Molecular dynamics simulation of entanglement growth in generalized hydrodynamics

Márton Mestyán SISSA

Based on 1905.03206 Joint work with Vincenzo Alba

Vincenzo Alba (Univ. Amsterdam / D-ITP)

Subject

Quasiparticle picture of entanglement evolution Calabrese, Cardy (JStat 2005) Alba, Calabrese (PNAS 2017)

Soliton gas picture of Generalized Hydrodynamics (GHD) Yoshimura, Doyon, Caux (PRL 2018)

1. Entanglement evolution

Quantum quench

$$\rho(t=0) := |\Psi_0\rangle \langle \Psi_0|, \qquad \rho(t) = e^{-iHt} \rho(0) e^{iHt}$$

Von Neumann entanglement entropy

$$S_A(t) = -\operatorname{Tr} \rho_A(t) \ln \rho_A(t), \quad \rho_A(t) = \operatorname{Tr}_B \rho(t)$$

Typical behaviour of $S_A(t)$

 $S_A(t) \sim t \quad (v_{\rm M} t \ll \ell),$ $S_A(t)/\ell \sim S_{\rm th} \quad (t \to \infty)$

Exact analytical results on the lattice:

- ▶ XY chain (free fermionic) Fagotti, Calabrese (PRA 2008)
- ▶ Kicked Ising chain (chaotic) Bertini, Kos, Prosen (PRX 2019)

Effective description:

- ▶ Minimal membrane picture (non-integrable): Nahum, Ruhman, Vija, Haah (PRX 2017)
- ► Quasiparticle picture (integrable): Calabrese, Cardy (JStat 2005)

Márton Mestyán (SISSA)

Molecular dynamics of GHD & entanglement dynamics

2. Quenches in integrable quantum systems

Homogeneous systems: GGE

- Infinite number of (quasi)local conserved charges: $[\hat{Q}_i, \hat{Q}_j] = 0.$
- Expectation values of *local* operators in the steady state are described by a *Generalized Gibbs Ensemble*

Inhomogeneous systems: GHD

► GHD: hydrodynamics with infinite number of continuity equations $\partial_t \hat{q}_i(x,t) + \partial_x \hat{j}_i(x,t) = 0$

Bertini, Collura, De Nardis, Fagotti (2016) Castro-Alvaredo, Doyon, Yoshimura (2016)

 Recently confirmed in ultracold atomic experiment

3. Thermodynamic limit of Bethe ansatz solvable systems

Energy eigenstates

Energy eigenstates are enumerated by sets of (half)integer *quantum numbers*, which correspond to a set of *rapidities*

$$|\{I_j\}_{j=1}^N\rangle \rightarrow |\{\lambda_j\}_{j=1}^N\rangle$$

Densities

In the thermodynamic limit, eigenstates are characterized by the density of states, particles and holes in rapidity space:

$$\rho_{\mathrm{t},n,\lambda} = \rho_{n,\lambda} + \rho_{\mathrm{h},n,\lambda}$$

Expectation values of conserved charges

$$\langle \hat{q}_j \rangle = \sum_n \int d\lambda \rho_{n,\lambda} q_{j,n}(\lambda)$$

Bethe–Gaudin–Takahashi equations

$$\rho_{\mathrm{t},n,\lambda} = a_n(\lambda) - \sum_m \int d\mu T_{nm}(\lambda - \mu) \rho_{m,\mu}$$

Yang–Yang entropy (~ ln # of eigenstates)

$$s_{\rm YY} = \sum_{n} \int d\lambda \rho_{\rm t,\lambda} \ln \rho_{\rm t,\lambda}$$

$$- \rho_{\lambda} \ln \rho_{\lambda} - \rho_{\rm h,\lambda} \ln \rho_{\rm h,\lambda}$$

Review: M. Takahashi (Cambridge University Press, 1999)

4. The quasiparticle picture of entanglement evolution

- Valid at large space-time scales
- ▶ Each segment $[x, x + \Delta x]$ is a source of quasiparticles
- ▶ In the quenches considered here, quasiparticles are emitted in pairs with rapidity $\pm \lambda$
 - ▶ Different configurations are possible Bertini, Tartaglia, Calabrese (JStat 2018)
- ▶ Quasiparticles move linearly with the effective velocity $v_{n,\lambda}$
- \blacktriangleright A pair contributes to the entanglement iff one of them is in A and the other is outside
- ▶ Each shared pair contributes to the entanglement $s_{n,\lambda}$, the Yang–Yang entropy density of the GGE
- $S_A(t)$ is obtained by counting shared pairs and integrating over all modes

$$S_A(t) \sim \left\{ 2t \sum_n \int\limits_{2|v_{n,\lambda}|t < \ell} d\lambda |v_{n,\lambda}| s_{n,\lambda} + \ell \sum_n \int\limits_{2|v_{n,\lambda}|t > \ell} d\lambda s_{n,\lambda} \right\}$$

5. The quasiparticle velocities

Bonnes, Essler, Lauchli (PRL 2014)

When a quasiparticle is added, the rapidities of other quasiparticles are shifted
This results in a *dressing* of charges

$$q_{j,n}^{\mathrm{dr}}(\boldsymbol{\mu}) = q_{j,n}(\boldsymbol{\mu}) + \sum_{k=1}^{N} \left[q_{j,n}(\tilde{\lambda}_k) - q_{k,n}(\lambda_k) \right]$$

▶ The effective velocities of quasiparticles are

$$v_{n,\lambda} = \frac{e_n^{\mathrm{dr}\prime}(\lambda)}{p_n^{\mathrm{dr}\prime}(\lambda)}$$

▶ In the TDL,

$$v_{n,\lambda} = v_{n,\lambda}^{\text{bare}} + \sum_{m} \int d\mu \frac{T_{nm}(\lambda - \mu)}{a_n(\lambda)} \rho_m(\mu) (v_{n,\lambda} - v_{m,\mu})$$

Márton Mestyán (SISSA)

Molecular dynamics of GHD & entanglement dynamics

6. Generalized hydrodynamics (at ballistic scale)

Continuity equations for modes

$$\partial_t \rho_{n,\lambda}(x,t) + \partial_x (v_{n,\lambda}(x,t)\rho_{n,\lambda}(x,t)) = 0$$

Castro-Alvaredo, Doyon, Yoshimura (PRX 2016) Bertini, Collura, De Nardis, Fagotti (PRL 2016)

7. An inhomogeneous setting

XXZ Heisenberg spin chain

$$H = \sum_{j=1}^{L} \left[S_{j}^{x} S_{j+1}^{x} + S_{j}^{y} S_{j+1}^{y} + \Delta S_{j}^{z} S_{j+1}^{z} \right]$$

Bipartite quantum quench - extension of quasiparticle picture

Example of an initial state

$$\begin{split} |\Psi_L\rangle &= |\mathrm{N\acute{e}el}\rangle \equiv \left(\frac{1+\mathcal{T}}{\sqrt{2}}\right)(|\uparrow\downarrow\rangle)^{\otimes L/2} \\ |\Psi_R\rangle &= |\mathrm{dimer}\rangle \equiv \left(\frac{1+\mathcal{T}}{\sqrt{2}}\right) \left(\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}}\right)^{\otimes L/2} \end{split}$$

8. Analytical vs. numerical approach

The effective velocities

$$v_{n,\lambda}(\zeta) = v_{n,\lambda}^{\text{bare}}(\zeta) + \sum_{m} \int d\mu \frac{T_{nm}(\lambda-\mu)}{a_n(\lambda)} \rho_{m,\mu}(\zeta) (v_{n,\lambda}(\zeta) - v_{m,\mu}(\zeta))$$

Possibilities for following quasiparticles & computing $S_A(t)$

- ► Analytically, by solving $\begin{array}{c} V. \text{ Alba, B. Bertini, M. Fagotti (1903.00467)} \\ \frac{d}{dt} X_{n,\lambda}(x,t) = v_{n,\lambda}(X_{n,\lambda}(t,x),t) \end{array}$
- ▶ Numerically, using the *flea gas* picture of GHD

MM, V. Alba (1905.03206)

9. The flea gas picture of GHD

The flea gas algorithm for simulating GHD: LL: Yoshimura, Doyon, Caux (PRL 2018)

- 1. Generate randomly a configuration of quasiparticles according to the initial distributions $\rho_{n,\lambda}(\pm\infty)$
- 2. Move the particles linearly with their bare velocities $v_{n,\lambda}^{\text{bare}}$
- 3. When two particles (n, λ) (on the left) and (m, μ) (on the right) meet, make them jump with

$$+ \frac{T_{nm}(\lambda - \mu)}{a_n(\lambda)} \quad \text{for } (n, \lambda)$$
$$- \frac{T_{mn}(\mu - \lambda)}{a_m(\mu)} \quad \text{for } (m, \mu)$$

- 4. After the simulation time T has elapsed, compute profiles of charges / entropy in the configuration and store it
- 5. Repeat the above many times ($\sim 10^2-10^5)$ and take average of quantities over realizations

10. The velocities in the flea gas (heuristic argument)

In a time Δt, the number of times a particle (n, λ) meets particles (m, μ) is (on average)

$$\rho_{m,\mu}|v_{n,\lambda}(\zeta) - v_{m,\mu}(\zeta)|\Delta t$$

At each scattering, the particle
 (n, λ) jumps

$$\operatorname{sgn}(v_{n,\lambda}(\zeta) - v_{m,\mu}(\zeta)) \cdot \frac{T_{nm}(\lambda - \mu)}{a_n(\lambda)}$$

Effective velocities of flea gas particles

$$v_{n,\lambda}(\zeta) = v_{n,\lambda}^{\text{bare}}(\zeta) + \sum_{m} \int d\mu \frac{T_{nm}(\lambda - \mu)}{a_n(\lambda)} \rho_{m,\mu}(\zeta) (v_{n,\lambda}(\zeta) - v_{m,\mu}(\zeta))$$

This is the same equation as the effective velocity equation in GHD.

Rightmost panels: analytical result from Piroli, De Nardis, Collura, Bertini, Fagotti (2017)

12. Computing entanglement entropy

- 1. Prepare the initial state with particle pairs with rapidity $\pm \lambda_i$
- 2. For each pair, compute the Yang-Yang entropy contribution $s(\lambda_i)$
- 3. Evolve the flea gas in time
- 4. Find the "shared pairs" and sum their contribution $\sum_{\text{shared pairs}} s(\lambda_i)$
- 5. Repeat many times and compute the average

$$S_A(t) = \left\langle \sum_{\text{shared pairs}} s(\lambda_i) \right\rangle$$

13. Test of the flea gas picture against analytical results I.

14. Test of the flea gas picture against analytical results II.

Analytical: Alba, Bertini, Fagotti (1905.03206)

15. Mutual information

$$I_{A_1:A_2} = S_{A_1} + S_{A_2} - S_{A_1 \cup A_2}$$

15. Conclusions and outlook

Conclusions

- ▶ In integrable models, the quasiparticle picture of entanglement evolution can be matched with the flea gas picture of generalized hydrodynamics.
- ▶ We have tested the flea gas algorithm in the XXZ model
- ▶ We computed the full time evolution of the entanglement and the mutual information in bipartite quenches

Outlook: future research directions

- ▶ Rigorous proof that the flea gas algorithm is equivalent to GHD
- ▶ Robust DMRG check of the quasiparticle picture
- More complicated setups
- ▶ Operator entanglement, diffusion and more

Reference: 1905.03206 Joint work with Vincenzo Alba

Thank you for your attention!

DMRG test

Bipartite quench from Neel + tilted Ferromagnetic state.

Alba, Bertini, Fagotti (1905.03206)