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Inhomogeneous CFT

L/2
H= dzv(z) [Ty (z) + T-(z)]
—L)2
—L/2  L/2
I —

E.g.: Effective description of generalized quantum spin chain

Hxxz == 3 J; (S7S5u0 + SYSYy = ASISEL) = D hyS;
j J
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Random CFT v

) = T

with Gaussian random function £(z) specified by

El(@)] =0 Tz —y)=E[(x)¢(y)]

>0

Exact analytical results showing diffusion on top of ballistic motion:

E(x
1 (@) Spread of measured
to arrival times ¢1
‘ : T
Zo X1

P.M., PhD thesis (2018); Langmann, P.M., Phys. Rev. Lett. 122 (2019)

Numerical demonstration of this diffusive effect in random integrable
spin chains using generalized hydrodynamics

Agrawal, Gopalakrishnan, Vasseur, Phys. Rev. B 99 (2019)
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Minkowskian conformal field theory

Spacetime: R x S! with S! the circle of length L

Conformal group = Diff, (S1) x Diff, (S!) with Diff, (S!) the group
of orientation-preserving diffeomorphisms of the circle

Right- and left-moving components of the energy-momentum tensor

(T4 (2), T (y)] = 728" (@ = ) T (y) £ 10w — y) T4 (y) £ 516" (@~ y)
[Ti(x)v T:F(y)] =0

in light-cone coordinates 2% = 2 + vt
Recall: T+ = Ti(x:F) with T+ =T__,T_= T++, and T+7 =0= T7+
E.g.: Schottenloher, A Mathematical Introduction to Conformal Field Theory (2008)
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Observables and conformal transformations

Primary fields

Oz, 2t) = fl(a7)2e f a2 B(f(27), f(ah))

Energy-momentum tensor

C

S (@), 2T}

Te(a®) 5 [P T (7)) - 55

e " 2
F € Diffy(8") where {f(a), 2} = 22 - 3 (fw()) >

E.g.: Francesco, Mathieu, Sénéchal, Conformal Field Theory (1997)
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Examples

Non-interacting fermions

Ti(w) = 5 [¢L(2)(F0:)Yx (@): +he] -

1 T
2 1212

Local Luttinger model (renormalized)

~ m
Te(z) = mipe(2)®: — L2

pele) = S pale) + Sompsla)  pale) = )i e):

Voit, Rep. Prog. Phys. 58 (1995)

Schulz, Cuniberti, Pieri, Fermi liquids and Luttinger liquids, p. 9 in Field Theories for Low-Dim. ... (2000)
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Projective unitary representations of diffeomorphisms

Proj. unitary reps. UL(f) of f € IS\i?er(Sl) given by
L/2
Us(f) = 17ie [ deG@)Ta@) + ofe)

—L/2

for infinitesimal f(x) = « + e((x) with {(z + L) = ((z)

Meaning of projective:

Us(f1)Ux(fo) = eHBULLI2AT0, (£ 0 o)

E.g.: Khesin, Wendt, The Geometry of Infinite-Dimensional Groups (2009)

Gawedzki, Langmann, P.M., J. Stat. Phys. 172 (2018)
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Virasoro-Bott group and Virasoro algebra

Bott cocycle
1 (L2
Bl g =5 [ | dellos f()] oslfi (o))

Virasoro-Bott group: Central extension of Diff , (S*) given by B(f1, f2)
Corresponding Lie algebra: The Virasoro algebra

[Lriw Li] = ( - )L;Lt+m + %(n?) - n)éner,O
[LE LF] =0

and
e}
27 2ming c
Ti r) = — E ei (Li 5n 0)
(z) L2 24
n=-—oo
E.g.: Khesin, Wendt, The Geometry of Infinite-Dimensional Groups (2009)

Gawedzki, Langmann, P.M., J. Stat. Phys. 172 (2018)
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Adjoint action

Using the Bott cocycle:

Us(NTe@U()™" = f@)Te(f(@)) = 5 {F(@).2)
Us(f)T=(0)Us(£) ™! = T2 (a)

Given a smooth L-periodic function v(z) > 0, define

x 1 1 L/2 1
) = da’ hal — = / da’
o= [t =1 o™ o)

Then f € Diff . (SY) and U(f) = Uy (f)U_(f) gives

L/2

U(f)HU(f) = /L/2 dz v [Ty (x) + T (z)] 4+ c-number
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Non-equilibrium dynamics

Focus on heat transport in inhomogeneous CFT:

Only need reps. of Diff | (S1)

Can also do both heat and charge transport:
Need reps. of Map(S*, G) x Diff , (S1)

Simplest example: G = U(1) as for the local Luttinger model
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Time evolution from smooth-profile states

Non-equilibrium initial states defined by
L2
G={" dzB@)@)T: () + T_()]
—L)2

with smooth inverse-temperature profile 5(x)

Recipe to compute

Tr [e*G('h (1;t1) ... Op(2p; tn)]
Tr [e—G]

<Ol(l‘1; tl) cee On(xnv tn))neq =

for Oj(z;t) = et (x)e 1H!
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Energy density and heat current

The energy density operator

E(z) = v(z) [Ty () + T-(z)]
and the heat current operator

I(x) = v(@)[T4(z) — T_(2)]

satisfy
HE(x)+ 0, T (x) =0

KT (z) + v(2)0y [v(z)E(z) + S(z)] =0

with
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Energy density and heat current — Results

Given smooth L-periodic functions v(z) and ((x) defining the time
evolution and the initial state as above, then

(@005 = 537 [FE) + FEN] - 58(0)
(T (@31))3% = 5 [FGE7) — F(E)]
in the thermodynamic limit L — oo with
i = 1 (f () £ wot)
and
2 " / 2 ’ /
Fo- e e -2 (56) 5
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Thermal conductivity

Dynamically:

Fen (W) = 528(?@ ( /R Jat ! /R dz 8t<J(x;t)>ﬁ2q)

for a kink-like initial profile B(z) = 8 + 08W () with height 63

58=0

or equivalently

Green-Kubo formula:
ﬂ H C,00
Fth(w) = ﬁ/ dT/ dte“t | dadz’ 6m/[—W(x’)]<j(x;t)J(x’;iT)>é’
0 R+ R2

with ()5 = (- Ineal yrys

P.M., PhD thesis (2018)
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Thermal conductivity — Results

On general grounds

Re kith(w) = Dipmd(w) + Re kit (w)

Given a smooth v(z), then

2
Dy, = 7;—%6 Re kgt (w) = g—; {1 + (;f) ]I(w)

with

1) = | dada/ (1 - U(Ux))ag@r [~ W(a")] cos <w/j ;g%)

where v is arbitrary in the thermodynamic limit
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Full counting statistics

“Full counting statistics of energy transfers in inhomogeneous
nonequilibrium states of (1+1)D CFT"

Gawedzki, Koztowski, arXiv:1906.04276 (2019)
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Alternative approach

Standard Euclidean CFT in curved spacetime with the metric

h = da? 4 v(z)?dr?

(imaginary time 7 = it) Dubail, Stéphan, Viti, Calabrese, SciPost Phys. 2 (2017)
Dubail, Stéphan, Calabrese, SciPost Phys. 3 (2017)
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Ballistic and anomalous/normal diffusive contributions

Recall: Random CFT with v(z) = v/[1 — &(x)] and Gaussian random
function &(x) specified by E[¢(x)] = 0 and T'(x — y) = E[{(2)&(y)]

After averaging:

e
Dy, = 2%
h =33
Re fipf(w) = g; 1+ <w6> ] /Rdxe*%(“’/”) A@) cos(oj}x)
Ly = hm Re kgt (w) = g;

with A fO dl’lfo d$2F .%'1 — 332) and Iy = fRd.CI}F )
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Wave propagation in random media

Solving random PDEs for the expectations F(x;t) and J(x;t) of £(x;t) and
J(x;t) in an arbitrary state with E(z;0) = eg(z) and J(x;0) = 0 gives:

B{(:0)] = [dy (65— :0) + % (@ = )] eals)
E[J(x;1)] :/Rdy {G{(m —yit) + G (z —y; t)] eo(y)

with G& (2;t) and G (2;t) expressed in terms of
zFvt)?/2A(z)

2 A(x)

e (
Gi(x;t) =0(£x)

Propagation-diffusion equation

[v_lat + 0, — *y(x)@f]Gi(x; t)=0| (£z>0,t>0)

with temporal diffusion coeff. «y(x)  Boon, Grosfils, Lutsko, Euro. Phys. Lett. 63 (2003)
Langmann, P.M., Phys. Rev. Lett. 122 (2019)
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Heat-wave reference frame

Tr=uxF vt

Define éi(%f) = G4 (z;t) with {t: x| /v

Diffusion equation

[8;— Qith (ﬂa%] éi(f;?) =0| (>0, +7 > —ot)

with thermal diffusivity aup () where

. ~ v
ay = lim agy(t) = §I’0
t—o00
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Relation between Ly, and aup

Einstein relation

Lip = cyagp

with the volume-specific heat capacity
0
— _p2 AR
ev = B 55E {Ew 0)F ]

where (---)g = (--- >"GQ|B(x):B

_mc
- 3pv
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Thank you for your attention!
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