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Introduction

Barry Simon: Fifteen problems in mathematical physics (1984)

4. Transport Theory: At some level, the fundamental di�culty of
transport theory is that it is a steady state rather than equilibrium
problem, so that the powerful formalism of equilibrium statistical
mechanics is unavailable, and one does not have any way of
precisely identifying the steady state and thereby computing things
in it.

...

Problem 4 B (Kubo Formula): Either justify Kubo's formula in a
quantum model, or else �nd an alternate theory of conductivity.
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Q2) What is the change of the expectation value of an observable
A caused by the perturbation εV at the leading order in its
strength ε¿ 1?

(H0,Π0,εV ) −→ ReT (Aρε)−ReT (AΠ0)=: ε ·LRA+o(ε)

here T ( ·) denotes a trace-like functional and LRA is called the
linear response coe�cient for A
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Linear response

In the context of Hamiltonian quantum systems, the linear response
formalism answers the following question:

Q1) (H0,Π0,εV ) −→ ρε

here ρε denotes the state of the system after the perturbation has
been turned on

Q2) (H0,Π0,εV ) −→ Reτ(Aρε)−Reτ(AΠ0)=: ε ·σA+o(ε)

here A is an extensive observable, τ( ·) is the trace per unit volume
and σA is called the conductivity for A



A model for the switching process

Let
Hε(t) :=H0+εf (t)V , t ∈ I ,

where [−1,0]⊂ I ⊂R is compact interval and ε¿ 1.

t−1

1
f

Let ρ(t) the solution of the following Cauchy problem{
i d

dtρ(t)= [Hε(ηt),ρ(t)]

ρ(t0)=Π0 ∀t0 ≤−1/η.

Then, ρ(0) or ρ(t) for any t ≥ 0 is �the natural candidate for the
state ρε of the system after the perturbation has been turned on� .
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NEASS method

Circumnavigating the time-adiabatic perturbation method, our
main goal is

M̃2) Construct the non-equilibrium almost-stationary state
(NEASS) Πεn such that

∣∣τ(Aρ(t))−τ(AΠεn)∣∣≤C
εn+1+ηn+1

ηd+1
(
1+|t|d+1
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Circumnavigating the time-adiabatic perturbation method, our
main goal is

M̃2) Construct the non-equilibrium almost-stationary state
(NEASS) Πεn such that

∣∣τ(Aρ(t))−τ(AΠεn)∣∣≤C
εn+1+ηn+1

ηd+1
(
1+|t|d+1

)
, ∀t ≥ 0,

for �suitable� observable A

 A is the current operator (for local observables, it is proved in
the setting of interacting models on lattices [Teufel CMP '19]. A
similar statement is shown for quantum spin systems in [Bachmann,
De Roeck, Fraas CMP'18] for f = exp, and for the conductance and
ε= η in [Elgart, Schlein CPAM '04]).



A model for quantum transport
Continuous model: H := L2(Rd )

Assumption (H) on the unperturbed model

(H1) H0 := 1
2
(−i∇−A(x))2+V (x) on C∞

c (Rd ),
where A and V satisfy the Leinfelder�Simader conditions

(H2) H0 admits a spectral gap G

Spectrum(H0)µ

Remark

Ï (H1) =⇒ H0 is essentially self-adjoint on C∞
c (Rd ) and

bounded from below

Ï (H2) =⇒ The Fermi projection Π0 = i
2π

∮
Cµ

dλ(H0−λId)−1,
µ ∈G

Ï H0 is not necessarily periodic or covariant

Ï results for discrete models follow from the ones for the
continuum
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Perturbed model

We want to model a time-dependent spatially uniform electric �eld
E(t) of small intensity, induced in the j-th direction and switched
on slowly in time  ε,η ∈ (0,1]
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Construction of the NEASS

We require two properties: Πεn such that

� Πεn = eiεSε
nΠ0e−iεSε

n for some self-adjoint operator Sεn

� Πεn almost-commutes with the stationary perturbed
Hamiltonian Hε :=H0−εXj , namely [Hε,Πεn]=O(εn+1)



Mathematical framework

For α> 0,

Fα(x) := e−α|x |

(1+|x |)d+1
for every x ∈Rd

Bα :=
{
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Construction of the NEASS

Theorem[M., Teufel]

Let Hε :=H0−εXj , where H0 enjoys Assumption (H). Then ∃ a
sequence {Aj }j∈N ∈ B̃α1 , α1 > 0 such that ∀n ∈N the NEASS is
uniquely de�ned as

Πεn = eiεSε
nΠ0e−iεSε

n =
n∑
j=0

εjΠj +εn+1Πεr ∈ B̃α2 ,

where α2 > 0 and Sεn =
∑n

j=1 ε
j−1Aj ,

[Hε,Πεn]= εn+1Rn, Rn ∈Bα3 , α3 > 0.
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Let H := L2(Rd )⊗CN . Let H0 satisfy Assumption �(H1) (i. e.
periodicity + mild technical hypotheses) and (H2).
Let Ji := i [H0,S Xi ].
Then

σεij = iτ
([
[SXi ,Π0], [Xj ,Π0]

]
Π0

)
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=:Chern-like term

+

Reτ
(
i[H0,(SXi )

D]Π1+ i[H0,(SXi )
OD
Π1]+ i

[
[SXi ,Π0],Π0[Π0,Xj ]

])
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=:beyond-Chern-like terms

+O(ε).
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[
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Remark conditional cyclicity of τ( ·) =⇒ the beyond-Chern-like
terms vanish. In d = 2 the Chern-like term is equal to the (Spin)
Chern number for (S = Id⊗ sz) S = Id (whenever H0 is time-reversal
symmetric).
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Remark For S = Id this result agrees with [BES '94, AG '98, BGKS
'05, AW '15 . . . ] and for S = Id⊗sz it agrees with [Pr '09, Sch '13].



Ongoing part

Ï Justi�cation of the validity of the linear response using NEASS
method (�nite speed of propagation estimates /
Lieb�Robinson bound type estimates are needed).

Ï Study higher-order corrections in ε to the formula for the
S-conductivity σεij .


