
Quantum Transport and Universality
From Topological Materials to Quantum Hydrodynamics

Gian Michele Graf
ETH Zurich

PhD School: September 16-20, 2019
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Quantum Transport and Universality
From Topological Materials to Quantum Hydrodynamics

Gian Michele Graf
ETH Zurich

PhD School: September 16-20, 2019
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The phenomenon

B

B: magnetic field

x1

x2

�

~E ~

Electron gas of

~: current density
~E : electric field

• density n
• Fermi energy µ

Hall-Ohm law

~ = σ~E , σ =

(
σD σH
−σH σD

)
σH: Hall conductance
σD: dissipative conductance, ideally = 0



The experiment (von Klitzing, 1980)
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The experiment (von Klitzing, 1980)
Hall-Ohm law

~ = σ~E , σ =

(
σD σH
−σH σD

)
σH: Hall conductance
σD: dissipative conductance, ideally = 0

experimental curve

quantized plateaus

1

3

σH

σD

2

n

classical curve

[e2/h] = 1/2π

Experiment: h/e2 = 25′812.807′4555(59) Ohm



Spectral vs. Mobility Gap
The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
localized states (pure point spectrum: Anderson localization)

Spectral Gap

Mobility Gap

µ: Fermi energy (Pauli principle)

I (integrated) density of states n(µ) is constant for µ in a Spectral
Gap, and strictly increasing otherwise

I Hall conductance σH(µ) is constant for µ in a Mobility Gap

σH(n)

n

Plateaus arise because of a Mobility Gap only!
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The role of disorder
The spectrum of a single-particle Hamiltonian

extended states (continuous spectrum)
localized states (pure point spectrum: Anderson localization)

Spectral Gap

Mobility Gap

µ: Fermi energy (Pauli principle)

I For a periodic (crystalline) medium:
I Method of choice: Bloch theory and vector bundles (Thouless et

al.)
I Gap is spectral

I For a disordered medium:
I Method of choice: Non-commutative geometry (Bellissard; Avron

et al.)
I Fermi energy may lie in a mobility gap (better) or just in a spectral

gap



Interpretations of IQHE and definitions of σH

Bulk
(Thouless et al.)
[Bellissard et al.]

(Halperin)
[Schulz-Baldes et al.]

Pump
(Laughlin)
[Bellissard et al.]

Edge
IQHE



Interpretations of IQHE and definitions of σH

Bulk
(Thouless et al.)
[Bellissard et al.]

(Halperin)
[Schulz-Baldes et al.]

Pump
(Laughlin)
[Bellissard et al.]

Edge
IQHE

Pump:
2πσP ≡ number n of electrons pumped from L to R
upon increasing the magnetic flux Φ by 2π. (Note:
Φ Φ + 2π implies H  UHU∗.)

Quantization: n is an integer.
R

Φ

L



Interpretations of IQHE and definitions of σH

Bulk
(Thouless et al.)
[Bellissard et al.]

(Halperin)
[Schulz-Baldes et al.]

Pump
(Laughlin)
[Bellissard et al.]

Edge
IQHE

Bulk:
σB conductivity by Kubo formula: Current density ~ as linear response
to an applied (weak) electric field ~E in the bulk.

Quantization: 2πσB is a Chern number.



Interpretations of IQHE and definitions of σH

Bulk
(Thouless et al.)
[Bellissard et al.]

(Halperin)
[Schulz-Baldes et al.]

Pump
(Laughlin)
[Bellissard et al.]

Edge
IQHE

Edge:
σE conductance: Current carried by edge states per unit voltage,
σE = dI/dµ.

Quantization: 2πσE is the number of edge channels.



Equivalences of interpretations

σB = σE

σP = σE

Bulk

Pump Edge

σP = σB

[Avron et al.] [Elgart et al.]
[Bellissard et al.] [Schulz-Baldes et al.]

[Elbau et al.]

IQHE

[ ]: spectral gap
[ ]: mobility gap



Bulk vs. Edge

I (Quantum) Hall as a bulk effect

B B

~E

~� �

A voltage difference entails an electric field in the bulk

I (Quantum) Hall as an edge effect

B�

A voltage difference entails different Fermi energies of (chiral)
edge states at opposite edges
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Heuristic argument for σB = σE
Bulk: ~ = −σBε~E with ε =

( 0 −1
1 0

)
(rotation by π/2)

Edge: σE = dI/dµ, i.e. I = σE(µ− ϕ) with Fermi energy µ and electric
potential ϕ at the edge

~n

~E
~B

Ω

Note: ~∇χΩ = −~nδ∂Ω, ~E = −~∇ϕ

~B = −χΩσBε~E

= χΩσBε~∇ϕ

~E = σE(µ− ϕ)ε~nδ∂Ω

= −σE(µ− ϕ)ε~∇χΩ

div(ε~v) = − curl~v (= 0 for ~v = ~∇ϕ)

div~B = σB~∇χΩ · ε~∇ϕ
div~E = σE~∇ϕ · ε~∇χΩ

Thus div(~B + ~E ) = 0 implies σE = σB.
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Topological insulators: definition stated
I Insulator in the Bulk: Excitation gap

For independent electrons: spectral gap at Fermi energy µ

Eµ

I Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open (homotopy equivalence)

I Ordinary insulator: Can be deformed to the limit of well-separated
atoms (or void)

I Topological Hamiltonians may be inequivalent. Thus:
Classification into classes

I Analogy: torus 6= sphere (differ by genus)
I Integer QHE: 2πσH ∈ Z tells classes apart
I Refinement: The Hamiltonians enjoy a symmetry which is preserved

under deformations. (Classification trivially more restrictive, yet
potentially richer: Hamiltonians along deformation may not enjoy
symmetry even if endpoints do. Thus finer classes.)
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Bulk-edge correspondence

Recall: In the space of Hamiltonians, a topological insulator can not
be deformed in an ordinary one, while keeping the gap open and
respecting symmetries



Bulk-edge correspondence

Deformation as interpolation in physical space:
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topological insulator ordinary insulatorinterpolating material

I Gap must close somewhere in between. Hence: Interface states
at Fermi energy.

I Ordinary insulator void: Edge states
I Bulk-edge correspondence: Termination of bulk of a topological

insulator implies edge states. (But not conversely!)
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edge states
I Topological insulators are insulating in the bulk, but conducting

on the surface

I When breaking them, the newly created surfaces are conducting
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The periodic table of topological matter
Symmetry d

Class Θ Σ Π 1 2 3 4 5 6 7 8
A 0 0 0 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

Notation for symmetries:
I Θ (time-reversal): antiunitary, HΘ = ΘH, Θ2 = ±1
I Σ (charge-conjugation): antiunitary, HΣ = −ΣH, Σ2 = ±1
I Π = ΘΣ = ΣΘ: unitary



The periodic table of topological matter

Symmetry d
Class Θ Σ Π 1 2 3 4 5 6 7 8
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First version: Schnyder et al.; then Kitaev based on
Altland-Zirnbauer; based on Bloch theory



The periodic table of topological matter

Symmetry d
Class Θ Σ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

By now: Non-commutative (bulk) index formulae have been found in
all cases (Prodan, Schulz-Baldes)



Special cases to be considered

Symmetry d
Class Θ Σ Π 1 2 3 4 5 6 7 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2
D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII -1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII -1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII -1 -1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 -1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 -1 1 0 0 Z 0 Z2 Z2 Z 0

. . . and one more
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Various approaches to the QHE

I Landau Hamiltonians (not discussed)
I Periodic Hamiltonians (Thouless et al.)
I The role of disorder and non-commutative geometry
I Effective field theories (important, but not discussed; Fröhlich et

al.)



Broad mathematical setting

Definitions of σH and their equivalences should

• be based on a microscopic model (Schrödinger operator), as
opposed to an effective theory (conformal or topological field theory).

Setting:
Plane: lattice Γ 3 x = (x1, x2), e.g. Γ = Z2

Single-particle Hamiltonian HB: operator on `2(Γ) with HB(x ′, x) of
short range in |x − x ′| (tight binding model).

• apply to infinite systems (thermodynamic limit)

• preferably, be compatible with disorder: Fermi energy µ lies in a
Mobility Gap (as opposed to a Spectral Gap).
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Mobility gap, technically speaking

Hamiltonian HB on `2(Zd )
Pµ = E(−∞,µ)(HB) Fermi projection,

Assumption. Fermi projection has strong off-diagonal decay:

sup
x ′

e−ε|x
′|∑

x

eν|x−x ′||Pµ(x , x ′)| <∞

(some ν > 0, all ε > 0)

I Trivially true for HB a multiplication operator in position space
I Trivially false for HB a function of momentum (Pµ(x ,0) ∼ |x |−d )
I Proven in (virtually) all cases where localization is known.
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Mobility gap and dynamical localization (DL)

DL of a random Schrödinger operator Hω, (ω ∈ Ω) in an interval ∆
means (or could equivalently mean) that for some ν > 0 (Notation:
K (x , x ′) = 〈x |K |x ′〉)

E
(

sup
g∈B1(∆)

|〈x |g(Hω)|x ′〉|
)
≤ Ce−2ν|x−x ′|

where

B1(∆) = {g : R→ C | |g(λ)| ≤ 1,g constant on λ ≷ ∆}
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Aside: Rate of change in QM

State space H state ψ, observable X = X ∗. Expectation value is

(ψ,Xψ)

Rate of change of X?
i[H,X ]

Because evolution is ψ 7→ e−iHtψ, so

d
dt

(e−iHtψ,Xe−iHtψ)
∣∣
t=0 = (ψ, i[H,X ]ψ)
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Aside: Poor man’s second quantization for fermions
Single particle Hilbert space H ∈ ψ

Many particle state S has single-particle marginal (”density matrix”) ρ:
operator on H

ρ = ρ∗ , 0 ≤ ρ ≤ 1

Meaning: ρ tells expected occupation of any single-particle state
ψ ∈ H, ((ψ,ψ) = 1) in the state S as

(ψ, ρψ) = tr(Pρ) (∈ [0,1])

with P = ψ(ψ, ·) the projection onto ψ.

X = X ∗ single particle observable with spectral decomposition
X =

∑
i xiPi .

Expectation value in S: ∑
i

xi tr(Piρ) = tr(Xρ)
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Aside: Gauge transformations
(Units e = ~ = c = 1)

Electromagnetic (e.m.) fields ~E = ~E(~x , t), ~B = ~B(~x , t) expressed in
terms of e.m. potentials ϕ = ϕ(~x , t), ~A = ~A(~x , t)

~E = −~∇ϕ− ∂~A/∂t , ~B = curl ~A

Gauge transformation generated by χ = χ(~x , t):

ϕ 7→ ϕ′ = ϕ− ∂χ/∂t , ~A 7→ ~A
′

= ~A + ~∇χ

leave ~E , ~B invariant.

For charged particle in e.m. field

H =
1

2m
(~p − ~A)2 + ϕ

Time-independent gauge transformations are realized as unitaries
U : L2(R3)→ L2(R3), ψ 7→ eiχψ

H 7→ UHU∗ = eiχHe−iχ = H ′

(by eiχ(~p − ~A)e−iχ = ~p − ~A′)
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IQHE as a pump: Flux insertion
d~n

d~s

Φ

C
~E

Flux increase from 0 to Φ
Charge Q traversing C inwards

Q = σHΦ

Flux Φ generated by a gauge potential ~A:∮
C
~A · d~s = Φ, e.g. ~A = ~∇

( Φ

2π
arg ~x

)
≡ ~∇χ

If χ(~x) were single-valued:

gauge ~A = 0

��

equiv. to ~A = ~∇χ

��
Hamiltonian HB UHBU∗

with U = eiχ, unitary. For Φ = 2π, U is single-valued, though
χ(~x) = arg ~x is not.
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Charge Q according to quantum mechanics
Fermi energy µ: all single-particle eigenstates of HB with eigenvalues
(energies) ≤ µ are occupied

Fermi projection (FP) of HB (Φ = 0): Pµ = E(−∞,µ)(HB)

FP of UHBU∗ (Φ = 2π): UPµU∗

Evolution of FP as flux Φ(t) increases from 0 to 2π: ŨPµŨ∗ with
propagator Ũ

Tentatively, the charge Q is

2πσP = “ dim ŨPµŨ∗ − dim UPµU∗ ” =∞−∞

(dim P = dim Ran P). The (non existent) expression counts difference
in number of electrons: After pumping to Φ = 2π, resp. in equilibrium
at Φ = 2π.

Rightly interpreted, it is an integer. Hence

2πσP = “ dim Pµ − dim UPµU∗ ”

since Ũ is connected to 1 (unlike U)
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The index of a pair of projections
Orthogonal projections P, Q on a Hilbert space H.

Example (Hilbert’s hotel): H = `2(Z), projections P, Q defined by
filled dots n ∈ Z.

P

Q

Generalizations of dim P − dim Q:

tr(P −Q)

since tr P = dim P. More generally:
Definition. The Index of a pair of projections is

Ind(P,Q) = dim{ψ ∈ H | Pψ = ψ,Qψ = 0}+
− dim{ψ ∈ H | Qψ = ψ,Pψ = 0}

(if dimensions finite)
Remarks. (i) In the example, both generalizations = 1. (ii) In the
IQHE only the index is well-defined
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Properties of the Index
I Additivity: Ind(P,Q) = Ind(P,R) + Ind(R,Q)

I Stability: ‖P −Q‖ < 1 ⇒ Ind(P,Q) = 0
I

Ind(P,Q) = tr(P −Q)2n+1

if P −Q ∈ J2n+1 (trace ideals).

Remarks. (i) Ind(P,Q) = dim P − dim Q (finite-dimensional case)
(ii) tr(P −Q)3 = tr(P −Q) if P −Q ∈ J1; because

(P −Q)− (P −Q)3 = [PQ, [Q,P −Q]]

AB,BA ∈ J1 ⇒ tr[A,B] = 0

(iv) If the unitary U has an eigenbasis and P − UPU∗ ∈ J1, then
tr(P − UPU∗) = 0. In fact, by Uψn = unψn

(ψn, (P − UPU∗)ψn) = (1− |un|2)(ψn,Pψn) = 0
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IQHE as a pump: Definition of σP

Definition.

2πσP =Ind(Pµ,UPµU∗) (Bellissard)

=tr(Pµ − UPµU∗)3 (Avron et al.)

where U = ei arg~x = z/|z|.

Remarks. (i) Is a (stable) integer, whenever defined.
(ii) Pµ − UPµU∗ /∈ J1.



IQHE as a Bulk effect

Example: Cyclotron orbit drifting under a electric field ~E

B B

~E

~� �

General: Hamiltonian HB in the plane. Kubo formula (linear response
to ~E)

σB = i tr Pµ
[
[Pµ,Λ1], [Pµ,Λ2]

]
where

Pµ = E(−∞,µ)(HB) Fermi projection,
Λi = Λ(xi), (i = 1,2) switches

1
Λ(x)

x



IQHE as a Bulk effect (remarks)
Kubo formula (Bellissard et al., Avron et al.)

σB = i tr Pµ
[
[Pµ,Λ1], [Pµ,Λ2]

]
extends the formula for the periodic case (Thouless et al., Avron)

σB = − i
(2π)2

∫
T

d2k tr(P(k)[∂1P(k), ∂2P(k)])

where T: Brillouin zone (torus); P(k) Fermi projection on the space of
states of quasi-momentum k = (k1, k2); ∂i = ∂/∂ki

Remarks.
2πσB = ch(E)

the Chern number of the vector bundle E over T and fiber range P(k)
(see later)

Alternative treatment of disorder (Thouless): Large, but finite system
(square); (k1, k2) (ϕ1, ϕ2) phase slips in boundary conditions
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IQHE as a Bulk effect (remarks)

σB = i trPµ
[
[Pµ,Λ1], [Pµ,Λ2]

]
where Λi = Λ(xi), (i = 1,2) switches. Supports of ~∇Λi :
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��
��
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��
��
��
��
��

��
��
��
��
��
��
��
��
��

���������������� x1

x2

Recall Kubo: j1 = −σBE2
Remarks. (i) Λ1, Λ2: where from? Current operator across x1 = 0:
i[HB,Λ1]; field ~E = −~∇Λ2
(ii) The trace is well-defined. Roughly: An operator has a well-defined
trace if it acts non-trivially on finitely many states only. Here the
intersection contains only finitely many sites.



Theorem: Quantization and equivalence

Definition. Ergodic operators Hω, (ω ∈ Ω: probability space): actions
of (magnetic) Z2-translations on Ω and on `2(Z2) compatible.

Theorem [Index=2π Kubo] (Bellissard, van Elst, Schulz-Baldes)
If µ lies in a Mobility Gap, then σD(µ) = 0 and 2πσP(µ) = 2πσB(µ) is
an integer and constant.

Proof by non-commutative geometry.



Theorem and proof reformulated
Theorem [Index=2π Kubo] (Avron, Seiler, Simon)
If µ lies in a Mobility Gap, then 2πσP = 2πσB, i.e.

tr(Pµ − UPµU∗)3 = 2πi tr Pµ[[Pµ,Λ1], [Pµ,Λ2]]

Remark. No ergodic setting.

Explicitely,

2i
∑

x,y,z∈Z2

Pµ(x , y)Pµ(y , z)Pµ(z, x)S(x , y , z) =

− 2πi
∑

x,y,z∈Z2

Pµ(x , y)Pµ(y , z)Pµ(z, x)[(Λ1(y)− Λ1(x))(Λ2(z)− Λ2(y))− (1↔ 2)]

where

S(x , y , z) = − i
2

(
1− U(x)

U(y)

)(
1− U(y)

U(z)

)(
1− U(z)

U(x)

)
= sin∠(x ,0, y) + sin∠(y ,0, z) + sin∠(z,0, x)

Remark. Mobility gap: Substantial contribution only when x , y , z all
near 0.
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Sketch of proof
• Flux and cross are centered at the origin p = 0. Take instead
p ∈ R2 arbitrary: neither side changes. For w = x , y , z replace

Λi(w) Λi(w − p), U(w) U(w − p)

and get

S(x , y , z) sin∠(x ,p, y) + sin∠(y ,p, z) + sin∠(z,p, x)

• Average both sides over p ∈ CL (cube of side L):

L−2
∫

p∈CL

d2p
∑
x∈Z2

∼ L−2
∫

p∈R2
d2p

∑
x∈Z2∩CL

• On r.h.s. use∫
dp1dp2(Λ(y1−p1)−Λ(x1−p1))(Λ(z2−p2)−Λ(y2−p2))−(1↔ 2)

= (y1 − x1)(z2 − y2)− (1↔ 2) = 2 Area(x , y , z)
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(by mobility gap) for L large
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∫
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d2p

∑
x∈Z2∩CL

• (p, y , x ∈ R) ∫
dp(Λ(y − p)− Λ(x − p)) = y − x

because = f (y − x), f (0) = 0 and f ′(y − x) =
∫

dp Λ′(y − p) = 1.



Sketch of proof
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Sketch of proof (continued)
The claim

2i
∑

x,y,z∈Z2

Pµ(x , y)Pµ(y , z)Pµ(z, x)S(x , y , z) =

− 2πi
∑

x,y,z∈Z2

Pµ(x , y)Pµ(y , z)Pµ(z, x)[(Λ1(y)− Λ1(x))(Λ2(z)− Λ2(y))− (1↔ 2)]

reduces by the above to∫
d2p(sin∠(x ,p, y) + sin∠(y ,p, z) + sin∠(z,p, x)) = 2π Area(x , y , z)

(Connes’ triangle formula)

x

y

z

p

Proof: Observation (Colin de Verdière)
• Drop sin: obvious.
• Let f be odd with f (t)− t = O(t3), (t → 0); e.g. f = sin. Then∫

d2p(f (∠(x ,p, y))− ∠(x ,p, y)) = 0

by (i) integrand 0(|p|−3), (p →∞) and (ii) reflection symmetry.
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Physics background and overview
How it all began: (Integer) Quantum Hall systems
Topological insulators
Bulk-edge correspondence
The periodic table of topological matter

Turning to mathematics: General setting
Pump=Bulk
Edge=Bulk

The periodic setting
Bloch bundles and Chern numbers
Edge index
Proof of duality
Graphene

Time-reversal invariant topological insulators
The Fu-Kane index
Rueda de casino

Chiral systems
An experiment
A chiral Hamiltonian and its indices

Time periodic systems
Definitions and results
Some numerics
The anomalous phase



IQHE as an edge effect

x1 = 0

x2

extended states
bound states

E

spec(HB)spec(HE )

µ− V

x2

µ ∈ MG
µ ∈ SG

Hamiltonian HE on the upper half-plane: restriction of HB through
boundary conditions at x2 = 0.

State ρ(HE ): 1-particle density matrix, e.g. ρ(HE ) = E(−∞,µ)(HE ), or
(actually) smooth

E

ρ(E)
1

supp ρ′ ⊂ Spectral Gap for HB (not for HE )

Current operator across x1 = 0: i[HE ,Λ1]

I = i tr(ρ(HE + V )− ρ(HE ))[HE ,Λ1]

As V → 0: I/V → σE

σE = i tr(ρ′(HE )[HE ,Λ1])
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Equality of conductances

Theorem (Schulz-Baldes, Kellendonk, Richter). Ergodic setting. If the
Fermi energy µ lies in a Spectral Gap of HB, then

σE = σB.

In particular, σE does not depend on ρ′, nor on boundary conditions.



What about the case of a Mobility Gap?
Is

σE = −i tr(ρ′(HE )[HE ,Λ1])

well-defined? (Here, switches Λi (i = 1,2) with flipped orientations)
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��
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��
��
��

x1

x2

extended states

x1

x2localized states
(or resonances)

trace: yes trace: no

Mobility GapSpectral Gap

∴ the definition of σE needs to be changed in case of a Mobility Gap!
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What about the case of a Mobility Gap?
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(or resonances)

trace: yes trace: no

Mobility GapSpectral Gap

∴ the definition of σE needs to be changed in case of a Mobility Gap!

Guiding principle: Localized states should not contribute to the edge
current



What about the case of a Mobility Gap?
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x1

x2

extended states

x1

x2localized states
(or resonances)

trace: yes trace: no

Mobility GapSpectral Gap

∴ the definition of σE needs to be changed in case of a Mobility Gap!

Analogy: Electrodynamics of continuous media

~ = ~F + ~M ≡ free + molecular currents ~M = curl ~M

Localized states should not contribute to the (free) edge current



Equality of conductances

For a so amended definition of σE:

Theorem (Elgart, G., Schenker). If supp ρ′ lies in a Mobility Gap, then

σE = σB

In particular σE does not depend on ρ′, nor on boundary conditions.



Definition of σE in case of a Mobility Gap
Replace HE to Ha (a > 0) as follows
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�
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�

edge: x2 = −a
(eventually: −a→ −∞)

x1

x2

0

I Current across the portion
��
��
��
��of x1 = 0:

−i tr(ρ′(Ha)[Ha,Λ1]Λ2) (exists!)

I Current across the portion
��
��
��
��:

In the limit a→∞ pretend that

ρ′(Ha) ρ′(HB) =
∑
λ

ρ′(λ)ψλ(ψλ, ·)

(sum over eigenvalues λ of HB: HBψλ = λψλ)

(ψλ, [HB,Λ1](1− Λ2)ψλ) = −(ψλ, [HB,Λ1]Λ2ψλ)

I Together:

σE = lim
a→∞

−i tr(ρ′(Ha)[Ha,Λ1]Λ2)+

+ i
∑
λ

ρ′(λ)(ψλ, [HB,Λ1]Λ2ψλ)
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Magnetization
Question? What is the term

i(ψλ, [HB,Λ1]Λ2ψλ) ?

Or better after hermitization of i[HB,Λ1]Λ2, i.e.
i
2

([HB,Λ1]Λ2 − Λ2[Λ1,HB]) =
i
2

[HB,Λ1Λ2]− i
2

(Λ1HBΛ2 − Λ2HBΛ1)

where we get

− i
2

(ψλ, (Λ1HBΛ2 − Λ2HBΛ1)ψλ) ?

Answer: Replacement xi  Λi , (i = 1,2) signifies extensive 
intensive. Thus

m =
1
2
~x ∧ ~̇x  M =

1
2

(Λ1Λ̇2 − Λ2Λ̇1)

signifies “magnetic moment magnetization”. So, by Λ̇i = i[HB,Λi ],

M =
i
2

(Λ1HBΛ2 − Λ2HBΛ1)

∴

− i
2

(ψλ, (Λ1HBΛ2 − Λ2HBΛ1)ψλ) = −(ψλ,Mψλ)
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Magnetization (alternate)

Magnetization current: ~M = curl M = −ε~∇M
I Classically: Magnetization is current across Dirac string γ

(d~n = εd~s)

d~s

d~n

0

γ

M(0) =

∫
γ

~∇M · d~s =

∫
γ
~M · d~n

I Quantum:
M(0) = −i[HB,Λ1]Λ2

Then hermitize
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The periodic setting: Bloch decomposition (d = 2)
I Position space X = R2 or X = Z2

I Abelian group L ∼= Z2 3 n = (n1,n2) of lattice translations acting
on X : x 7→ Tnx . Unit cell C = X/L

I Dual group L∗ 3 k = (k1, k2): group of characters viewed as
2-torus T (Brillouin zone)

n 7→ χ(n) = e−ik ·n, k ∈ T = (R/2πZ)2

I Hilbert space H = L2(X ) carrying representation Un of L
I Decomposition of Hilbert space and of states

H ∼=
∫ ⊕
T

hd2k ≡ L2(T, h), h = L2(C)

ψ(x) =

∫
T
ψk (x)d2k , ψ ←→ (ψk )k∈T

by reduction of the representation

(Unψ)(x) =

∫
T
ψk (x)e−ik ·nd2k

Note: A state T 3 k 7→ ψk ∈ h is a section of the (trivial) vector bundle
T× h
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The periodic setting: Bloch decomposition

I Decomposition of Hamiltonian (translation invariant)

H ∼=
∫ ⊕
T

H(k) d2k , Hψ ←→ (H(k)ψk )k∈T

I H(k) acting on h = L2(C) has discrete spectrum (C compact) with
eigenvalues εj(k) (j = 0,1, . . .)

I H has continuous spectrum:

σ(H) =
⋃
k∈T

σ(H(k))
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Bloch bundles

P: spectral projection associated to a part of the spectrum σ(H)
separated from the rest,

e.g. the Fermi projection

Eµ

or the projection associated to a single isolated band
Decomposition

Pψ ←→ (P(k)ψk )k∈T

Definition. The Bloch bundle is the complex vector bundle with base
space T and fiber rangeP(k) ⊂ h.

Note: It is a subbundle of T× h, possibly not trivial.
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Bundles (E ,T) on the 2-torus

ϕ2

T
ϕ

(π,−π)

ϕ1

(−π,−π)

(−π, π) (π, π)

I T 3 ϕ = (ϕ1, ϕ2)

I Fibers Eϕ: abstract linear spaces
I Frame bundle F (E) has fibers F (E)ϕ 3 v = (v1, . . . vN)

consisting of bases v of Eϕ.
I Does F (E) admit a global section? Yes, iff E is trivial
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Classification by a Chern number
cu

t

ϕ1

ϕ2

Lemma. On the cut torus the frame
bundle admits a section
ϕ 7→ v(ϕ) ∈ F (E)ϕ

I Boundary values v+(ϕ2) and v−(ϕ2) at the point
(π, ϕ2) ≡ (−π, ϕ2) of the cut

I Transition matrix T (ϕ2) ∈ GL(N)

v+(ϕ2) = v−(ϕ2)T (ϕ2) , (ϕ2 ∈ S1)

I Definition. The Chern number ch(E) is the winding number of
det T (ϕ2) along ϕ2 ∈ S1
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The winding number

Definition. The Chern number ch(E) is the winding number of
det T (ϕ2) along ϕ2 ∈ S1

I t(ϕ2) 6= 0: eigenvalues of T (ϕ2)

I Phases t(ϕ2)/|t(ϕ2)| ∈ S1 as a function of 0 ≤ ϕ2 ≤ 2π:

winding number=
signed number of crossings of fiducial line

ch(E) = −2



The winding number

Definition. The Chern number ch(E) is the winding number of
det T (ϕ2) along ϕ2 ∈ S1

I t(ϕ2) 6= 0: eigenvalues of T (ϕ2)

I Phases t(ϕ2)/|t(ϕ2)| ∈ S1 as a function of 0 ≤ ϕ2 ≤ 2π:

winding number=
signed number of crossings of fiducial line

ch(E) = −2



The winding number

Definition. The Chern number ch(E) is the winding number of
det T (ϕ2) along ϕ2 ∈ S1

I t(ϕ2) 6= 0: eigenvalues of T (ϕ2)

I Phases t(ϕ2)/|t(ϕ2)| ∈ S1 as a function of 0 ≤ ϕ2 ≤ 2π:

winding number=
signed number of crossings of fiducial line

ch(E) = −2



The winding number

Definition. The Chern number ch(E) is the winding number of
det T (ϕ2) along ϕ2 ∈ S1

I t(ϕ2) 6= 0: eigenvalues of T (ϕ2)

I Phases t(ϕ2)/|t(ϕ2)| ∈ S1 as a function of 0 ≤ ϕ2 ≤ 2π:

winding number=
signed number of crossings of fiducial line

ch(E) = −2



The winding number

Definition. The Chern number ch(E) is the winding number of
det T (ϕ2) along ϕ2 ∈ S1

I t(ϕ2) 6= 0: eigenvalues of T (ϕ2)

I Phases t(ϕ2)/|t(ϕ2)| ∈ S1 as a function of 0 ≤ ϕ2 ≤ 2π:

winding number=
signed number of crossings of fiducial line

ch(E) = −2



Hall conductance (bulk)

Definition: Bulk Index is the Chern number ch(E) of the Bloch bundle
E defined by the Fermi projection

Physical meaning (Thouless et al.): The Hall conductance in the bulk
interpretation is

σH = (2π)−1ch(E)

Remark.

ch(E) =
1

2πi

∫
T

d2k tr(P(k)[∂1P(k), ∂2P(k)])
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From plane (bulk) to half-plane (edge)

Hamiltonian on the lattice Z× Z (plane)

Z

Z

−2 −1 0 1n = −3 2 3 4



From plane (bulk) to half-plane (edge)

Hamiltonian on the lattice N× Z (half-plane) with N = {1,2, . . .}

N

Z

0 1n = 2 3 4



Half-plane geometry

I Hamiltonian H] obtained by restriction to right half-space x1 > 0

I Remaining symmetry L2: translation in 2-direction;
corresponding unit cell C] = X/L2 not compact (half-line)

I Bloch decomposition over the circle S1

H] ∼=
∫ ⊕

S1
H](k) dk

I H](k) acting on L2(C]) has continuous and (possibly) discrete
spectrum
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Hall conductance (edge)
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Definition: Edge Index

N ] = signed number of eigenvalue crossings of Fermi energy

Physical meaning: The Hall conductance in the edge interpretation is

σH = (2π)−1N ]



Hall conductance (edge)
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Definition: Edge Index

N ] = signed number of eigenvalue crossings of Fermi energy

Physical meaning: The Hall conductance in the edge interpretation is

σH = (2π)−1N ]



Bulk edge correspondence in the periodic setting

Definition: Edge Index

N ] = signed number of eigenvalue crossings

Bulk: ch(Ej) is the Chern number of the Bloch bundle Ej of the j-th
band. Bulk index is sum over filled bands.

Bulk-edge correspondence:

N ] =
∑

j

ch(Ej)

(cf. Hatsugai)
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Goal

Take the Quantum Hall Effect.

Many stories of bulk-edge duality have
been told . . .

. . . here is one more, to be illustrated by the Great Wall of China
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A result to be recalled: Levinson’s theorem
Two-body Hamiltonian

H = p2 + V

with
I V (x) spherically symmetric, s-wave channel
I a.k.a. x ∈ [0,∞)

Spectrum of H (energies E of bound and scattering states)

0 E

Levinson’s theorem. The scattering phase S(E) = e2iδ(E) at threshold
E = 0 equals the number N of bound states,

arg S
∣∣
E=0+

= 2πN

(normalization: δ(E)→ 0, (E → +∞))

Idea: Scattering states and bound states are related by analytic
continuation . . . just as bulk and edge states are (Hatsugai, 1993).



A result to be recalled: Levinson’s theorem
Two-body Hamiltonian

H = p2 + V

with
I V (x) spherically symmetric, s-wave channel
I a.k.a. x ∈ [0,∞)

Spectrum of H (energies E of bound and scattering states)

0 E

Levinson’s theorem. The scattering phase S(E) = e2iδ(E) at threshold
E = 0 equals the number N of bound states,

arg S
∣∣
E=0+

= 2πN

(normalization: δ(E)→ 0, (E → +∞))

Idea: Scattering states and bound states are related by analytic
continuation . . . just as bulk and edge states are (Hatsugai, 1993).



A result to be recalled: Levinson’s theorem
Two-body Hamiltonian

H = p2 + V

with
I V (x) spherically symmetric, s-wave channel
I a.k.a. x ∈ [0,∞)

Spectrum of H (energies E of bound and scattering states)

0 E

Levinson’s theorem. The scattering phase S(E) = e2iδ(E) at threshold
E = 0 equals the number N of bound states,

arg S
∣∣
E=0+

= 2πN

(normalization: δ(E)→ 0, (E → +∞))

Idea: Scattering states and bound states are related by analytic
continuation . . . just as bulk and edge states are (Hatsugai, 1993).



A result to be recalled: Levinson’s theorem
Two-body Hamiltonian

H = p2 + V

with
I V (x) spherically symmetric, s-wave channel
I a.k.a. x ∈ [0,∞)

Spectrum of H (energies E of bound and scattering states)

0 E

Levinson’s theorem. The scattering phase S(E) = e2iδ(E) at threshold
E = 0 equals the number N of bound states,

arg S
∣∣
E=0+

= 2πN

(normalization: δ(E)→ 0, (E → +∞))

Idea: Scattering states and bound states are related by analytic
continuation . . . just as bulk and edge states are (Hatsugai, 1993).



A result to be recalled: Levinson’s theorem
Two-body Hamiltonian

H = p2 + V

with
I V (x) spherically symmetric, s-wave channel
I a.k.a. x ∈ [0,∞)

Spectrum of H (energies E of bound and scattering states)

0 E

Levinson’s theorem. The scattering phase S(E) = e2iδ(E) at threshold
E = 0 equals the number N of bound states,

arg S
∣∣
E=0+

= 2πN

(normalization: δ(E)→ 0, (E → +∞))

Idea: Scattering states and bound states are related by analytic
continuation

. . . just as bulk and edge states are (Hatsugai, 1993).



A result to be recalled: Levinson’s theorem
Two-body Hamiltonian

H = p2 + V

with
I V (x) spherically symmetric, s-wave channel
I a.k.a. x ∈ [0,∞)

Spectrum of H (energies E of bound and scattering states)

0 E

Levinson’s theorem. The scattering phase S(E) = e2iδ(E) at threshold
E = 0 equals the number N of bound states,

arg S
∣∣
E=0+

= 2πN

(normalization: δ(E)→ 0, (E → +∞))

Idea: Scattering states and bound states are related by analytic
continuation . . . just as bulk and edge states are (Hatsugai, 1993).



Levinson’s theorem (relative version)
Suppose H(k) depends on some parameter k ∈ R
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k∗

E

kk1 k2

The scattering phase jumps when a bound state reaches threshold

lim
E→0

arg S(k ,E)
∣∣∣k2

k1
= ∓2π

I Incipient bound state (at k∗) ≡ semi-bound state
I Normalization of phase forgone
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Proof of Levinson’s theorem (sketch)
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ε(k) = εj(κ+(k), k)
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Proof of Levinson’s theorem (sketch)

S(κ+ + δ)
in S plane
as a function of k

k∗
k2

S = −1(δ > 0 small) S = 1
k1

S(κ) ≡ S(ε(κ))
in κ plane
• pole
• zero κ+

kk1 k∗ k2

κ+ κ+

bound state

anti-bound state

|out〉 = S|in〉

Bound state: |out〉 in absence of |in〉 ≡ |κ〉 with Imκ < 0
Thus: Pole of S(κ).

S(κ) ≈ κ− κ0

κ− κ0
, (κ→ κ+)
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Proof of Levinson’s theorem (sketch)

S(κ+ + δ)
in S plane
as a function of k

k∗
k2

S = −1(δ > 0 small) S = 1
k1

S(κ) ≡ S(ε(κ))
in κ plane
• pole
• zero κ+

kk1 k∗ k2

κ+ κ+

bound state

anti-bound state

lim
δ→0

arg S+(κ+(k) + δ︸ ︷︷ ︸
∼ ε(k)−δ′

)
∣∣∣k2

k1
= 2π



The Great Wall of China and its Towers

bulk (top view) edge (side view)
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The Bloch landscape

κ

k

Brillouin zone 3 (κ, k)
Energy band εj(κ, k)



The Bloch landscape
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Minimum κ−(k) and maximum κ+(k) of
energy band εj(κ, k) in κ at fixed k
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The Bloch landscape

κ− κ

k

κ+

Minima κ−(k) and maxima κ+(k) of
energy band εj(κ, k) in κ at fixed k



The Bloch landscape

κ
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κ+

Maxima κ+(k)



The Bloch landscape
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Maxima κ+(k) with semi-bound states
(to be explained)
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Duality via scattering

��������������−π κ
π

εj (κ)

At fixed k : Energy band εj(κ, k) and the
line bundle Pj of Bloch states



Duality via scattering

��������������−π κ
π

Line indicates choice of a section |κ〉 of
Bloch states (from the given band). No
global section in κ ∈ R/2πZ is possible,
as a rule.
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States |κ〉 above the solid line are left
movers (ε′j(κ) < 0)
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Scattering matrix

|out〉 = S+|κ〉

as relative phase between two sections
of the same fiber (near κ+)
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Scattering matrix

|out〉 = S+|κ〉

as relative phase between two sections
of the same fiber (near κ+)

Likewise S− near κ−.



Duality via scattering
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Chern number computed by sewing

ch(Pj) = N (S+)−N (S−)

with N (S±) the winding of S± = S±(k)
as k = −π . . . π.



Duality via scattering
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As κ→ κ+, whence

|in〉 = |κ〉 → |κ+〉 |out〉 = S+|κ〉 → |κ+〉 (up to phase)

their limiting span is that of

|κ+〉,
d |κ〉
dκ

∣∣∣
κ+

(bounded, resp. unbounded in space). The span contains the limiting
scattering state |ψ〉 ∝ |in〉+ |out〉.

If (exceptionally) |ψ〉 ∝ |κ+〉 then |ψ〉 is a semi-bound state.



Duality via scattering
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As a function of k , semi-bound states occur exceptionally.



Aside: Generalized Bloch solutions

d |κ〉
dκ

∣∣∣
κ+

is an eigensolution unbounded in space Z 3 n.

In fact, let
ψ(κ,n) = 〈n|κ〉 be a Bloch solution (p period):

(H − ε(κ))ψ(κ,n) = 0, ψ(κ,n + mp) = eiκmψ(κ,n)

Then

(H − ε(κ+))
dψ
dκ

(κ+,n) = 0, (
dε(κ)

dκ
|κ+ = 0)

d
dκ

ψ(κ,n + mp) = eiκm d
dκ

ψ(κ,n) + imeiκmψ(κ,n)

(unbounded in m)
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Levinson’s theorem (relative version)

Spectrum of edge Hamiltonian
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∣∣∣k2

k1
= ±2π
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Proof of duality
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µ

k π−π

j0 + 1

j0

Eµ

N ] = N (S(j0)
+ )

(
= N (S(j0+1)

− )
)

=

j0∑
j=0

N (S(j)
+ )−N (S(j)

− )

=

j0∑
j=0

ch(Pj)

(N (S(0)
− ) = 0)
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An application: Quantum Hall in graphene



An application: Quantum Hall in graphene
Hamiltonian: Nearest neighbor hopping with flux Φ per
plaquette.

Spectrum in black

E

Φ (mod 2π)

What is the Hall conductance (Chern number) in any white point?
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An application: Quantum Hall in graphene

What is the Hall conductance (Chern number) s in any white point?

Bulk approach (Thouless/Avron et al.): If Φ = p/q, (p, q coprime)
then

r = sp + tq

where:
I r number of bands below Fermi energy
I s, t integers

s is so determined only modulo q.

For square lattice, s ∈ (−q/2,q/2). Not for other lattices.

→ Edge approach, method by Schulz-Baldes et al.
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The colors of graphene
What is the Hall conductance (Chern number) in any white point?
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Naive Bulk vs. Edge computation

Left: “Natural” window condition s ∈ (−q/2,q/2)
Right: Conductance s as determined by the edge.

cf. Avron et al.
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Topological insulators: time-reversal invariant case

I Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy

I

I Topology: In the space of Hamiltonians, a topological insulator
can not be deformed in an ordinary one, while keeping the gap
open



Topological insulators: time-reversal invariant case

I Insulator in the Bulk: Excitation gap
For independent electrons: spectral gap at Fermi energy

I Time-reversal invariant fermionic system
I Topology: In the space of Hamiltonians, a topological insulator

can not be deformed in an ordinary one, while keeping the gap
open and time-reversal invariance.



Time-reversal invariance explained
There is a map Θ on H (time-reversal) such that
I Θ is anti-unitary and Θ2 = −1;
I [Θ,H] = 0

In the periodic case, with Θ commuting with lattice translations,

H(−k) = ΘH(k)Θ−1, (k ∈ T)

Map Θ : Ek → E−k determines a time-reversal invariant bundle
(E ,T,Θ).

Remark: By ΘE = E and ch(ΘE) = −ch(E):

ch(E) = 0

Such insulators are trivial from the Quantum Hall point of view. Yet
interesting in their own class.
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Classification of time-reversal invariant bundles

The bundle (E ,T) is equipped with anti-linear map

Θ : Ek → E−k

with Θ2 = −1.

Theorem (Atiyah; Kane, Mele) In general, vector bundles (E ,T,Θ)
can be classified by an index I(E) = ±1 (besides of N = rk E)

For E the Bloch bundle
I I = +1: ordinary insulator; I = −1: topological insulator
I Kane, Mele; Fu, Kane: Index realized as Pfaffian
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Time reversal invariant bundles (E ,T,Θ)

ϕ1

ϕ2

(0, π)

(0, 0)

(π,−π)

T
ϕ

−ϕ
(π, 0)

I T 3 ϕ = (ϕ1, ϕ2)

I Time-reversal invariant points, ϕ = −ϕ at
ϕ = (0,0), (π,0), (0, π), (π, π)

I Θ : Eϕ → E−ϕ, Θ antilinear with Θ2 = −1
I Frame bundle F (E) has fibers F (E)ϕ 3 v = (v1, . . . vN)

consisting of bases v of Eϕ.
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The Fu-Kane index

I 〈·, ·〉 inner product on Eϕ

I By ch(E) = 0: There is a global section u(ϕ) = (u1(ϕ), . . .uN(ϕ))
(orthonormal) of the frame bundle

Wij(ϕ) := 〈ui(ϕ),Θuj(−ϕ)〉

I Note W (ϕ)∗W (ϕ) = 1 and W (ϕ)T = −W (−ϕ). In particular
W (ϕ) antisymmetric at TRIPs.

I Set
I(E) :=

∏
a∈TRIP

pf W (ϕa)√
det W (ϕa)

= ±1

(Pfaffian defined for antisymmetric matrices, det W = (pf W )2)
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The Fu-Kane index restated

I Family of matrices W (ϕ2) with single parameter 0 ≤ ϕ2 ≤ π,
det W (ϕ2) 6= 0, antisymmetric at endpoints ϕ2 = 0, π

I Branch of
√

det W (ϕ2) connects pf(W (0)) to ± pf(W (π))

I Set Î(W ) = ±.
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T
ϕ
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I Set
W0(ϕ2) = W (0, ϕ2), Wπ(ϕ2) = W (π, ϕ2)

Then
Î(E) = Î(W0)Î(Wπ)
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The index of a rueda
Consider a fixed even number of lines moving forward along a (finite)
cylinder.

Condition: Lines pair up at the ends

D

D = (D(t))a≤t≤b with D(t) a collection of points on the circle.

Fact: There are line configurations that can not be deformed into one
another.

What is the index that tells the difference?

I(D) = parity of number of crossings of fiducial line
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Towards another index
Consider the cut torus:

cu
t

ϕ1

ϕ2

−ϕ

ϕ

Lemma On the cut torus the frame
bundle admits a section
ϕ 7→ v(ϕ) ∈ F (E)ϕ which is
time-reversal invariant:

v(−ϕ) = (Θv(ϕ))ε

with ε the block diagonal matrix with
blocks

( 0 −1
1 0

)
Idea: At a time reversal invariant point, that means (N = 2)

v2 = Θv1 v1 = −Θv2



Towards another index
Consider the cut torus:

cu
t

ϕ1

ϕ2

−ϕ

ϕ

Lemma On the cut torus the frame
bundle admits a section
ϕ 7→ v(ϕ) ∈ F (E)ϕ which is
time-reversal invariant:

v(−ϕ) = (Θv(ϕ))ε

with ε the block diagonal matrix with
blocks

( 0 −1
1 0

)
Idea: At a time reversal invariant point, that means (N = 2)

v2 = Θv1 v1 = −Θv2



Towards another index (cont.)
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Towards another index (cont.)

We have
I torus ϕ = (ϕ1, ϕ2) ∈ T = (R/2πZ)2 with cut (figure)
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I a (compatible) section of the frame bundle of E
I the transition matrices T (ϕ2) ∈ GL(N) across the cut

Θ0T (ϕ2) = T−1(−ϕ2)Θ0 , (ϕ2 ∈ S1)

with Θ0 : CN → CN antilinear, Θ2
0 = −1
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Time-reversal invariant bundles on the torus

ϕ2 = 0ϕ2 = π

ϕ2

−ϕ2

I Θ0T (ϕ2) = T−1(−ϕ2)Θ0

I Only half the cut (0 ≤ ϕ2 ≤ π) matters for T (ϕ2)

I At time-reversal invariant points, ϕ2 = 0, π,

Θ0T = T−1Θ0

Eigenvalues of T come in pairs λ, λ̄−1:

Θ0(T − λ) = T−1(1− λ̄T )Θ0

Phases λ/|λ| pair up (degeneracy)
I For 0 ≤ ϕ2 ≤ π, phases λ/|λ| form a rueda, D



Time-reversal invariant bundles on the torus

ϕ2 = 0ϕ2 = π

ϕ2

−ϕ2

I Θ0T (ϕ2) = T−1(−ϕ2)Θ0

I Only half the cut (0 ≤ ϕ2 ≤ π) matters for T (ϕ2)

I At time-reversal invariant points, ϕ2 = 0, π,

Θ0T = T−1Θ0

Eigenvalues of T come in pairs λ, λ̄−1:

Θ0(T − λ) = T−1(1− λ̄T )Θ0

Phases λ/|λ| pair up (degeneracy)
I For 0 ≤ ϕ2 ≤ π, phases λ/|λ| form a rueda, D



Time-reversal invariant bundles on the torus

ϕ2 = 0ϕ2 = π

ϕ2

−ϕ2

I Θ0T (ϕ2) = T−1(−ϕ2)Θ0

I Only half the cut (0 ≤ ϕ2 ≤ π) matters for T (ϕ2)

I At time-reversal invariant points, ϕ2 = 0, π,

Θ0T = T−1Θ0

Eigenvalues of T come in pairs λ, λ̄−1:

Θ0(T − λ) = T−1(1− λ̄T )Θ0

Phases λ/|λ| pair up (degeneracy)

I For 0 ≤ ϕ2 ≤ π, phases λ/|λ| form a rueda, D



Time-reversal invariant bundles on the torus

ϕ2 = 0ϕ2 = π

ϕ2

−ϕ2

I Θ0T (ϕ2) = T−1(−ϕ2)Θ0

I Only half the cut (0 ≤ ϕ2 ≤ π) matters for T (ϕ2)

I At time-reversal invariant points, ϕ2 = 0, π,

Θ0T = T−1Θ0

Eigenvalues of T come in pairs λ, λ̄−1:

Θ0(T − λ) = T−1(1− λ̄T )Θ0

Phases λ/|λ| pair up (degeneracy)
I For 0 ≤ ϕ2 ≤ π, phases λ/|λ| form a rueda, D



Time-reversal invariant bundles on the torus

ϕ2 = 0ϕ2 = π

ϕ2

−ϕ2

I Θ0T (ϕ2) = T−1(−ϕ2)Θ0

I For 0 ≤ ϕ2 ≤ π, phases λ/|λ| form a rueda, D

D



Time-reversal invariant bundles on the torus
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D

Definition (Index): I(E) := I(T ) := I(D)



Why are the Z2 indices equal?

I Let u(ϕ) be global frame as in the Fu-Kane index:

Wij(ϕ) = 〈ui(ϕ),Θuj(−ϕ)〉

Î(E) = Î(W0)Î(Wπ)

I Define frame v(φ)

v(ϕ) =

{
u(ϕ) , (ϕ ∈ L)

Θu(−ϕ)ε , (ϕ ∈ R)

cu
t

L R
ϕ1

ϕ2

ϕ

−ϕ

I Frame is compatible, but not global: Jumps at ϕ1 = 0, π with
transition matrices T0(ϕ2), Tπ(ϕ2),

I(E) = I(T0)I(Tπ) (ruedas)

I W (ϕ2) = T (ϕ2)ε. Then Î(W ) = I(T ) and hence

Î(E) = I(E)
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Rules of the dance

Dancers
I start in pairs, anywhere
I end in pairs, anywhere (possibly elseways & elsewhere)
I are free in between
I must never step on center of the floor

I are unlabeled points
There are dances which can not be deformed into one another.

What is the index that tells the difference?
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The index of a Rueda

A snapshot of the dance

Dance D as a whole

D

I(D) = parity of number of crossings of fiducial line
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The Z2 index in the non-periodic case

Recall: Index without time-reversal symmetry based on index of pair
of projections

Ind(P,Q) =

dim{ψ ∈ H | Pψ = ψ,Qψ = 0} − dim{ψ ∈ H | Qψ = ψ,Pψ = 0}
= dim ker(A− 1)− dim ker(A + 1), A = P −Q

With time-reversal symmetry:

I = (−1)dim ker(A−1)

(cf. Atiyah; Schulz-Baldes; Katsura, Koma)
In both cases, apply to P = Pµ, Q = UPµU∗.
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An experiment: Amo et al.

Figure: Zigzag chain of coupled micropillars and lasing modes



An experiment: Amo et al.

Figure: Lasing modes: bulk and edge
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The Su-Schrieffer-Heeger model (1 dimensional)
Alternating chain with nearest neighbor hopping

ψ+
n−1 ψ+

n ψ+
n+1

ψ−n+1ψ−n
An Bn

Hilbert space: sites arranged in dimers

H = `2(Z,CN)⊗ C2 3 ψ =

(
ψ+

n
ψ−n

)
n∈Z

Hamiltonian

H =

(
0 S∗

S 0

)
with S, S∗ acting on `2(Z,CN) as

(Sψ+)n = Anψ
+
n−1 + Bnψ

+
n , (S∗ψ−)n = A∗n+1ψ

−
n+1 + B∗nψ

−
n

(An,Bn ∈ GL(N) almost surely)
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Chiral symmetry

Π =

(
1 0
0 −1

)
{H,Π} ≡ HΠ + ΠH = 0

hence
Hψ = λψ =⇒ H(Πψ) = −λ(Πψ)

Energy λ = 0 is special:
I Eigenspace of λ = 0 invariant under Π

HH �� HH �� HH �� HH ��
.............j .............�

ψ+
n−1 ψ+

n ψ+
n+1

ψ−n+1ψ−n
An Bn

I Eigenvalue equation Hψ = λψ is Sψ+ = λψ−, S∗ψ− = λψ+, i.e.

Anψ
+
n−1 + Bnψ

+
n = λψ−n , A∗n+1ψ

−
n+1 + B∗nψ

−
n = λψ+

n

is one 2nd order difference equation, but two 1st order for λ = 0
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Bulk index

Let
Σ = sgn H

Definition. The Bulk index is

N =
1
2

tr(ΠΣ[Λ,Σ])

with Λ = Λ(n) a switch function (cf. Prodan et al.)

1
Λ(x)

x



Edge Hamiltonian and index

ψ+
a−1 ψ+

a

ψ−a+1 = 0ψ−a

Edge Hamiltonian Ha defined by restriction to n ≤ a (Dirichlet
boundary condition ψ−a+1 = 0). Chiral symmetry preserved.

Eigenspace of λ = 0 still invariant under Π.

N±a := dim{ψ | Haψ = 0,Πψ = ±ψ}

Definition. The Edge index is the spectral asymmetry

N ]
a := N+

a −N−a

and can be shown to be independent of a. Call it N ].
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Bulk-edge duality

Theorem (G., Shapiro). Assume λ = 0 lies in a mobility gap. Then

N = N ]



Bulk-edge duality: Remarks
Theorem (G., Shapiro). Assume λ = 0 lies in a mobility gap. Then

N = N ]

Remarks.
I Spectral gap case (0 /∈ σess(H) ⊃ σess(Ha))

Ha =
(

0 S∗a
Sa 0

)
Π =

( 1 0
0 −1

)
N ]

a := dim ker Sa − dim ker S∗a = ind Sa (Fredholm index)

Bulk-edge duality by Schulz-Baldes. In mobility gap case, Sa is
not Fredholm.

I Supersymmetry: Is realized as (Ha,Π) = (supercharge,grading).
Then N ]

a is Witten index.
I Periodic case

S =

∫ ⊕
S1

S(k)

Toeplitz index theorem:

N ] = −Wind(k 7→ det S(k))
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Bulk-edge duality: Lyaponov exponents

Theorem (G., Shapiro). Assume λ = 0 lies in a mobility gap. Then

N = N ]

Remark.



Bulk-edge duality: Lyaponov exponents
Theorem (G., Shapiro). Assume λ = 0 lies in a mobility gap. Then

N = N ]

Remark. Consider the dynamical system Anψ
+
n−1 + Bnψ

+
n = 0 with

Lyaponov exponents
γ1 ≥ . . . ≥ γN

The assumption is satisfied if γi 6= 0; then N ] = ]{i | γi > 0}.

Phase
boundaries correspond to γi = 0 (cf. Prodan et al.)

Lyapunov spectrum of the full chain has 2N exponents, spectrum is
even (Example: N = 4)
I at energy λ 6= 0 (simple spectrum)
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I of the upper (+) and lower (−) chains, at energy λ = 0

���������������� �������� ��

I at energy λ = 0 (phase boundary)
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Some numerics

Left/right column: two parameterized chiral models (N = 1)
upper/lower row: index and Lyapunov exponent (from Prodan et al.)



Proof

Recall Na = tr(ΠP0,a)

Lemma. The common value of Na is

N ] = lim
a→+∞

tr(ΠΛP0,a)

Proof of Theorem. On the Hilbert space Ha corresponding to n ≤ a

tr(ΠΛ) = 0
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Proof

Lemma. The common value of Na is

N ] = lim
a→+∞

tr(ΠΛP0,a)

Proof of Theorem. On the Hilbert space Ha corresponding to n ≤ a

tr(ΠΛ) = N
(∑

n≤a

Λ(n)
)

trC2 Π = 0

0 a

though ‖ΠΛ‖1 = ‖Λ‖1 →∞, (a→ +∞)
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Proof

Lemma. The common value of Na is

N ] = lim
a→+∞

tr(ΠΛP0,a)

Proof of Theorem. On the Hilbert space Ha corresponding to n ≤ a

tr(ΠΛ) = 0

0 a

tr(ΠΛ) = tr(ΠΛP0,a) + tr(ΠΛP+,a) + tr(ΠΛP−,a)

tr(ΠΛP+,a) = tr(P+,aΠΛP+,a) = tr(ΠP−,aΛP+,a)

= tr(ΠP−,a[Λ,P+,a])→ tr(ΠP−[Λ,P+]) (a→ +∞)



Proof

Lemma. The common value of Na is

N ] = lim
a→+∞

tr(ΠΛP0,a)

Proof of Theorem. On the Hilbert space Ha corresponding to n ≤ a

tr(ΠΛ) = 0

So,
tr(ΠΛ) = tr(ΠΛP0,a)︸ ︷︷ ︸

→N ]

+ tr(ΠΛP+,a) + tr(ΠΛP−,a)︸ ︷︷ ︸
→tr(ΠP−[Λ,P+])+tr(ΠP+[Λ,P−])=−N

q.e.d.
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Floquet topological insulators

H = H(t) (bulk) Hamiltonian in the plane with period T

H(t + T ) = H(t)

(disorder allowed, no adiabatic setting)

U(t) propagator for the interval (0, t)
Û = U(T ) fundamental propagator

Assumption: Spectrum of Û has gaps:

spec Û ⊂ S1
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Bulk index
Special case first: U(t) periodic, i.e.

Û = 1

Bulk index

NB =
1
2

∫ T

0
dt tr(U∗∂tU

[
U∗[Λ1,U],U∗[Λ2,U]

]
)

with U = U(t) and switches Λi = Λ(xi), (i = 1,2)

Remark. Extends the formula for the periodic case (Rudner et al.)

NB =
1

8π2

∫ T

0
dt
∫
T

d2k tr(U∗∂tU[U∗∂1U,U∗∂2U])

with U = U(t , k) acting on the space of states of quasi-momentum
k = (k1, k2). Map U: 3-torus→ unitary group U ; π3(U) = Z.
Bulk index NB is degree of map.
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Edge index
HE(t) restriction of H(t) to right half-space x1 > 0

ÛE corresponding fundamental propagator

In general: ÛE 6= 1

Edge index

NE = tr(Û∗E[Λ2, ÛE]) = tr(Û∗EΛ2ÛE − Λ2)

Remarks.
I The trace is well-defined
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x1

ed
ge

x2

I NE is charge that crossed the line x2 = 0 during a period.
I NE is independent of Λ2 and an integer.
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Remarks.
I The trace is well-defined

�������
�������
�������
�������

x1

ed
ge

x2

I NE is charge that crossed the line x2 = 0 during a period.
I NE is independent of Λ2 and an integer.



Edge index
HE(t) restriction of H(t) to right half-space x1 > 0
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ÛE corresponding fundamental propagator

In general: ÛE 6= 1
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General case: Pair of Hamiltonians

Û 6= 1

Pair of periodic Hamiltonians Hi(t), (i = 1,2) with

Û1 = Û2

Define Hamiltonian H(t) with period 2T by

H(t) =

{
H1(t) (0 < t < T )

−H2(2T − t) (T < t < 2T )

Then

U(t) =

{
U1(t) (0 < t < T )

U2(2T − t) (T < t < 2T )

has Û = 1. Define N ,NE (for the pair) as before.

Theorem (G., Tauber) N = NE
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Define Hamiltonian H(t) with period 2T by

H(t) =

{
H1(t) (0 < t < T )

−H2(−t) (−T < t < 0)

Then

U(t) =

{
U1(t) (0 < t < T )

U2(2T − t) (T < t < 2T )
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Duality in time and space
Let the interface Hamiltonian HI(t) be a bulk Hamiltonian with

HI(t) =

{
H1(t)
H2(t)

on states supported on large ±x1

(still assuming Û1 = Û2 =: Û•)

Interface index
NI = tr(Û∗• ÛI[Λ2, Û∗• ÛI])

x1

t

H2,B(t)←

x1

t

−H2,E(−t)

H1,E(t)

ed
ge

→ H1,B(t)
T

−T

T

Theorem (G., Tauber) The indices for the two diagrams agree:

(N =)NE = NI
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Back to single Hamiltonian

Û 6= 1 spec Û ⊂ S1

Let α ∈ R and ω = eiα. For z /∈ ωR+ (ray) define the branch

logα z = log |z|+ i argα z

by α− 2π < argα z < α.

Comparison Hamiltonian Hα: For ω /∈ specÛ set

−iHαT := logα Û

Theorem (Rudner et al.; G., Tauber) For ω, ω′ in gaps

Nω′ −Nω = i tr P
[
[P,Λ1], [P,Λ2]

]
where P = Pω,ω′ is the spectral projection associated with specÛ
between ω, ω′ (counter-clockwise)
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Bulk and Edge spectrum
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Computing the edge index
Edge index based NE,α based on the pair (H,Hα) (with α = π)

NE,α = tr A A = Û∗EΛ2ÛE − Û∗α,EΛ2Ûα,E

The diagonal integral kernel A(x , x) as log |A(x , x)|

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40
-16

-14

-12

-10

-8

-6

-4

-2

Boundary conditions:
I Vertical edges: Dirichlet
I Horizontal edges: Periodic
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The transition
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The anomalous phase
The spectrum of Û be fully localized (Rudner et al.): Ûψz = zψz , (z:
eigenvalues ∈ S1)

ω

ω′

Here: Nω = Nω′ ≡ N 6= 0 (possibly)

Theorem (Rudner; Tauber, Shapiro) Let Û1 = Û2 ≡ Û. Then the
index N for the pair satisfies

N =M(U1)−M(U2)

where

M(U) =

∫ T

0

∑
z

(ψz ,U(t)∗M(t)U(t)ψz)dt

with magnetization M(t) = (i/2)(Λ1H(t)Λ2 − Λ2H(t)Λ1)

If H is time independent, thenM(U) = 0. So, for
(H1(t),H2(t)) = (H(t),Hα) we have N =M(U)
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index N for the pair satisfies

N =M(U1)−M(U2)

where

M(U) =

∫ T

0

∑
z

(ψz ,U(t)∗M(t)U(t)ψz)dt

with magnetization M(t) = (i/2)(Λ1H(t)Λ2 − Λ2H(t)Λ1)

If H is time independent, thenM(U) = 0. So, for
(H1(t),H2(t)) = (H(t),Hα) we have N =M(U)



The anomalous phase
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eigenvalues ∈ S1)

Here: Nω = Nω′ ≡ N 6= 0 (possibly)

Theorem (Rudner; Tauber, Shapiro) Let Û1 = Û2 ≡ Û. Then the
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Thank you for your attention!
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