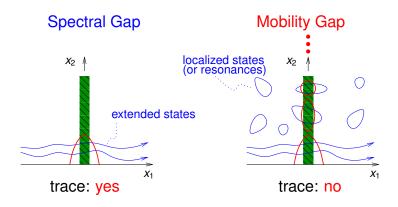
ls

$$\sigma_{\rm E} = -i \operatorname{tr}(\rho'(H_E)[H_E, \Lambda_1])$$

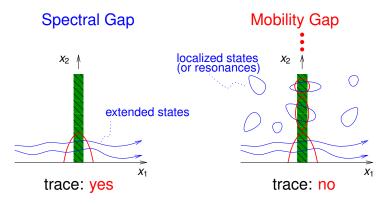
well-defined?



 \therefore the definition of σ_E needs to be changed in case of a Mobility Gap!



 \therefore the definition of σ_E needs to be changed in case of a Mobility Gap! Guiding principle: Localized states should not contribute to the edge current



 \therefore the definition of σ_E needs to be changed in case of a Mobility Gap!

Analogy: Electrodynamics of continuous media

$$\vec{j} = \vec{j}_F + \vec{j}_M \equiv \text{free} + \text{molecular currents}$$
 $\vec{j}_M = \text{curl } \vec{M}$

Localized states should not contribute to the (free) edge current

Equality of conductances

For a so amended definition of σ_E :

Theorem (Elgart, G., Schenker). If supp ρ' lies in a Mobility Gap, then

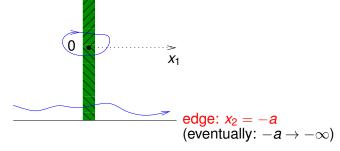
$$\sigma_{\rm E} = \sigma_{\rm B}$$

In particular σ_E does not depend on ρ' , nor on boundary conditions.

Definition of $\sigma_{\rm E}$ in case of a Mobility Gap

*X*₂ ↑

Replace H_E to H_a (a > 0) as follows



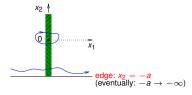
► Current across the portion \blacksquare of $x_1 = 0$:

$$-i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2)$$
 (exists!)

Current across the portion <a>:

Definition of $\sigma_{\rm E}$ in case of a Mobility Gap

Replace H_E to H_a (a > 0) as follows



► Current across the portion \bigcirc of $x_1 = 0$:

$$-i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2)$$
 (exists!)

▶ Current across the portion \square : In the limit $a \to \infty$ pretend that

$$\rho'(H_{a}) \leadsto \rho'(H_{B}) = \sum_{\lambda} \rho'(\lambda) \psi_{\lambda}(\psi_{\lambda}, \cdot)$$

(sum over eigenvalues λ of H_B : $H_B\psi_\lambda=\lambda\psi_\lambda$)

$$(\psi_{\lambda}, [H_{B}, \Lambda_{1}](1 - \Lambda_{2})\psi_{\lambda}) = -(\psi_{\lambda}, [H_{B}, \Lambda_{1}]\Lambda_{2}\psi_{\lambda})$$

Definition of $\sigma_{\rm E}$ in case of a Mobility Gap

Replace H_E to H_a (a > 0) as follows

▶ Current across the portion \blacksquare of $x_1 = 0$:

$$-i \operatorname{tr}(\rho'(H_a)[H_a, \Lambda_1]\Lambda_2)$$
 (exists!)

▶ Current across the portion \mathbb{Z} : In the limit $a \to \infty$ pretend that

$$\rho'(H_{a}) \leadsto \rho'(H_{B}) = \sum_{\lambda} \rho'(\lambda) \psi_{\lambda}(\psi_{\lambda}, \cdot)$$

(sum over eigenvalues λ of H_B : $H_B\psi_\lambda=\lambda\psi_\lambda$)

$$(\psi_{\lambda}, [H_{B}, \Lambda_{1}](1 - \Lambda_{2})\psi_{\lambda}) = -(\psi_{\lambda}, [H_{B}, \Lambda_{1}]\Lambda_{2}\psi_{\lambda})$$

► Together:

$$\begin{split} \sigma_{E} &= \lim_{a \to \infty} -\mathrm{i} \, \mathrm{tr}(\rho'(H_{a})[H_{a}, \Lambda_{1}] \Lambda_{2}) + \\ &+ \mathrm{i} \sum_{\lambda} \rho'(\lambda) (\psi_{\lambda}, [H_{B}, \Lambda_{1}] \Lambda_{2} \psi_{\lambda}) \end{split}$$

Magnetization

Question? What is the term

 $i(\psi_{\lambda}, [H_B, \Lambda_1]\Lambda_2\psi_{\lambda})$?

Magnetization

Question? What is the term

$$i(\psi_{\lambda}, [H_B, \Lambda_1]\Lambda_2\psi_{\lambda})$$
 ?

Or better after hermitization of $i[H_B, \Lambda_1]\Lambda_2$, i.e.

$$\frac{i}{2}([H_B,\Lambda_1]\Lambda_2-\Lambda_2[\Lambda_1,H_B])=\frac{i}{2}[H_B,\Lambda_1\Lambda_2]-\frac{i}{2}(\Lambda_1H_B\Lambda_2-\Lambda_2H_B\Lambda_1)$$

where we get

$$-rac{\mathrm{i}}{2}(\psi_{\lambda},(\Lambda_{1}H_{B}\Lambda_{2}-\Lambda_{2}H_{B}\Lambda_{1})\psi_{\lambda})$$
 ?

Magnetization

Question? What is the term

$$-rac{\mathrm{i}}{2}(\psi_{\lambda},(\Lambda_{1}H_{B}\Lambda_{2}-\Lambda_{2}H_{B}\Lambda_{1})\psi_{\lambda})$$
 ?

Answer: Replacement $x_i \rightsquigarrow \Lambda_i$, (i = 1, 2) signifies extensive \rightsquigarrow intensive. Thus

$$m = \frac{1}{2}\vec{x} \wedge \dot{\vec{x}} \rightsquigarrow M = \frac{1}{2}(\Lambda_1\dot{\Lambda}_2 - \Lambda_2\dot{\Lambda}_1)$$

signifies "magnetic moment \leadsto magnetization". So, by $\dot{\Lambda}_i = \mathrm{i}[H_B, \Lambda_i]$,

$$M = \frac{\mathrm{i}}{2} (\Lambda_1 H_B \Lambda_2 - \Lambda_2 H_B \Lambda_1)$$

٠.

$$-\frac{\mathrm{i}}{2}(\psi_{\lambda},(\Lambda_{1}H_{B}\Lambda_{2}-\Lambda_{2}H_{B}\Lambda_{1})\psi_{\lambda})=-(\psi_{\lambda},M\psi_{\lambda})$$

Magnetization (alternate)

Magnetization current: $\vec{\jmath}_M = \text{curl } M = -\varepsilon \vec{\nabla} M$

► Classically: Magnetization is current across Dirac string γ $(d\vec{n} = \varepsilon d\vec{s})$

$$\frac{0}{d\vec{s}} \bigvee_{\gamma} d\vec{n}$$

$$M(0) = \int_{\gamma} \vec{\nabla} M \cdot d\vec{s} = \int_{\gamma} \vec{\jmath}_{M} \cdot d\vec{n}$$

Magnetization (alternate)

Magnetization current: $\vec{\jmath}_M = \text{curl } M = -\varepsilon \vec{\nabla} M$

► Classically: Magnetization is current across Dirac string γ $(d\vec{n} = \varepsilon d\vec{s})$

$$\frac{0}{d\vec{s}} \bigvee_{\gamma} d\vec{n}$$

$$M(0) = \int_{\gamma} \vec{\nabla} M \cdot d\vec{s} = \int_{\gamma} \vec{\jmath}_{M} \cdot d\vec{n}$$

Quantum:

$$M(0) = -i[H_B, \Lambda_1]\Lambda_2$$

Then hermitize

hysics background and overviev

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic system

Definitions and results

Some numerics

The anomalous phase

▶ Position space $X = \mathbb{R}^2$ or $X = \mathbb{Z}^2$

- ▶ Position space $X = \mathbb{R}^2$ or $X = \mathbb{Z}^2$
- ▶ Abelian group $\mathcal{L} \cong \mathbb{Z}^2 \ni n = (n_1, n_2)$ of lattice translations acting on $X: x \mapsto T_n x$. Unit cell $\mathcal{C} = X/\mathcal{L}$

- ▶ Position space $X = \mathbb{R}^2$ or $X = \mathbb{Z}^2$
- ▶ Abelian group $\mathcal{L} \cong \mathbb{Z}^2 \ni n = (n_1, n_2)$ of lattice translations acting on $X: x \mapsto T_n x$. Unit cell $\mathcal{C} = X/\mathcal{L}$
- ▶ Dual group \mathcal{L}^* ∋ $k = (k_1, k_2)$: group of characters

$$\chi(n_1+n_2)=\chi(n_1)\chi(n_2)$$

- ▶ Abelian group $\mathcal{L} \cong \mathbb{Z}^2 \ni n = (n_1, n_2)$ of lattice translations acting on $X: x \mapsto T_n x$. Unit cell $\mathcal{C} = X/\mathcal{L}$
- ▶ Dual group \mathcal{L}^* ∋ $k = (k_1, k_2)$: group of characters

$$\chi(n_1 + n_2) = \chi(n_1)\chi(n_2)$$

viewed as 2-torus T (Brillouin zone)

$$n\mapsto \chi(n)=\mathrm{e}^{-\mathrm{i}k\cdot n}, \qquad k\in\mathbb{T}=(\mathbb{R}/2\pi\mathbb{Z})^2$$

- ▶ Abelian group $\mathcal{L} \cong \mathbb{Z}^2 \ni n = (n_1, n_2)$ of lattice translations acting on $X: x \mapsto T_n x$. Unit cell $\mathcal{C} = X/\mathcal{L}$
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters viewed as 2-torus \mathbb{T} (Brillouin zone)

$$n \mapsto \chi(n) = e^{-ik \cdot n}, \qquad k \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

▶ Hilbert space $\mathcal{H} = L^2(X)$

- ▶ Abelian group $\mathcal{L} \cong \mathbb{Z}^2 \ni n = (n_1, n_2)$ of lattice translations acting on $X: x \mapsto T_n x$. Unit cell $\mathcal{C} = X/\mathcal{L}$
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters viewed as 2-torus \mathbb{T} (Brillouin zone)

$$n \mapsto \chi(n) = e^{-ik \cdot n}, \qquad k \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

▶ Hilbert space $\mathcal{H} = L^2(X)$ (variant: may be tensored by $\otimes \mathbb{C}^N$: internal d.o.f. (spin, . . .))

- ▶ Abelian group $\mathcal{L} \cong \mathbb{Z}^2 \ni n = (n_1, n_2)$ of lattice translations acting on $X: x \mapsto T_n x$. Unit cell $\mathcal{C} = X/\mathcal{L}$
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters viewed as 2-torus \mathbb{T} (Brillouin zone)

$$n \mapsto \chi(n) = e^{-ik \cdot n}, \qquad k \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

▶ Hilbert space $\mathcal{H} = L^2(X)$ carrying representation U_n of \mathcal{L}

- ▶ Abelian group $\mathcal{L} \cong \mathbb{Z}^2 \ni n = (n_1, n_2)$ of lattice translations acting on $X: x \mapsto T_n x$. Unit cell $C = X/\mathcal{L}$
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters viewed as 2-torus \mathbb{T} (Brillouin zone)

$$n \mapsto \chi(n) = e^{-ik \cdot n}, \qquad k \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

- ▶ Hilbert space $\mathcal{H} = L^2(X)$ carrying representation U_n of \mathcal{L}
- Decomposition of Hilbert space and of states

$$\mathcal{H} \cong \int_{\mathbb{T}}^{\oplus} \mathfrak{h} d^2k \equiv L^2(\mathbb{T}, \mathfrak{h}), \qquad \mathfrak{h} = L^2(\mathcal{C})$$
 $\psi(x) = \int_{\mathbb{T}} \psi_k(x) d^2k, \qquad \psi \longleftrightarrow (\psi_k)_{k \in \mathbb{T}}$

by reduction of the representation

$$(U_n\psi)(x) = \int_{\mathbb{T}} \psi_k(x) \mathrm{e}^{-\mathrm{i}k\cdot n} d^2k$$

- ▶ Abelian group $\mathcal{L} \cong \mathbb{Z}^2 \ni n = (n_1, n_2)$ of lattice translations acting on $X: x \mapsto T_n x$. Unit cell $\mathcal{C} = X/\mathcal{L}$
- ▶ Dual group $\mathcal{L}^* \ni k = (k_1, k_2)$: group of characters viewed as 2-torus \mathbb{T} (Brillouin zone)

$$n \mapsto \chi(n) = e^{-ik \cdot n}, \qquad k \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$$

- ▶ Hilbert space $\mathcal{H} = L^2(X)$ carrying representation U_n of \mathcal{L}
- Decomposition of Hilbert space and of states

$$\mathcal{H} \cong \int_{\mathbb{T}}^{\oplus} \mathfrak{h} \, d^2k \equiv L^2(\mathbb{T}, \mathfrak{h}), \qquad \mathfrak{h} = L^2(\mathcal{C})$$

$$\psi(x) = \int_{\mathbb{T}} \psi_k(x) d^2k, \qquad \psi \longleftrightarrow (\psi_k)_{k \in \mathbb{T}}$$

by reduction of the representation

$$(U_n\psi)(x)=\int_{\mathbb{T}}\psi_k(x)\mathrm{e}^{-\mathrm{i}k\cdot n}d^2k$$

Note: A state $\mathbb{T} \ni k \mapsto \psi_k \in \mathfrak{h}$ is a section of the (trivial) vector bundle

 $\mathbb{T} \times \mathfrak{h}$

$$H\cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k\in\mathbb{T}}$$

Decomposition of Hamiltonian (translation invariant)

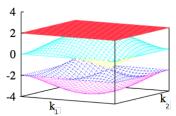
$$H \cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k \in \mathbb{T}}$$

▶ H(k) acting on $\mathfrak{h} = L^2(\mathcal{C})$ has discrete spectrum (\mathcal{C} compact) with eigenvalues $\varepsilon_j(k)$ ($j = 0, 1, \ldots$)

$$H\cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k\in\mathbb{T}}$$

- ▶ H(k) acting on $\mathfrak{h} = L^2(\mathcal{C})$ has discrete spectrum (\mathcal{C} compact) with eigenvalues $\varepsilon_i(k)$ (i = 0, 1, ...)
- H has continuous spectrum:

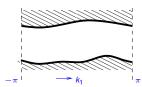
$$\sigma(H) = \bigcup_{k \in \mathbb{T}} \sigma(H(k))$$



$$H\cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k\in\mathbb{T}}$$

- ▶ H(k) acting on $\mathfrak{h} = L^2(\mathcal{C})$ has discrete spectrum (\mathcal{C} compact) with eigenvalues $\varepsilon_i(k)$ (i = 0, 1, ...)
- ► *H* has continuous spectrum:

$$\sigma(H) = \bigcup_{k \in \mathbb{T}} \sigma(H(k))$$



$$H\cong \int_{\mathbb{T}}^{\oplus} H(k) d^2k, \qquad H\psi \longleftrightarrow (H(k)\psi_k)_{k\in\mathbb{T}}$$

- ▶ H(k) acting on $\mathfrak{h} = L^2(\mathcal{C})$ has discrete spectrum (\mathcal{C} compact) with eigenvalues $\varepsilon_j(k)$ (j = 0, 1, ...)
- ► *H* has continuous spectrum:

$$\sigma(H) = \bigcup_{k \in \mathbb{T}} \sigma(H(k))$$

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The anomalous phase

P: spectral projection associated to a part of the spectrum $\sigma(H)$ separated from the rest,

P: spectral projection associated to a part of the spectrum $\sigma(H)$ separated from the rest, e.g. the Fermi projection

or the projection associated to a single isolated band

P: spectral projection associated to a part of the spectrum $\sigma(H)$ separated from the rest, e.g. the Fermi projection

or the projection associated to a single isolated band Decomposition

$$P\psi \longleftrightarrow (P(k)\psi_k)_{k\in\mathbb{T}}$$

Definition. The Bloch bundle is the complex vector bundle with base space \mathbb{T} and fiber range $P(k) \subset \mathfrak{h}$.

P: spectral projection associated to a part of the spectrum $\sigma(H)$ separated from the rest, e.g. the Fermi projection

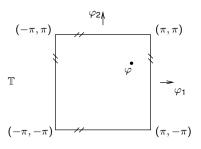
or the projection associated to a single isolated band Decomposition

$$P\psi \longleftrightarrow (P(k)\psi_k)_{k\in\mathbb{T}}$$

Definition. The Bloch bundle is the complex vector bundle with base space \mathbb{T} and fiber range $P(k) \subset \mathfrak{h}$.

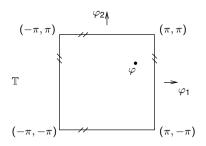
Note: It is a subbundle of $\mathbb{T} \times \mathfrak{h}$, possibly not trivial.

Bundles (E, \mathbb{T}) on the 2-torus



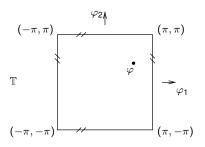
$$\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

Bundles (E, \mathbb{T}) on the 2-torus



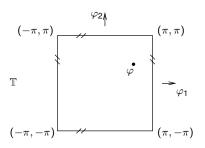
- $\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$
- Fibers E_{φ} : abstract linear spaces

Bundles (E, \mathbb{T}) on the 2-torus

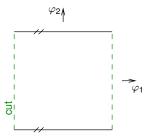


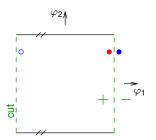
- $\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$
- Fibers E_{φ} : abstract linear spaces
- Frame bundle F(E) has fibers $F(E)_{\varphi} \ni v = (v_1, \dots v_N)$ consisting of bases v of E_{φ} .
- ▶ Does *F*(*E*) admit a global section?

Bundles (E, \mathbb{T}) on the 2-torus



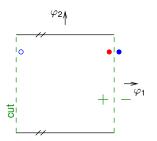
- $\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$
- Fibers E_{φ} : abstract linear spaces
- Frame bundle F(E) has fibers $F(E)_{\varphi} \ni v = (v_1, \dots v_N)$ consisting of bases v of E_{φ} .
- ▶ Does F(E) admit a global section? Yes, iff E is trivial





Lemma. On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$

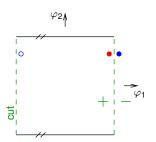
▶ Boundary values $v_+(\varphi_2)$ and $v_-(\varphi_2)$ at the point $(\pi, \varphi_2) \equiv (-\pi, \varphi_2)$ of the cut



Lemma. On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$

- ▶ Boundary values $v_+(\varphi_2)$ and $v_-(\varphi_2)$ at the point $(\pi, \varphi_2) \equiv (-\pi, \varphi_2)$ of the cut
- ▶ Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_{+}(\varphi_2) = \mathbf{v}_{-}(\varphi_2)T(\varphi_2), \qquad (\varphi_2 \in S^1)$$



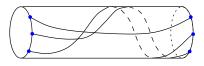
Lemma. On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\omega}$

- ▶ Boundary values $v_+(\varphi_2)$ and $v_-(\varphi_2)$ at the point $(\pi, \varphi_2) \equiv (-\pi, \varphi_2)$ of the cut
- ▶ Transition matrix $T(\varphi_2) \in GL(N)$

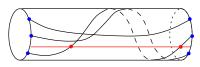
$$\mathbf{v}_{+}(\varphi_2) = \mathbf{v}_{-}(\varphi_2)T(\varphi_2), \qquad (\varphi_2 \in S^1)$$

- ▶ $t(\varphi_2) \neq 0$: eigenvalues of $T(\varphi_2)$
- ▶ Phases $t(\varphi_2)/|t(\varphi_2)| \in S^1$ as a function of $0 \le \varphi_2 \le 2\pi$:

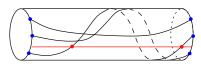
- ▶ $t(\varphi_2) \neq 0$: eigenvalues of $T(\varphi_2)$
- ▶ Phases $t(\varphi_2)/|t(\varphi_2)| \in S^1$ as a function of $0 \le \varphi_2 \le 2\pi$:



- ▶ $t(\varphi_2) \neq 0$: eigenvalues of $T(\varphi_2)$
- ▶ Phases $t(\varphi_2)/|t(\varphi_2)| \in S^1$ as a function of $0 \le \varphi_2 \le 2\pi$:



- ▶ $t(\varphi_2) \neq 0$: eigenvalues of $T(\varphi_2)$
- ▶ Phases $t(\varphi_2)/|t(\varphi_2)| \in S^1$ as a function of $0 \le \varphi_2 \le 2\pi$:



winding number= signed number of crossings of fiducial line ch(E) = -2

Hall conductance (bulk)

Definition: Bulk Index is the Chern number ch(E) of the Bloch bundle E defined by the Fermi projection

Hall conductance (bulk)

Definition: Bulk Index is the Chern number ch(E) of the Bloch bundle E defined by the Fermi projection

Physical meaning (Thouless et al.): The Hall conductance in the bulk interpretation is

$$\sigma_{\rm H}=(2\pi)^{-1}{\rm ch}(E)$$

Hall conductance (bulk)

Definition: Bulk Index is the Chern number ch(E) of the Bloch bundle E defined by the Fermi projection

Physical meaning (Thouless et al.): The Hall conductance in the bulk interpretation is

$$\sigma_{\rm H}=(2\pi)^{-1}{\rm ch}(E)$$

Remark.

$$\operatorname{ch}(E) = \frac{1}{2\pi i} \int_{\mathbb{T}} d^2k \operatorname{tr}(P(k)[\partial_1 P(k), \partial_2 P(k)])$$

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Buk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Time-reversal invariant topological insulators

The Fu-Kane index Bueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

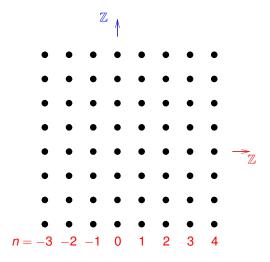
Definitions and results

Some numerics

The anomalous phase

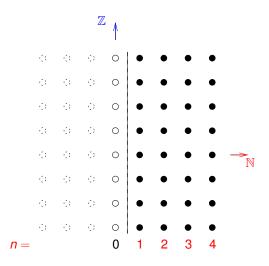
From plane (bulk) to half-plane (edge)

Hamiltonian on the lattice $\mathbb{Z} \times \mathbb{Z}$ (plane)



From plane (bulk) to half-plane (edge)

Hamiltonian on the lattice $\mathbb{N} \times \mathbb{Z}$ (half-plane) with $\mathbb{N} = \{1, 2, \ldots\}$



▶ Hamiltonian H^{\sharp} obtained by restriction to right half-space $x_1 > 0$

- ▶ Hamiltonian H^{\sharp} obtained by restriction to right half-space $x_1 > 0$
- ▶ Remaining symmetry \mathcal{L}_2 : translation in 2-direction; corresponding unit cell $\mathcal{C}^{\sharp} = X/\mathcal{L}_2$ not compact (half-line)

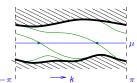
- ▶ Hamiltonian H^{\sharp} obtained by restriction to right half-space $x_1 > 0$
- ▶ Remaining symmetry \mathcal{L}_2 : translation in 2-direction; corresponding unit cell $\mathcal{C}^{\sharp} = X/\mathcal{L}_2$ not compact (half-line)
- ▶ Bloch decomposition over the circle S^1

$$H^{\sharp}\cong\int_{\mathcal{S}^{1}}^{\oplus}H^{\sharp}(k)\,dk$$

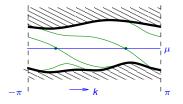
- ► Hamiltonian H^{\sharp} obtained by restriction to right half-space $x_1 > 0$
- ▶ Remaining symmetry \mathcal{L}_2 : translation in 2-direction; corresponding unit cell $\mathcal{C}^{\sharp} = X/\mathcal{L}_2$ not compact (half-line)
- ▶ Bloch decomposition over the circle S¹

$$H^{\sharp}\cong\int_{\mathcal{S}^{1}}^{\oplus}H^{\sharp}(k)\,dk$$

▶ $H^{\sharp}(k)$ acting on $L^{2}(\mathcal{C}^{\sharp})$ has continuous and (possibly) discrete spectrum



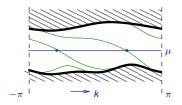
Hall conductance (edge)



Definition: Edge Index

 $\mathcal{N}^{\sharp}=$ signed number of eigenvalue crossings of Fermi energy

Hall conductance (edge)



Definition: Edge Index

 $\mathcal{N}^{\sharp} = \text{signed number of eigenvalue crossings of Fermi energy}$

Physical meaning: The Hall conductance in the edge interpretation is

$$\sigma_{\rm H} = (2\pi)^{-1} \mathcal{N}^{\sharp}$$

Definition: Edge Index

 \mathcal{N}^{\sharp} = signed number of eigenvalue crossings

Definition: Edge Index

 $\mathcal{N}^{\sharp} = \text{signed number of eigenvalue crossings}$

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the j-th band. Bulk index is sum over filled bands.

Definition: Edge Index

 \mathcal{N}^{\sharp} = signed number of eigenvalue crossings

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the j-th band. Bulk index is sum over filled bands.

Bulk-edge correspondence:

$$\mathcal{N}^{\sharp} = \sum_{j} \operatorname{ch}(E_{j})$$

Definition: Edge Index

 $\mathcal{N}^{\sharp} = \text{signed number of eigenvalue crossings}$

Bulk: $ch(E_j)$ is the Chern number of the Bloch bundle E_j of the j-th band. Bulk index is sum over filled bands.

Bulk-edge correspondence:

$$\mathcal{N}^{\sharp} = \sum_{j} \operatorname{ch}(E_{j})$$

(cf. Hatsugai)

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The anomalous phase

Take the Quantum Hall Effect.

Take the Quantum Hall Effect. Many stories of bulk-edge duality have been told ...

Take the Quantum Hall Effect. Many stories of bulk-edge duality have been told . . .

...here is one more, to be illustrated by the Great Wall of China

Take the Quantum Hall Effect. Many stories of bulk-edge duality have been told . . .

...here is one more, to be illustrated by the Great Wall of China

A result to be recalled: Levinson's theorem

Two-body Hamiltonian

$$H = p^2 + V$$

A result to be recalled: Levinson's theorem

Two-body Hamiltonian

$$H = p^2 + V$$

with

- \triangleright V(x) spherically symmetric, *s*-wave channel
- ▶ a.k.a. $x \in [0, \infty)$

A result to be recalled: Levinson's theorem

Two-body Hamiltonian

$$H = p^2 + V$$

with

- \triangleright V(x) spherically symmetric, *s*-wave channel
- ▶ a.k.a. $x \in [0, \infty)$

Spectrum of *H* (energies *E* of bound and scattering states)

A result to be recalled: Levinson's theorem

Two-body Hamiltonian

$$H = p^2 + V$$

with

- \triangleright V(x) spherically symmetric, *s*-wave channel
- ▶ a.k.a. $x \in [0, \infty)$

Spectrum of *H* (energies *E* of bound and scattering states)

Levinson's theorem. The scattering phase $S(E) = e^{2i\delta(E)}$ at threshold E = 0 equals the number N of bound states,

$$\operatorname{arg} S \big|_{E=0+} = 2\pi N$$

(normalization: $\delta(E) \rightarrow 0$, $(E \rightarrow +\infty)$)

A result to be recalled: Levinson's theorem

Two-body Hamiltonian

$$H = p^2 + V$$

with

- \triangleright V(x) spherically symmetric, s-wave channel
- ▶ a.k.a. $x \in [0, \infty)$

Spectrum of *H* (energies *E* of bound and scattering states)

Levinson's theorem. The scattering phase $S(E) = e^{2i\delta(E)}$ at threshold E = 0 equals the number N of bound states,

$$\operatorname{arg} S\big|_{E=0+} = 2\pi N$$

(normalization: $\delta(E) \rightarrow 0$, $(E \rightarrow +\infty)$)

Idea: Scattering states and bound states are related by analytic continuation

A result to be recalled: Levinson's theorem

Two-body Hamiltonian

$$H = p^2 + V$$

with

- \triangleright V(x) spherically symmetric, s-wave channel
- ightharpoonup a.k.a. $x \in [0, \infty)$

Spectrum of H (energies E of bound and scattering states)

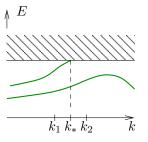
Levinson's theorem. The scattering phase $S(E) = e^{2i\delta(E)}$ at threshold E=0 equals the number N of bound states.

$$\operatorname{arg} S\big|_{E=0+} = 2\pi N$$

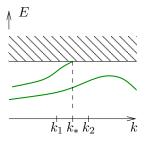
(normalization: $\delta(E) \rightarrow 0$, $(E \rightarrow +\infty)$)

Idea: Scattering states and bound states are related by analytic continuation ... just as bulk and edge states are (Hatsugai, 1993).

Suppose H(k) depends on some parameter $k \in \mathbb{R}$



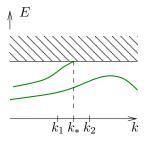
Suppose H(k) depends on some parameter $k \in \mathbb{R}$



The scattering phase jumps when a bound state reaches threshold

$$\lim_{E \to 0} \arg S(k,E) \Big|_{k_1}^{k_2} = \mp 2\pi$$

Suppose H(k) depends on some parameter $k \in \mathbb{R}$

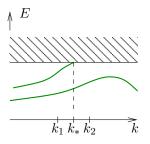


The scattering phase jumps when a bound state reaches threshold

$$\lim_{E\to 0} \arg S(k,E)\Big|_{k_1}^{k_2} = \mp 2\pi$$

▶ Incipient bound state (at k_*) \equiv semi-bound state

Suppose H(k) depends on some parameter $k \in \mathbb{R}$

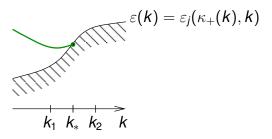


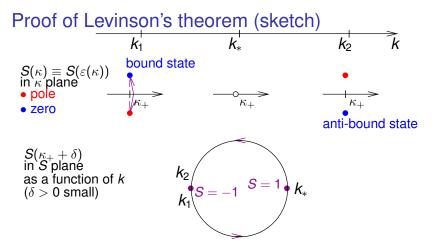
The scattering phase jumps when a bound state reaches threshold

$$\lim_{E \to 0} \arg S(k,E) \Big|_{k_1}^{k_2} = \mp 2\pi$$

- ▶ Incipient bound state (at k_*) \equiv semi-bound state
- Normalization of phase forgone

Proof of Levinson's theorem (sketch)



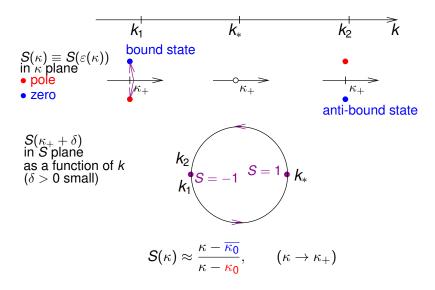


$$|{
m out}
angle = S|{
m in}
angle$$

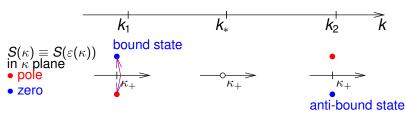
Bound state: $|\text{out}\rangle$ in absence of $|\text{in}\rangle \equiv |\kappa\rangle$ with $\text{Im }\kappa < 0$ Thus: Pole of $S(\kappa)$.

$$S(\kappa) pprox rac{\kappa - \overline{\kappa_0}}{\kappa - \kappa_0}, \qquad (\kappa o \kappa_+)$$

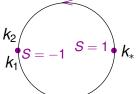
Proof of Levinson's theorem (sketch)



Proof of Levinson's theorem (sketch)



 $\begin{array}{l} S(\kappa_+ + \delta) \\ \text{in } S \text{ plane} \\ \text{as a function of } k \\ (\delta > 0 \text{ small}) \end{array}$



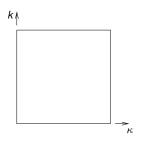
$$\lim_{\delta \to 0} \arg S_{+} \left(\underbrace{\kappa_{+}(k) + \delta}_{\sim \varepsilon(k) - \delta'} \right) \Big|_{k_{1}}^{k_{2}} = 2\pi$$

The Great Wall of China and its Towers

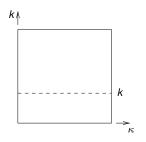
The Great Wall of China and its Towers

bulk (top view)

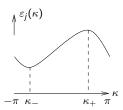
edge (side view)

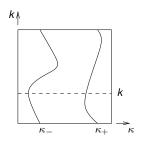


Brillouin zone $\ni (\kappa, k)$ Energy band $\varepsilon_j(\kappa, k)$

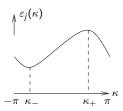


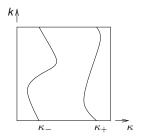
Minimum $\kappa_{-}(k)$ and maximum $\kappa_{+}(k)$ of energy band $\varepsilon_{i}(\kappa, k)$ in κ at fixed k



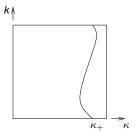


Minimum $\kappa_{-}(k)$ and maximum $\kappa_{+}(k)$ of energy band $\varepsilon_{i}(\kappa, k)$ in κ at fixed k

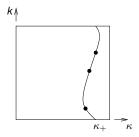




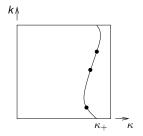
Minima $\kappa_-(k)$ and maxima $\kappa_+(k)$ of energy band $\varepsilon_j(\kappa, k)$ in κ at fixed k

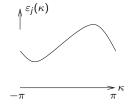


Maxima $\kappa_+(k)$

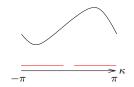


Maxima $\kappa_+(k)$ with semi-bound states (to be explained)

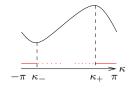




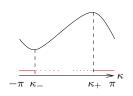
At fixed k: Energy band $\varepsilon_j(\kappa, k)$ and the line bundle P_j of Bloch states



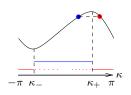
Line indicates choice of a section $|\kappa\rangle$ of Bloch states (from the given band). No global section in $\kappa\in\mathbb{R}/2\pi\mathbb{Z}$ is possible, as a rule.



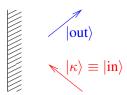
States $|\kappa\rangle$ above the solid line are left movers $(\varepsilon_j'(\kappa) < 0)$

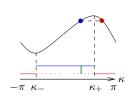


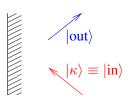
They are incoming asymptotic (bulk) states for scattering at edge (from inside)



Scattering determines section $|out\rangle$ of right movers above line



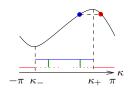


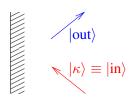


Scattering matrix

$$|{
m out}
angle=\mathcal{S}_+|\kappa
angle$$

as relative phase between two sections of the same fiber (near κ_+)



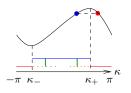


Scattering matrix

$$|{
m out}
angle=\mathcal{S}_+|\kappa
angle$$

as relative phase between two sections of the same fiber (near $\kappa_+)$

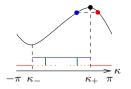
Likewise S_{-} near κ_{-} .



Chern number computed by sewing

$$\operatorname{ch}(P_j) = \mathcal{N}(S_+) - \mathcal{N}(S_-)$$

with $\mathcal{N}(S_{\pm})$ the winding of $S_{\pm} = S_{\pm}(k)$ as $k = -\pi \dots \pi$.



As $\kappa \to \kappa_+$, whence

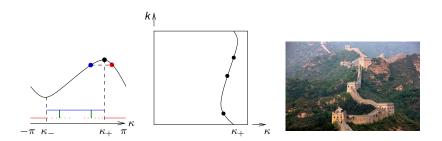
$$|\text{in}\rangle=|\kappa\rangle \to |\kappa_+\rangle \qquad |\text{out}\rangle=\mathcal{S}_+|\kappa\rangle \to |\kappa_+\rangle$$
 (up to phase)

their limiting span is that of

$$|\kappa_{+}
angle, \quad \left. rac{ extsf{d}|\kappa
angle}{ extsf{d}\kappa}
ight|_{\kappa_{+}}$$

(bounded, resp. unbounded in space). The span contains the limiting scattering state $|\psi\rangle \propto |\text{in}\rangle + |\text{out}\rangle$.

If (exceptionally) $|\psi\rangle\propto |\kappa_+\rangle$ then $|\psi\rangle$ is a semi-bound state.



As a function of *k*, semi-bound states occur exceptionally.

Aside: Generalized Bloch solutions

$$\left. rac{\mathsf{d} |\kappa
angle}{\mathsf{d}\kappa}
ight|_{\kappa_+}$$

is an eigensolution unbounded in space $\mathbb{Z} \ni n$.

Aside: Generalized Bloch solutions

$$\left. rac{\mathsf{d} |\kappa
angle}{\mathsf{d}\kappa}
ight|_{\kappa_+}$$

is an eigensolution unbounded in space $\mathbb{Z}\ni n$. In fact, let $\psi(\kappa,n)=\langle n|\kappa\rangle$ be a Bloch solution (p period):

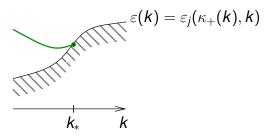
$$(H - \varepsilon(\kappa))\psi(\kappa, n) = 0, \quad \psi(\kappa, n + mp) = e^{i\kappa m}\psi(\kappa, n)$$

Then

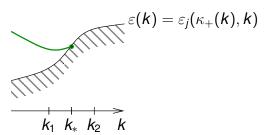
$$\begin{split} &(H-\varepsilon(\kappa_+))\frac{d\psi}{d\kappa}(\kappa_+,n)=0,\quad (\frac{d\varepsilon(\kappa)}{d\kappa}|_{\kappa_+}=0)\\ &\frac{d}{d\kappa}\psi(\kappa,n+mp)=\mathrm{e}^{\mathrm{i}\kappa m}\frac{d}{d\kappa}\psi(\kappa,n)+\mathrm{i} m\mathrm{e}^{\mathrm{i}\kappa m}\psi(\kappa,n) \end{split}$$

(unbounded in m)

Spectrum of edge Hamiltonian

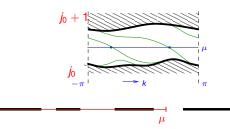


Spectrum of edge Hamiltonian



$$\lim_{\delta o 0} \arg \mathcal{S}_+(arepsilon(k) - \delta) \Big|_{k_1}^{k_2} = \pm 2\pi$$

Proof of duality



$$egin{aligned} \mathcal{N}^{\sharp} &= \mathcal{N}(S_{+}^{(j_0)}) \quad \left(= \mathcal{N}(S_{-}^{(j_0+1)})
ight) \ &= \sum_{j=0}^{j_0} \mathcal{N}(S_{+}^{(j)}) - \mathcal{N}(S_{-}^{(j)}) \ &= \sum_{j=0}^{j_0} \operatorname{ch}(P_j) \end{aligned}$$

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Chiral systems

An experiment

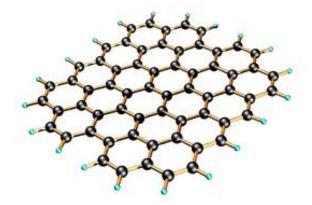
A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

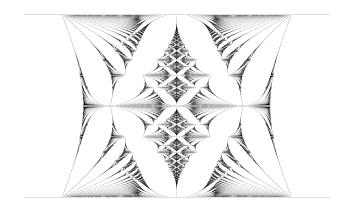
Some numerics

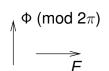
The anomalous phase



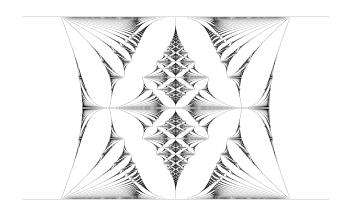
Hamiltonian: Nearest neighbor hopping with flux Φ per plaquette.

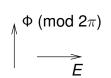
Spectrum in black





Spectrum in black





What is the Hall conductance (Chern number) in any white point?

What is the Hall conductance (Chern number) s in any white point?

Bulk approach (Thouless/Avron et al.): If $\Phi = p/q$, (p, q coprime) then

$$r = sp + tq$$

where:

- r number of bands below Fermi energy
- **s**, *t* integers
- s is so determined only modulo q.

What is the Hall conductance (Chern number) s in any white point?

Bulk approach (Thouless/Avron et al.): If $\Phi = p/q$, (p, q coprime) then

$$r = sp + tq$$

where:

- r number of bands below Fermi energy
- **s**, *t* integers
- s is so determined only modulo q.

For square lattice, $s \in (-q/2, q/2)$.

What is the Hall conductance (Chern number) s in any white point?

Bulk approach (Thouless/Avron et al.): If $\Phi = p/q$, (p, q coprime) then

$$r = sp + tq$$

where:

- r number of bands below Fermi energy
- **s**, *t* integers
- s is so determined only modulo q.

For square lattice, $s \in (-q/2, q/2)$. Not for other lattices.

What is the Hall conductance (Chern number) s in any white point?

Bulk approach (Thouless/Avron et al.): If $\Phi = p/q$, (p, q coprime) then

$$r = sp + tq$$

where:

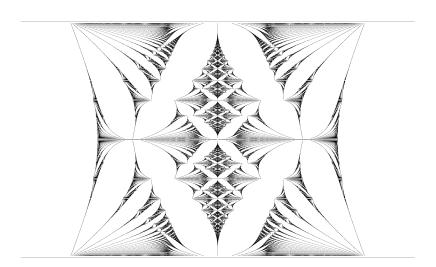
- r number of bands below Fermi energy
- **s**, *t* integers
- s is so determined only modulo q.

For square lattice, $s \in (-q/2, q/2)$. Not for other lattices.

→ Edge approach, method by Schulz-Baldes et al.

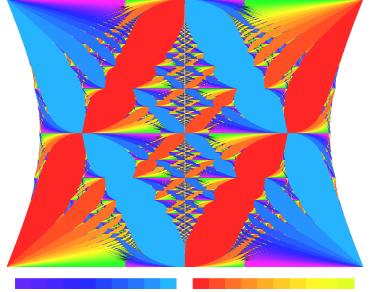
The colors of graphene

What is the Hall conductance (Chern number) in any white point?

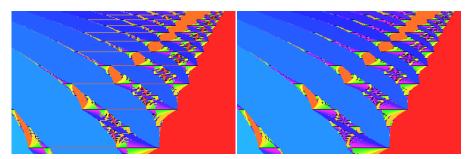


The colors of graphene

What is the Hall conductance (Chern number) in any white point?



Naive Bulk vs. Edge computation



Left: "Natural" window condition $s \in (-q/2, q/2)$ Right: Conductance s as determined by the edge.

Naive Bulk vs. Edge computation



Left: "Natural" window condition $s \in (-q/2, q/2)$ Right: Conductance s as determined by the edge.

cf. Avron et al.

Physics background and overviev

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Buir

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic system

Definitions and results

Some numerics

The anomalous phase

Topological insulators: time-reversal invariant case

Insulator in the Bulk: Excitation gap For independent electrons: spectral gap at Fermi energy

► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open

Topological insulators: time-reversal invariant case

- Insulator in the Bulk: Excitation gap For independent electrons: spectral gap at Fermi energy
- ► Time-reversal invariant fermionic system
- ► Topology: In the space of Hamiltonians, a topological insulator can not be deformed in an ordinary one, while keeping the gap open and time-reversal invariance.

There is a map Θ on $\mathcal H$ (time-reversal) such that

- ▶ Θ is anti-unitary and $\Theta^2 = -1$;
- ▶ $[\Theta, H] = 0$

There is a map Θ on \mathcal{H} (time-reversal) such that

- ▶ Θ is anti-unitary and $\Theta^2 = -1$;
- ▶ $[\Theta, H] = 0$

In the periodic case, with Θ commuting with lattice translations,

$$H(-k) = \Theta H(k)\Theta^{-1}, \qquad (k \in \mathbb{T})$$

There is a map Θ on $\mathcal H$ (time-reversal) such that

- ▶ Θ is anti-unitary and $\Theta^2 = -1$;
- ightharpoonup $[\Theta, H] = 0$

In the periodic case, with Θ commuting with lattice translations,

$$H(-k) = \Theta H(k)\Theta^{-1}, \qquad (k \in \mathbb{T})$$

Map $\Theta: E_k \to E_{-k}$ determines a time-reversal invariant bundle (E, \mathbb{T}, Θ) .

Remark: By $\Theta E = E$ and $ch(\Theta E) = -ch(E)$:

$$ch(E) = 0$$

There is a map Θ on $\mathcal H$ (time-reversal) such that

- ▶ Θ is anti-unitary and $\Theta^2 = -1$;
- ightharpoonup $[\Theta, H] = 0$

In the periodic case, with Θ commuting with lattice translations,

$$H(-k) = \Theta H(k)\Theta^{-1}, \qquad (k \in \mathbb{T})$$

Map $\Theta: E_k \to E_{-k}$ determines a time-reversal invariant bundle (E, \mathbb{T}, Θ) .

Remark: By $\Theta E = E$ and $ch(\Theta E) = -ch(E)$:

$$ch(E) = 0$$

Such insulators are trivial from the Quantum Hall point of view.

There is a map Θ on $\mathcal H$ (time-reversal) such that

- ▶ Θ is anti-unitary and $\Theta^2 = -1$;
- ightharpoonup $[\Theta, H] = 0$

In the periodic case, with Θ commuting with lattice translations,

$$H(-k) = \Theta H(k)\Theta^{-1}, \qquad (k \in \mathbb{T})$$

Map $\Theta: E_k \to E_{-k}$ determines a time-reversal invariant bundle (E, \mathbb{T}, Θ) .

Remark: By $\Theta E = E$ and $ch(\Theta E) = -ch(E)$:

$$ch(E)=0$$

Such insulators are trivial from the Quantum Hall point of view. Yet interesting in their own class.

The bundle (E, \mathbb{T}) is equipped with anti-linear map

$$\Theta: E_k \to E_{-k}$$

with $\Theta^2 = -1$.

The bundle (E, \mathbb{T}) is equipped with anti-linear map

$$\Theta: E_k \to E_{-k}$$

with $\Theta^2 = -1$.

Theorem (Atiyah; Kane, Mele) In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \operatorname{rk} E$)

The bundle (E, \mathbb{T}) is equipped with anti-linear map

$$\Theta: E_k \to E_{-k}$$

with $\Theta^2 = -1$.

Theorem (Atiyah; Kane, Mele) In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \operatorname{rk} E$)

For E the Bloch bundle

 $ightharpoonup \mathcal{I}=+1$: ordinary insulator; $\mathcal{I}=-1$: topological insulator

The bundle (E, \mathbb{T}) is equipped with anti-linear map

$$\Theta: E_k \to E_{-k}$$

with $\Theta^2 = -1$.

Theorem (Atiyah; Kane, Mele) In general, vector bundles (E, \mathbb{T}, Θ) can be classified by an index $\mathcal{I}(E) = \pm 1$ (besides of $N = \operatorname{rk} E$)

For E the Bloch bundle

- $ightharpoonup \mathcal{I}=+1$: ordinary insulator; $\mathcal{I}=-1$: topological insulator
- ► Kane, Mele; Fu, Kane: Index realized as Pfaffian

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

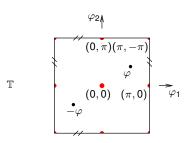
Time periodic systems

Definitions and results

Some numerics

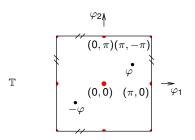
The anomalous phase

Time reversal invariant bundles (E, \mathbb{T}, Θ)



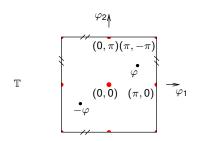
$$\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$$

Time reversal invariant bundles (E, \mathbb{T}, Θ)



- $\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$
- ► Time-reversal invariant points, $\varphi = -\varphi$ at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$
- $lackbox{ }\Theta:E_{arphi}
 ightarrow E_{-arphi},$ Θ antilinear with $\Theta^2=-1$

Time reversal invariant bundles (E, \mathbb{T}, Θ)



- $\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$
- ► Time-reversal invariant points, $\varphi = -\varphi$ at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$
- $lackbox{ }\Theta:E_{arphi}
 ightarrow E_{-arphi},$ Θ antilinear with $\Theta^2=-1$
- Frame bundle F(E) has fibers $F(E)_{\varphi} \ni v = (v_1, \dots v_N)$ consisting of bases v of E_{φ} .

The Fu-Kane index

 $lackbox{}\langle\cdot,\cdot
angle$ inner product on E_{arphi}

The Fu-Kane index

- $lackbox \langle \cdot, \cdot
 angle$ inner product on E_{φ}
- ▶ By ch(E) = 0: There is a global section $u(\varphi) = (u_1(\varphi), \dots u_N(\varphi))$ (orthonormal) of the frame bundle

$$W_{ij}(\varphi) := \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle$$

Note $W(\varphi)^*W(\varphi) = 1$ and $W(\varphi)^T = -W(-\varphi)$. In particular $W(\varphi)$ antisymmetric at TRIPs.

The Fu-Kane index

- $ightharpoonup \langle \cdot, \cdot \rangle$ inner product on E_{φ}
- ▶ By ch(E) = 0: There is a global section $u(\varphi) = (u_1(\varphi), \dots u_N(\varphi))$ (orthonormal) of the frame bundle

$$W_{ij}(\varphi) := \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle$$

- Note $W(\varphi)^*W(\varphi) = 1$ and $W(\varphi)^T = -W(-\varphi)$. In particular $W(\varphi)$ antisymmetric at TRIPs.
- Set

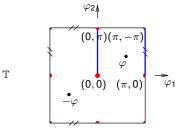
$$\mathcal{I}(E) := \prod_{a \in TRIP} rac{\operatorname{pf} W(arphi_a)}{\sqrt{\det W(arphi_a)}} = \pm 1$$

(Pfaffian defined for antisymmetric matrices, det $W = (pf W)^2$)

► Family of matrices $W(\varphi_2)$ with single parameter $0 \le \varphi_2 \le \pi$, det $W(\varphi_2) \ne 0$, antisymmetric at endpoints $\varphi_2 = 0, \pi$

- Family of matrices $W(\varphi_2)$ with single parameter $0 \le \varphi_2 \le \pi$, det $W(\varphi_2) \ne 0$, antisymmetric at endpoints $\varphi_2 = 0, \pi$
- ▶ Branch of $\sqrt{\det W(\varphi_2)}$ connects pf(W(0)) to $\pm pf(W(\pi))$
- ▶ Set $\widehat{\mathcal{I}}(W) = \pm$.

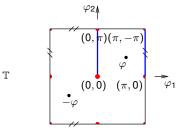
- ► Family of matrices $W(\varphi_2)$ with single parameter $0 \le \varphi_2 \le \pi$, det $W(\varphi_2) \ne 0$, antisymmetric at endpoints $\varphi_2 = 0, \pi$
- ▶ Branch of $\sqrt{\det W(\varphi_2)}$ connects pf(W(0)) to \pm pf($W(\pi)$)
- ▶ Set $\widehat{\mathcal{I}}(W) = \pm$.



Set

$$W_0(\varphi_2) = W(0, \varphi_2), \qquad W_{\pi}(\varphi_2) = W(\pi, \varphi_2)$$

- Family of matrices $W(\varphi_2)$ with single parameter $0 \le \varphi_2 \le \pi$, det $W(\varphi_2) \ne 0$, antisymmetric at endpoints $\varphi_2 = 0, \pi$
- ▶ Branch of $\sqrt{\det W(\varphi_2)}$ connects pf(W(0)) to \pm pf($W(\pi)$)
- ▶ Set $\widehat{\mathcal{I}}(W) = \pm$.



Set

$$W_0(\varphi_2) = W(0, \varphi_2), \qquad W_{\pi}(\varphi_2) = W(\pi, \varphi_2)$$

Then

$$\widehat{\mathcal{I}}(E) = \widehat{\mathcal{I}}(W_0)\widehat{\mathcal{I}}(W_{\pi})$$

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

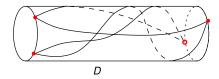
Definitions and results

Some numerics

The anomalous phase

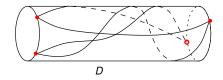
Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends



Consider a fixed even number of lines moving forward along a (finite) cylinder.

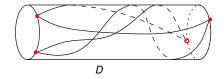
Condition: Lines pair up at the ends



 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Consider a fixed even number of lines moving forward along a (finite) cylinder.

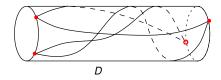
Condition: Lines pair up at the ends



 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle. (Lines can be thought of as world lines of dancers of a rueda)

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends

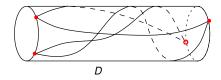


 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends

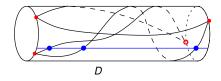


 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends

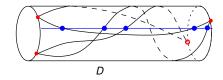


 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends

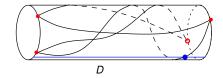


 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends

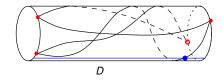


 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

Consider a fixed even number of lines moving forward along a (finite) cylinder.

Condition: Lines pair up at the ends



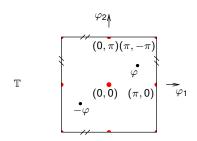
 $D = (D(t))_{a \le t \le b}$ with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one another.

What is the index that tells the difference?

 $\mathcal{I}(D)$ = parity of number of crossings of fiducial line

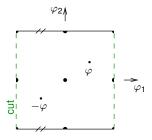
Time reversal invariant bundles (E, \mathbb{T}, Θ)



- $\blacktriangleright \ \mathbb{T} \ni \varphi = (\varphi_1, \varphi_2)$
- ► Time-reversal invariant points, $\varphi = -\varphi$ at $\varphi = (0,0), (\pi,0), (0,\pi), (\pi,\pi)$
- $lackbox{ }\Theta:E_{arphi}
 ightarrow E_{-arphi},$ Θ antilinear with $\Theta^2=-1$
- Frame bundle F(E) has fibers $F(E)_{\varphi} \ni v = (v_1, \dots v_N)$ consisting of bases v of E_{φ} .

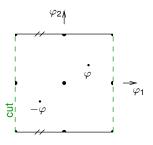
Towards another index

Consider the cut torus:



Towards another index

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

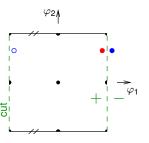
$$v(-\varphi) = (\Theta v(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Idea: At a time reversal invariant point, that means (N = 2)

$$v_2 = \Theta v_1$$
 $v_1 = -\Theta v_2$

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

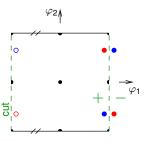
$$v(-\varphi) = (\Theta v(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_{+}(\varphi_{2}) = \mathbf{v}_{-}(\varphi_{2})T(\varphi_{2}), \qquad (\varphi_{2} \in S^{1})$$

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

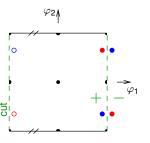
$$v(-\varphi) = (\Theta v(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_{+}(\varphi_{2}) = \mathbf{v}_{-}(\varphi_{2})T(\varphi_{2}), \qquad (\varphi_{2} \in S^{1})$$

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$v(-\varphi) = (\Theta v(\varphi))\varepsilon$$

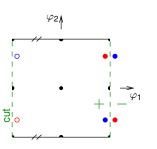
with ε the block diagonal matrix with blocks $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_{+}(\varphi_2) = \mathbf{v}_{-}(\varphi_2) T(\varphi_2) , \qquad (\varphi_2 \in S^1)$$

There exists a relation between $T(\varphi_2)$ and $T(-\varphi_2)$

Consider the cut torus:



Lemma On the cut torus the frame bundle admits a section $\varphi \mapsto v(\varphi) \in F(E)_{\varphi}$ which is time-reversal invariant:

$$v(-\varphi) = (\Theta v(\varphi))\varepsilon$$

with ε the block diagonal matrix with blocks $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

Transition matrix $T(\varphi_2) \in GL(N)$

$$\mathbf{v}_{+}(\varphi_2) = \mathbf{v}_{-}(\varphi_2)T(\varphi_2), \qquad (\varphi_2 \in S^1)$$

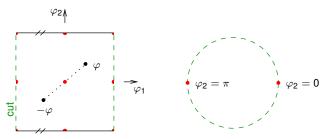
There exists a relation between $T(\varphi_2)$ and $T(-\varphi_2)$

$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0$$

with $\Theta_0 = \varepsilon C$, (C complex conjugation on \mathbb{C}^N)

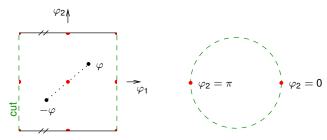
We have

▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)



We have

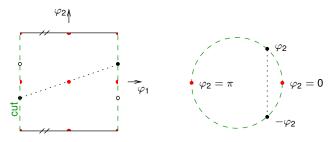
▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)



▶ a (compatible) section of the frame bundle of E

We have

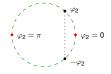
▶ torus $\varphi = (\varphi_1, \varphi_2) \in \mathbb{T} = (\mathbb{R}/2\pi\mathbb{Z})^2$ with cut (figure)



- ▶ a (compatible) section of the frame bundle of E
- ▶ the transition matrices $T(\varphi_2) \in GL(N)$ across the cut

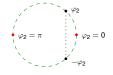
$$\Theta_0 T(\varphi_2) = T^{-1}(-\varphi_2)\Theta_0 , \qquad (\varphi_2 \in S^1)$$

with $\Theta_0: \mathbb{C}^N \to \mathbb{C}^N$ antilinear, $\Theta_0^2 = -1$



- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

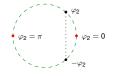


- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$



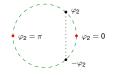
- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$:

$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

Phases $\lambda/|\lambda|$ pair up (degeneracy)



- ▶ Only half the cut $(0 \le \varphi_2 \le \pi)$ matters for $T(\varphi_2)$
- At time-reversal invariant points, $\varphi_2 = 0, \pi$,

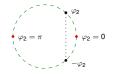
$$\Theta_0 T = T^{-1} \Theta_0$$

Eigenvalues of T come in pairs λ , $\bar{\lambda}^{-1}$:

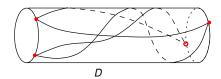
$$\Theta_0(T-\lambda) = T^{-1}(1-\bar{\lambda}T)\Theta_0$$

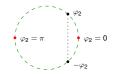
Phases $\lambda/|\lambda|$ pair up (degeneracy)

▶ For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, D

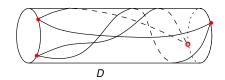


- For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, **D**





- For $0 \le \varphi_2 \le \pi$, phases $\lambda/|\lambda|$ form a rueda, **D**



Definition (Index): $\mathcal{I}(E) := \mathcal{I}(T) := \mathcal{I}(D)$

Let $u(\varphi)$ be global frame as in the Fu-Kane index:

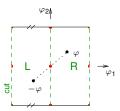
$$W_{ij}(\varphi) = \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle$$
$$\widehat{\mathcal{I}}(E) = \widehat{\mathcal{I}}(W_0)\widehat{\mathcal{I}}(W_\pi)$$

Let $u(\varphi)$ be global frame as in the Fu-Kane index:

$$W_{ij}(\varphi) = \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle$$
$$\widehat{\mathcal{I}}(E) = \widehat{\mathcal{I}}(W_0)\widehat{\mathcal{I}}(W_\pi)$$

▶ Define frame $v(\phi)$

$$\mathbf{v}(\varphi) = \begin{cases} \mathbf{u}(\varphi) , & (\varphi \in L) \\ \Theta \mathbf{u}(-\varphi)\varepsilon , & (\varphi \in R) \end{cases}$$



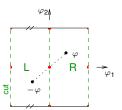
Frame is compatible, but not global:

Let $u(\varphi)$ be global frame as in the Fu-Kane index:

$$W_{ij}(\varphi) = \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle$$
$$\widehat{\mathcal{I}}(E) = \widehat{\mathcal{I}}(W_0)\widehat{\mathcal{I}}(W_\pi)$$

▶ Define frame $v(\phi)$

$$\mathbf{v}(\varphi) = \begin{cases} \mathbf{u}(\varphi) , & (\varphi \in L) \\ \Theta \mathbf{u}(-\varphi)\varepsilon , & (\varphi \in R) \end{cases}$$



Frame is compatible, but not global: Jumps at $\varphi_1 = 0, \pi$ with transition matrices $T_0(\varphi_2), T_{\pi}(\varphi_2),$

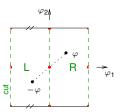
$$\mathcal{I}(E) = \mathcal{I}(T_0)\mathcal{I}(T_\pi)$$
 (ruedas)

Let $u(\varphi)$ be global frame as in the Fu-Kane index:

$$W_{ij}(\varphi) = \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle$$
$$\widehat{\mathcal{I}}(E) = \widehat{\mathcal{I}}(W_0)\widehat{\mathcal{I}}(W_\pi)$$

▶ Define frame $v(\phi)$

$$\mathbf{v}(\varphi) = \begin{cases} \mathbf{u}(\varphi) , & (\varphi \in L) \\ \Theta \mathbf{u}(-\varphi)\varepsilon , & (\varphi \in R) \end{cases}$$



Frame is compatible, but not global: Jumps at $\varphi_1 = 0, \pi$ with transition matrices $T_0(\varphi_2), T_{\pi}(\varphi_2),$

$$\mathcal{I}(E) = \mathcal{I}(T_0)\mathcal{I}(T_\pi)$$
 (ruedas)

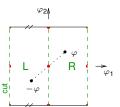
 \blacktriangleright $W(\varphi_2) = T(\varphi_2)\varepsilon$. (crucial)

Let $u(\varphi)$ be global frame as in the Fu-Kane index:

$$W_{ij}(\varphi) = \langle u_i(\varphi), \Theta u_j(-\varphi) \rangle$$
$$\widehat{\mathcal{I}}(E) = \widehat{\mathcal{I}}(W_0)\widehat{\mathcal{I}}(W_\pi)$$

▶ Define frame $v(\phi)$

$$\mathbf{v}(\varphi) = \begin{cases} \mathbf{u}(\varphi) , & (\varphi \in L) \\ \Theta \mathbf{u}(-\varphi)\varepsilon , & (\varphi \in R) \end{cases}$$



Frame is compatible, but not global: Jumps at $\varphi_1 = 0, \pi$ with transition matrices $T_0(\varphi_2), T_{\pi}(\varphi_2)$,

$$\mathcal{I}(E) = \mathcal{I}(T_0)\mathcal{I}(T_\pi)$$
 (ruedas)

• $W(\varphi_2) = T(\varphi_2)\varepsilon$. Then $\widehat{\mathcal{I}}(W) = \mathcal{I}(T)$ and hence

$$\widehat{\mathcal{I}}(E) = \mathcal{I}(E)$$

Rueda de casino. Time 0'15"

Rueda de casino. Time 0'25"

Rueda de casino. Time 0'35"

Rueda de casino. Time 0'44"

Rueda de casino. Time 0'44.25"

Rueda de casino. Time 0'44.50"

Rueda de casino. Time 0'44.75"

Rueda de casino. Time 0'45"

Rueda de casino. Time 0'45.25"

Rueda de casino. Time 0'45.50"

Rueda de casino. Time 0'46"

Rueda de casino. Time 0'47"

Rueda de casino. Time 0'55"

Rueda de casino. Time 1'16"

Rueda de casino. Time 3'23"

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor

Rules of the dance

Dancers

- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor
- are unlabeled points

Rules of the dance

Dancers

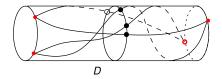
- start in pairs, anywhere
- end in pairs, anywhere (possibly elseways & elsewhere)
- are free in between
- must never step on center of the floor
- are unlabeled points

There are dances which can not be deformed into one another.

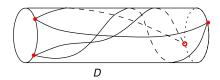
What is the index that tells the difference?

A snapshot of the dance

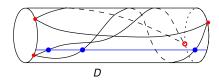
A snapshot of the dance



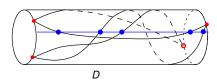
A snapshot of the dance



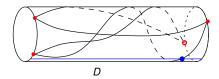
A snapshot of the dance



A snapshot of the dance

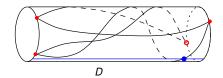


A snapshot of the dance



A snapshot of the dance

Dance D as a whole



 $\mathcal{I}(D)$ = parity of number of crossings of fiducial line

The \mathbb{Z}_2 index in the non-periodic case

Recall: Index without time-reversal symmetry based on index of pair of projections

$$\begin{split} \operatorname{Ind}(P,Q) &= \\ \dim\{\psi \in \mathcal{H} \mid P\psi = \psi, Q\psi = 0\} - \dim\{\psi \in \mathcal{H} \mid Q\psi = \psi, P\psi = 0\} \\ &= \dim \ker(A-1) - \dim \ker(A+1), \qquad A = P - Q \end{split}$$

The \mathbb{Z}_2 index in the non-periodic case

Recall: Index without time-reversal symmetry based on index of pair of projections

$$\begin{split} \mathsf{Ind}(P,Q) &= \\ \mathsf{dim}\{\psi \in \mathcal{H} \mid P\psi = \psi, Q\psi = 0\} - \mathsf{dim}\{\psi \in \mathcal{H} \mid Q\psi = \psi, P\psi = 0\} \\ &= \mathsf{dim} \ker(A-1) - \mathsf{dim} \ker(A+1), \qquad A = P - Q \end{split}$$

With time-reversal symmetry:

$$\mathcal{I} = (-1)^{\dim \ker(A-1)}$$

(cf. Atiyah; Schulz-Baldes; Katsura, Koma)

The \mathbb{Z}_2 index in the non-periodic case

Recall: Index without time-reversal symmetry based on index of pair of projections

$$\begin{split} \mathsf{Ind}(P,Q) &= \\ \mathsf{dim}\{\psi \in \mathcal{H} \mid P\psi = \psi, Q\psi = 0\} - \mathsf{dim}\{\psi \in \mathcal{H} \mid Q\psi = \psi, P\psi = 0\} \\ &= \mathsf{dim} \ker(A-1) - \mathsf{dim} \ker(A+1), \qquad A = P - Q \end{split}$$

With time-reversal symmetry:

$$\mathcal{I} = (-1)^{\dim \ker(A-1)}$$

(cf. Atiyah; Schulz-Baldes; Katsura, Koma) In both cases, apply to $P = P_{\mu}$, $Q = UP_{\mu}U^*$.

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Craphono

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The anomalous phase

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The anomalous phase

An experiment: Amo et al.

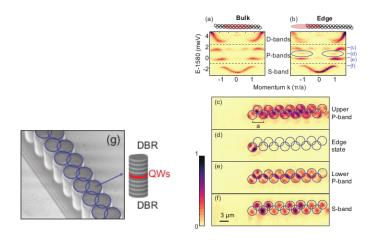


Figure: Zigzag chain of coupled micropillars and lasing modes

An experiment: Amo et al.

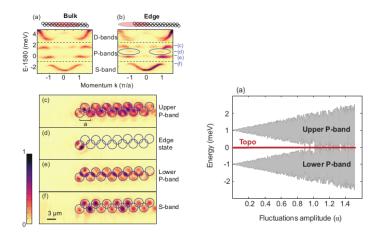


Figure: Lasing modes: bulk and edge

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

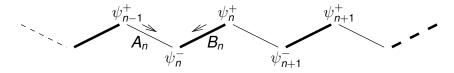
Definitions and results

Some numerics

The anomalous phase

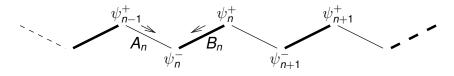
The Su-Schrieffer-Heeger model (1 dimensional)

Alternating chain with nearest neighbor hopping



The Su-Schrieffer-Heeger model (1 dimensional)

Alternating chain with nearest neighbor hopping



Hilbert space: sites arranged in dimers

$$\mathcal{H} = \ell^2(\mathbb{Z}, \mathbb{C}^N) \otimes \mathbb{C}^2 \ni \psi = \begin{pmatrix} \psi_n^+ \\ \psi_n^- \end{pmatrix}_{n \in \mathbb{Z}}$$

Hamiltonian

$$H = \left(\begin{array}{cc} 0 & S^* \\ S & 0 \end{array}\right)$$

with S, S^* acting on $\ell^2(\mathbb{Z}, \mathbb{C}^N)$ as

$$(S\psi^+)_n = A_n\psi_{n-1}^+ + B_n\psi_n^+, \qquad (S^*\psi^-)_n = A_{n+1}^*\psi_{n+1}^- + B_n^*\psi_n^-$$

 $(A_n, B_n \in GL(N))$ almost surely)

Chiral symmetry

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\{H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda \psi \implies H(\Pi \psi) = -\lambda(\Pi \psi)$$

Chiral symmetry

$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\{H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda \psi \implies H(\Pi \psi) = -\lambda(\Pi \psi)$$

Energy $\lambda = 0$ is special:

Eigenspace of $\lambda = 0$ invariant under Π

Chiral symmetry

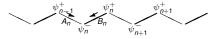
$$\Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\{H, \Pi\} \equiv H\Pi + \Pi H = 0$$

hence

$$H\psi = \lambda \psi \implies H(\Pi \psi) = -\lambda(\Pi \psi)$$

Energy $\lambda = 0$ is special:

Eigenspace of $\lambda = 0$ invariant under Π



▶ Eigenvalue equation $H\psi = \lambda \psi$ is $S\psi^+ = \lambda \psi^-$, $S^*\psi^- = \lambda \psi^+$, i.e.

$$A_n \psi_{n-1}^+ + B_n \psi_n^+ = \lambda \psi_n^-, \qquad A_{n+1}^* \psi_{n+1}^- + B_n^* \psi_n^- = \lambda \psi_n^+$$

is one 2nd order difference equation, but two 1st order for $\lambda = 0$

Bulk index

Let

$$\Sigma = \operatorname{sgn} H$$

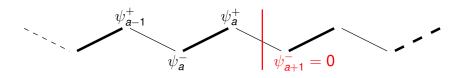
Definition. The Bulk index is

$$\mathcal{N} = \frac{1}{2} \operatorname{tr}(\Pi \Sigma [\Lambda, \Sigma])$$

 $\Lambda(x)$

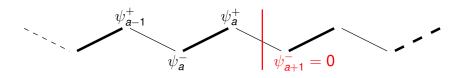
with $\Lambda = \Lambda(n)$ a switch function (cf. Prodan et al.)

Edge Hamiltonian and index



Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

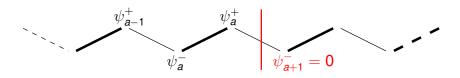
Edge Hamiltonian and index



Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

Eigenspace of $\lambda = 0$ still invariant under Π .

Edge Hamiltonian and index

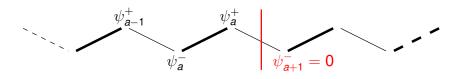


Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

Eigenspace of $\lambda = 0$ still invariant under Π .

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid \mathcal{H}_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

Edge Hamiltonian and index



Edge Hamiltonian H_a defined by restriction to $n \le a$ (Dirichlet boundary condition $\psi_{a+1}^- = 0$). Chiral symmetry preserved.

Eigenspace of $\lambda = 0$ still invariant under Π .

$$\mathcal{N}_{a}^{\pm} := \dim\{\psi \mid \mathcal{H}_{a}\psi = 0, \Pi\psi = \pm\psi\}$$

Definition. The Edge index is the spectral asymmetry

$$\mathcal{N}_a^{\sharp} := \mathcal{N}_a^+ - \mathcal{N}_a^-$$

and can be shown to be independent of a. Call it \mathcal{N}^{\sharp} .

Bulk-edge duality

Theorem (G., Shapiro). Assume $\lambda=0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remarks.

▶ Spectral gap case $(0 \notin \sigma_{ess}(H) \supset \sigma_{ess}(H_a))$

$$H_a = \begin{pmatrix} 0 & S_a^* \\ S_a & 0 \end{pmatrix} \qquad \Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $\mathcal{N}_a^{\sharp} := \dim \ker S_a - \dim \ker S_a^* = \operatorname{ind} S_a$ (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_a is not Fredholm.

Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N} = \mathcal{N}^{\sharp}$$

Remarks.

▶ Spectral gap case $(0 \notin \sigma_{ess}(H) \supset \sigma_{ess}(H_a))$

$$H_a = \begin{pmatrix} 0 & S_a^* \\ S_a & 0 \end{pmatrix} \qquad \Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $\mathcal{N}_a^{\sharp} := \dim \ker S_a - \dim \ker S_a^* = \operatorname{ind} S_a$ (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_a is not Fredholm.

Supersymmetry: Is realized as $(H_a, \Pi) = (\text{supercharge}, \text{grading})$. Then \mathcal{N}_a^{\sharp} is Witten index.

Bulk-edge duality: Remarks

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remarks.

▶ Spectral gap case $(0 \notin \sigma_{ess}(H) \supset \sigma_{ess}(H_a))$

$$H_a = \begin{pmatrix} 0 & S_a^* \\ S_a & 0 \end{pmatrix} \qquad \Pi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 $\mathcal{N}_a^{\sharp} := \dim \ker S_a - \dim \ker S_a^* = \operatorname{ind} S_a$ (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, S_a is not Fredholm.

- Supersymmetry: Is realized as $(H_a, \Pi) = (\text{supercharge}, \text{grading})$. Then \mathcal{N}_a^{\sharp} is Witten index.
- Periodic case

$$S = \int_{S^1}^{\oplus} S(k)$$

Toeplitz index theorem:

$$\mathcal{N}^{\sharp} = - ext{Wind}(k \mapsto \det S(k))$$

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp \{i \mid \gamma_i > 0\}$.

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp \{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

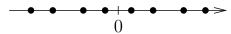
Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp \{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (Example: N=4)

▶ at energy $\lambda \neq 0$ (simple spectrum)



- Spectrum is simple because measure on transfer matrices is irreducible
- ightharpoonup so $\gamma = 0$ is not in the spectrum; localization follows

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

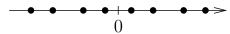
Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp \{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (Example: N=4)

▶ at energy $\lambda \neq 0$ (simple spectrum)



At $\lambda = 0$ chains decouple: $\mathbb{C}^N \oplus 0$ and $0 \oplus \mathbb{C}^N$ are invariant subspaces

Theorem (G., Shapiro). Assume $\lambda = 0$ lies in a mobility gap. Then

$$\mathcal{N}=\mathcal{N}^{\sharp}$$

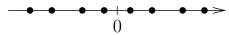
Remark. Consider the dynamical system $A_n\psi_{n-1}^+ + B_n\psi_n^+ = 0$ with Lyaponov exponents

$$\gamma_1 \geq \ldots \geq \gamma_N$$

The assumption is satisfied if $\gamma_i \neq 0$; then $\mathcal{N}^{\sharp} = \sharp \{i \mid \gamma_i > 0\}$. Phase boundaries correspond to $\gamma_i = 0$ (cf. Prodan et al.)

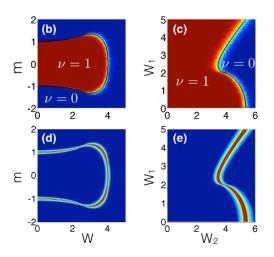
Lyapunov spectrum of the full chain has 2N exponents, spectrum is even (Example: N=4)

▶ at energy $\lambda \neq 0$ (simple spectrum)



- of the upper (+) and lower (-) chains, at energy $\lambda = 0$
- ▶ at energy $\lambda = 0$ (phase boundary)

Some numerics



Left/right column: two parameterized chiral models (N = 1) upper/lower row: index and Lyapunov exponent (from Prodan et al.)

Recall
$$\mathcal{N}_a = \operatorname{tr}(\Pi P_{0,a})$$

Recall
$$\mathcal{N}_a = \operatorname{tr}(\Pi P_{0,a})$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a o +\infty} \operatorname{tr} (\Pi \Lambda P_{0,a})$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a o +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

$$\operatorname{tr}(\Pi \wedge) = N(\sum_{n \leq a} \Lambda(n)) \operatorname{tr}_{\mathbb{C}^2} \Pi = 0$$

though
$$\|\Pi\Lambda\|_1 = \|\Lambda\|_1 \to \infty$$
, $(a \to +\infty)$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

$$\operatorname{tr}(\Pi \wedge) = 0$$

$$\mathsf{tr}(\Pi\Lambda) = \mathsf{tr}(\Pi\Lambda P_{0,a}) + \mathsf{tr}(\Pi\Lambda P_{+,a}) + \mathsf{tr}(\Pi\Lambda P_{-,a})$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

$$\operatorname{tr}(\Pi \Lambda) = 0$$

$$\operatorname{tr}(\Pi\Lambda) = \operatorname{tr}(\Pi\Lambda P_{0,a}) + \operatorname{tr}(\Pi\Lambda P_{+,a}) + \operatorname{tr}(\Pi\Lambda P_{-,a})$$

$$\begin{aligned} \operatorname{tr}(\Pi \Lambda P_{+,a}) &= \operatorname{tr}(P_{+,a} \Pi \Lambda P_{+,a}) = \operatorname{tr}(\Pi P_{-,a} \Lambda P_{+,a}) \\ &= \operatorname{tr}(\Pi P_{-,a} [\Lambda, P_{+,a}]) \end{aligned}$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

$$\operatorname{tr}(\Pi \Lambda) = 0$$

$$\operatorname{tr}(\Pi\Lambda) = \operatorname{tr}(\Pi\Lambda P_{0,a}) + \operatorname{tr}(\Pi\Lambda P_{+,a}) + \operatorname{tr}(\Pi\Lambda P_{-,a})$$

$$\begin{split} \operatorname{tr}(\Pi \Lambda P_{+,a}) &= \operatorname{tr}(P_{+,a} \Pi \Lambda P_{+,a}) = \operatorname{tr}(\Pi P_{-,a} \Lambda P_{+,a}) \\ &= \operatorname{tr}(\Pi P_{-,a} [\Lambda, P_{+,a}]) \to \operatorname{tr}(\Pi P_{-} [\Lambda, P_{+}]) \qquad (a \to +\infty) \end{split}$$

Lemma. The common value of \mathcal{N}_a is

$$\mathcal{N}^{\sharp} = \lim_{a \to +\infty} \operatorname{tr}(\Pi \Lambda P_{0,a})$$

Proof of Theorem. On the Hilbert space \mathcal{H}_a corresponding to $n \leq a$

$$tr(\Pi\Lambda) = 0$$

$$\operatorname{tr}(\Pi\Lambda) = \underbrace{\operatorname{tr}(\Pi\Lambda P_{0,a})}_{\to \mathcal{N}^{\sharp}} + \underbrace{\operatorname{tr}(\Pi\Lambda P_{+,a}) + \operatorname{tr}(\Pi\Lambda P_{-,a})}_{\to \operatorname{tr}(\Pi P_{-}[\Lambda, P_{+}]) + \operatorname{tr}(\Pi P_{+}[\Lambda, P_{-}]) = -\mathcal{N}}$$

q.e.d.

Physics background and overviev

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic settin

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The anomalous phase

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The anomalous phase

Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

$$H(t+T)=H(t)$$

(disorder allowed, no adiabatic setting)

Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

$$H(t+T)=H(t)$$

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t)

 $\widehat{U} = U(T)$ fundamental propagator

Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

$$H(t+T)=H(t)$$

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t)

 $\widehat{\it U} = \it U(\it T)$ fundamental propagator

Assumption: Spectrum of \widehat{U} has gaps:

Special case first: U(t) periodic, i.e.

$$\widehat{U} = 1$$

Special case first: U(t) periodic, i.e.

$$\widehat{U} = 1$$

Bulk index

$$\mathcal{N}_{\mathrm{B}} = rac{1}{2} \int_0^T dt \, \mathrm{tr}(\mathit{U}^* \partial_t \mathit{U} ig[\mathit{U}^* [\Lambda_1, \mathit{U}], \mathit{U}^* [\Lambda_2, \mathit{U}] ig])$$

with U = U(t) and switches $\Lambda_i = \Lambda(x_i)$, (i = 1, 2)

Special case first: U(t) periodic, i.e.

$$\widehat{U} = 1$$

Bulk index

$$\mathcal{N}_{\mathrm{B}} = rac{1}{2} \int_0^T dt \, \mathrm{tr}(\mathit{U}^* \partial_t \mathit{U} ig[\mathit{U}^* [\Lambda_1, \mathit{U}], \mathit{U}^* [\Lambda_2, \mathit{U}] ig])$$

with U = U(t) and switches $\Lambda_i = \Lambda(x_i)$, (i = 1, 2)

Remark. Extends the formula for the periodic case (Rudner et al.)

$$\mathcal{N}_{\mathrm{B}} = rac{1}{8\pi^2} \int_0^T dt \int_{\mathbb{T}} d^2k \, \mathrm{tr}(U^* \partial_t U[U^* \partial_1 U, U^* \partial_2 U])$$

with U=U(t,k) acting on the space of states of quasi-momentum $k=(k_1,k_2)$. Map U: 3-torus \to unitary group \mathcal{U} ; $\pi_3(\mathcal{U})=\mathbb{Z}$.

Special case first: U(t) periodic, i.e.

$$\widehat{U} = 1$$

Bulk index

$$\mathcal{N}_{\mathrm{B}} = rac{1}{2} \int_0^T dt \, \mathrm{tr}(\mathit{U}^* \partial_t \mathit{U} ig[\mathit{U}^* [\Lambda_1, \mathit{U}], \mathit{U}^* [\Lambda_2, \mathit{U}] ig])$$

with U = U(t) and switches $\Lambda_i = \Lambda(x_i)$, (i = 1, 2)

Remark. Extends the formula for the periodic case (Rudner et al.)

$$\mathcal{N}_{\mathrm{B}} = rac{1}{8\pi^2} \int_0^T dt \int_{\mathbb{T}} d^2k \, \mathrm{tr}(U^* \partial_t U [U^* \partial_1 U, U^* \partial_2 U])$$

with U=U(t,k) acting on the space of states of quasi-momentum $k=(k_1,k_2)$. Map U: 3-torus \to unitary group \mathcal{U} ; $\pi_3(\mathcal{U})=\mathbb{Z}$. Bulk index $\mathcal{N}_{\mathbb{R}}$ is degree of map.

 $H_{\rm E}(t)$ restriction of H(t) to right half-space $x_1 > 0$

 $\widehat{\textit{U}}_{\! ext{E}}$ corresponding fundamental propagator

 $H_{\rm E}(t)$ restriction of H(t) to right half-space $x_1 > 0$

 $\widehat{\emph{U}}_{\! ext{E}}$ corresponding fundamental propagator

In general: $\widehat{U}_{E} \neq 1$

 $H_{\rm E}(t)$ restriction of H(t) to right half-space $x_1 > 0$

 $\widehat{\emph{U}}_{\! ext{E}}$ corresponding fundamental propagator

In general: $\widehat{U}_{\rm E} \neq 1$

Edge index

$$\mathcal{N}_E = \mathsf{tr}(\widehat{\textit{U}}_E^*[\Lambda_2, \widehat{\textit{U}}_E]) = \mathsf{tr}(\widehat{\textit{U}}_E^*\Lambda_2\widehat{\textit{U}}_E - \Lambda_2)$$

Remarks.

▶ The trace is well-defined

 $H_{\rm E}(t)$ restriction of H(t) to right half-space $x_1 > 0$

 $\widehat{\emph{U}}_{\! ext{E}}$ corresponding fundamental propagator

In general: $\widehat{U}_{E} \neq 1$

Edge index

$$\mathcal{N}_{E} = \mathsf{tr}(\widehat{\textit{U}}_{E}^{*}[\Lambda_{2}, \widehat{\textit{U}}_{E}]) = \mathsf{tr}(\widehat{\textit{U}}_{E}^{*}\Lambda_{2}\widehat{\textit{U}}_{E} - \Lambda_{2})$$

Remarks.

The trace is well-defined

- \triangleright \mathcal{N}_{E} is charge that crossed the line $x_2 = 0$ during a period.
- $ightharpoonup \mathcal{N}_E$ is independent of Λ_2 and an integer.



General case: Pair of Hamiltonians

$$\widehat{U} \neq 1$$

General case: Pair of Hamiltonians

$$\widehat{U} \neq 1$$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

General case: Pair of Hamiltonians

$$\widehat{U} \neq 1$$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(-t) & (-T < t < 0) \end{cases}$$

General case: Pair of Hamiltonians

$$\widehat{U} \neq 1$$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(2T - t) & (T < t < 2T) \end{cases}$$

Then

$$U(t) = \begin{cases} U_1(t) & (0 < t < T) \\ U_2(2T - t) & (T < t < 2T) \end{cases}$$

has $\widehat{U} = 1$.

General case: Pair of Hamiltonians

$$\widehat{U} \neq 1$$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(2T - t) & (T < t < 2T) \end{cases}$$

Then

$$U(t) = \begin{cases} U_1(t) & (0 < t < T) \\ U_2(2T - t) & (T < t < 2T) \end{cases}$$

has $\widehat{U} = 1$. Define $\mathcal{N}, \mathcal{N}_{E}$ (for the pair) as before.

General case: Pair of Hamiltonians

$$\widehat{U} \neq 1$$

Pair of periodic Hamiltonians $H_i(t)$, (i = 1, 2) with

$$\widehat{U}_1 = \widehat{U}_2$$

Define Hamiltonian H(t) with period 2T by

$$H(t) = \begin{cases} H_1(t) & (0 < t < T) \\ -H_2(2T - t) & (T < t < 2T) \end{cases}$$

Then

$$U(t) = \begin{cases} U_1(t) & (0 < t < T) \\ U_2(2T - t) & (T < t < 2T) \end{cases}$$

has $\widehat{U} = 1$. Define $\mathcal{N}, \mathcal{N}_E$ (for the pair) as before.

Theorem (G., Tauber) $\mathcal{N} = \mathcal{N}_E$

Duality in time and space

Let the interface Hamiltonian $H_{\rm I}(t)$ be a bulk Hamiltonian with

$$H_{\rm I}(t) = \begin{cases} H_{\rm 1}(t) \\ H_{\rm 2}(t) \end{cases}$$
 on states supported on large $\pm x_1$

(still assuming
$$\widehat{U}_1 = \widehat{U}_2 =: \widehat{U}_{\bullet}$$
)

Duality in time and space

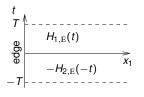
Let the interface Hamiltonian $H_{\rm I}(t)$ be a bulk Hamiltonian with

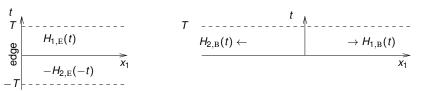
$$H_{\rm I}(t) = egin{cases} H_{\rm I}(t) \ H_{\rm 2}(t) \end{cases}$$
 on states supported on large $\pm x_1$

(still assuming
$$\widehat{U}_1 = \widehat{U}_2 =: \widehat{U}_{\bullet}$$
)

Interface index

$$\mathcal{N}_{I}=\text{tr}(\widehat{\textit{U}}_{\bullet}^{*}\widehat{\textit{U}}_{I}[\Lambda_{2},\widehat{\textit{U}}_{\bullet}^{*}\widehat{\textit{U}}_{I}])$$





Duality in time and space

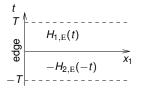
Let the interface Hamiltonian $H_{\rm I}(t)$ be a bulk Hamiltonian with

$$H_{\rm I}(t) = egin{cases} H_{\rm I}(t) \ H_{\rm 2}(t) \end{cases}$$
 on states supported on large $\pm x_1$

(still assuming
$$\widehat{U}_1 = \widehat{U}_2 =: \widehat{U}_{\bullet}$$
)

Interface index

$$\mathcal{N}_{I}=\text{tr}(\widehat{\textit{U}}_{\bullet}^{*}\widehat{\textit{U}}_{I}[\Lambda_{2},\widehat{\textit{U}}_{\bullet}^{*}\widehat{\textit{U}}_{I}])$$

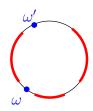


Theorem (G., Tauber) The indices for the two diagrams agree:

$$(\mathcal{N}=)\mathcal{N}_E=\mathcal{N}_I$$

$$\widehat{\textit{U}} \neq 1$$

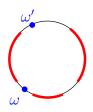
$$\widehat{\textit{U}} \neq 1$$



Let $\alpha \in \mathbb{R}$ and $\omega = \mathrm{e}^{\mathrm{i}\alpha}$. For $z \notin \omega \mathbb{R}_+$ (ray) define the branch $\log_{\alpha} z = \log|z| + \mathrm{i} \arg_{\alpha} z$

by
$$\alpha - 2\pi < \arg_{\alpha} z < \alpha$$
.

$$\widehat{\textit{U}} \neq 1$$



Let $\alpha \in \mathbb{R}$ and $\omega = \mathrm{e}^{\mathrm{i}\alpha}$. For $z \notin \omega \mathbb{R}_+$ (ray) define the branch $\log_{\alpha} z = \log|z| + \mathrm{i} \arg_{\alpha} z$

by
$$\alpha - 2\pi < \arg_{\alpha} z < \alpha$$
.

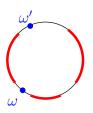
Comparison Hamiltonian H_{α} : For $\omega \notin \operatorname{spec} \widehat{U}$ set

$$-\mathrm{i}H_{\alpha}T := \log_{\alpha}\widehat{U}$$

So,

- $\widehat{\boldsymbol{U}}_{\alpha} = \widehat{\boldsymbol{U}}$
- $U_{\alpha+2\pi}(t) = U_{\alpha}(t)e^{2\pi i t/T}$
- $\mathcal{N}_{\mathrm{B},\alpha+2\pi} = \mathcal{N}_{\mathrm{B},\alpha} =: \mathcal{N}_{\omega}$

$$\widehat{\textit{U}} \neq 1$$



Let $\alpha \in \mathbb{R}$ and $\omega = e^{i\alpha}$. For $z \notin \omega \mathbb{R}_+$ (ray) define the branch

$$\log_{\alpha} z = \log|z| + i \arg_{\alpha} z$$

by $\alpha - 2\pi < \arg_{\alpha} z < \alpha$.

Comparison Hamiltonian H_{α} : For $\omega \notin \operatorname{spec} \widehat{U}$ set

$$-\mathrm{i} H_{\alpha} T := \log_{\alpha} \widehat{U}$$

Theorem (Rudner et al.; G., Tauber) For ω, ω' in gaps

$$\mathcal{N}_{\omega'} - \mathcal{N}_{\omega} = \mathrm{i}\, \mathrm{tr}\, Pigl[[P,\Lambda_1],[P,\Lambda_2]igr]$$

where $P=P_{\omega,\omega'}$ is the spectral projection associated with $\operatorname{spec}\widehat{U}$ between ω,ω' (counter-clockwise)

Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

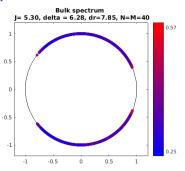
Time periodic systems

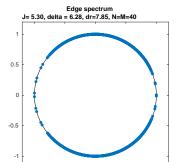
Definitions and results

Some numerics

The anomalous phase

Bulk and Edge spectrum



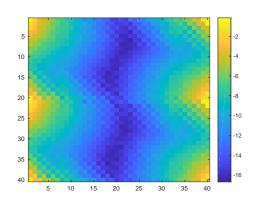


Computing the edge index

Edge index based $\mathcal{N}_{E,\alpha}$ based on the pair (H, H_{α}) (with $\alpha = \pi$)

$$\mathcal{N}_{\mathrm{E},lpha} = \mathrm{tr}\, \emph{A} \qquad \emph{A} = \widehat{\emph{U}}_{\mathrm{E}}^* \emph{\Lambda}_2 \widehat{\emph{U}}_{\mathrm{E}} - \widehat{\emph{U}}_{lpha,\mathrm{E}}^* \emph{\Lambda}_2 \widehat{\emph{U}}_{lpha,\mathrm{E}}$$

The diagonal integral kernel A(x, x) as $\log |A(x, x)|$



Boundary conditions:

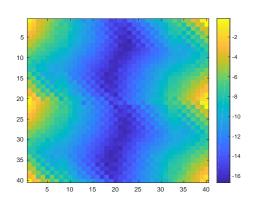
- Vertical edges: Dirichlet
- Horizontal edges: Periodic

Computing the edge index

Edge index based $\mathcal{N}_{E,\alpha}$ based on the pair (H, H_{α}) (with $\alpha = \pi$)

$$\mathcal{N}_{E,\alpha} = \operatorname{tr} \textbf{\textit{A}} \qquad \textbf{\textit{A}} = \widehat{\textbf{\textit{U}}}_E^* \Lambda_2 \widehat{\textbf{\textit{U}}}_E - \widehat{\textbf{\textit{U}}}_{\alpha,E}^* \Lambda_2 \widehat{\textbf{\textit{U}}}_{\alpha,E}$$

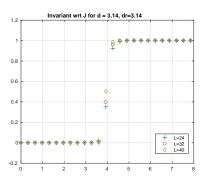
The diagonal integral kernel A(x,x) as $\log |A(x,x)|$

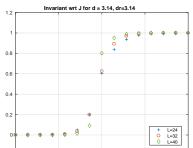


Boundary conditions:

- Vertical edges: Dirichlet
- Horizontal edges: Periodic

The transition





Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The anomalous phase

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z = z\psi_z$, (z: eigenvalues $\in S^1$)

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z=z\psi_z$, (z: eigenvalues $\in S^1$)

Remark. In the Hamiltonian case (e.g. IQHE)

$$\frac{}{\mu}$$
 $\frac{}{\mu'}$ $\stackrel{\circ}{\overline{E}}$

the index would vanish in all gaps: $\mathcal{N}_{\mu}=\mathcal{N}_{\mu'}=0$

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z=z\psi_z$, (z: eigenvalues $\in S^1$)

Remark. In the Hamiltonian case (e.g. IQHE)

$$\mu$$
 μ' E

the index would vanish in all gaps: $\mathcal{N}_{\mu}=\mathcal{N}_{\mu'}=0$

Here:
$$\mathcal{N}_{\omega}=\mathcal{N}_{\omega'}\equiv\mathcal{N}\neq 0$$
 (possibly)

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z=z\psi_z$, (z: eigenvalues $\in S^1$)

Here: $\mathcal{N}_{\omega}=\mathcal{N}_{\omega'}\equiv\mathcal{N}
eq 0$ (possibly)

Theorem (Rudner; Tauber, Shapiro) Let $\widehat{U}_1 = \widehat{U}_2 \equiv \widehat{U}$. Then the index \mathcal{N} for the pair satisfies

$$\mathcal{N} = \mathcal{M}(U_1) - \mathcal{M}(U_2)$$

where

$$\mathcal{M}(U) = \int_0^T \sum_z (\psi_z, U(t)^* M(t) U(t) \psi_z) dt$$

with magnetization $M(t) = (i/2)(\Lambda_1 H(t)\Lambda_2 - \Lambda_2 H(t)\Lambda_1)$

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z = z\psi_z$, (z: eigenvalues $\in S^1$)

Here: $\mathcal{N}_{\omega} = \mathcal{N}_{\omega'} \equiv \mathcal{N} \neq 0$ (possibly)

Theorem (Rudner; Tauber, Shapiro) Let $\widehat{U}_1 = \widehat{U}_2 \equiv \widehat{U}$. Then the index \mathcal{N} for the pair satisfies

$$\mathcal{N} = \mathcal{M}(U_1) - \mathcal{M}(U_2)$$

where

$$\mathcal{M}(U) = \int_0^T \sum_z (\psi_z, U(t)^* M(t) U(t) \psi_z) dt$$

with magnetization $M(t) = (i/2)(\Lambda_1 H(t)\Lambda_2 - \Lambda_2 H(t)\Lambda_1)$

If *H* is time independent, then $\mathcal{M}(U) = 0$.

The spectrum of \widehat{U} be fully localized (Rudner et al.): $\widehat{U}\psi_z=z\psi_z$, (z: eigenvalues $\in S^1$)

Here: $\mathcal{N}_{\omega}=\mathcal{N}_{\omega'}\equiv\mathcal{N}\neq 0$ (possibly)

Theorem (Rudner; Tauber, Shapiro) Let $\widehat{U}_1 = \widehat{U}_2 \equiv \widehat{U}$. Then the index \mathcal{N} for the pair satisfies

$$\mathcal{N} = \mathcal{M}(U_1) - \mathcal{M}(U_2)$$

where

$$\mathcal{M}(U) = \int_0^T \sum_z (\psi_z, U(t)^* M(t) U(t) \psi_z) dt$$

with magnetization
$$M(t) = (i/2)(\Lambda_1 H(t)\Lambda_2 - \Lambda_2 H(t)\Lambda_1)$$

If H is time independent, then $\mathcal{M}(U) = 0$. So, for $(H_1(t), H_2(t)) = (H(t), H_{\alpha})$ we have $\mathcal{N} = \mathcal{M}(U)$

Summary Physics background and overview

How it all began: (Integer) Quantum Hall systems

Topological insulators

Bulk-edge correspondence

The periodic table of topological matter

Turning to mathematics: General setting

Pump=Bulk

Edge=Bulk

The periodic setting

Bloch bundles and Chern numbers

Edge index

Proof of duality

Graphene

Time-reversal invariant topological insulators

The Fu-Kane index

Rueda de casino

Chiral systems

An experiment

A chiral Hamiltonian and its indices

Time periodic systems

Definitions and results

Some numerics

The anomalous phase

Thank you for your attention!