Spectral statistics and many-body localization

Jan Šuntajs, Lev Vidmar, Janez Bonča

September 16, 2019

Jan Suntais	÷.		
Jan Sumais	$\sim \sim$	1100	010
	 		ais

Spectral statistics and MBL

September 16, 2019 1/17

Occurring in INTERACTING quantum systems with DISORDER

2 An IDEAL INSULATOR \rightarrow at ANY temperature

Explains the FAILURE of some systems to THERMALIZE

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 2/17

Occurring in INTERACTING quantum systems with DISORDER

3 An IDEAL INSULATOR \rightarrow at ANY temperature

Explains the FAILURE of some systems to THERMALIZE

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 2/17

Occurring in INTERACTING quantum systems with DISORDER

② An IDEAL INSULATOR → at ANY temperature

Explains the FAILURE of some systems to THERMALIZE

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 2/17

Occurring in INTERACTING quantum systems with DISORDER

IDEAL INSULATOR → at ANY temperature

Explains the FAILURE of some systems to THERMALIZE

The outline of the presentation

- The properties of MBL systems
- Introduction of the physical model
- Numerical analysis of the spectral statistics
 - A brief introduction to spectral statistics
 - Spectral form factor (SFF)
- Our recent results and conclusion

The outline of the presentation

- The properties of MBL systems
- Introduction of the physical model
- Numerical analysis of the spectral statistics
 - A brief introduction to spectral statistics
 - Spectral form factor (SFF)

Quantum chaos challenges many-body localization

Jan Šuntajs,¹ Janez Bonča,^{2,1} Tomaž Prosen,² and Lev Vidmar¹ ¹Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia ²Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

arXiv: 1905.06345 [cond-mat.str-el], 15. May 2019

Spectral statistics and MBL

• Closed quantum systems

Nandkishore, Huse, 2015

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Nandkishore, Huse, 2015

• Presence of interactions

э

Nandkishore, Huse, 2015

Presence of interactions

• Presence of disorder

э

• Closed quantum systems

Nandkishore, Huse, 2015

• Presence of interactions

• Presence of disorder

3 > 4 3

• The absence of ergodicity

Abanin, Altman, Bloch, Serbyn, 2018

 The absence of ergodicity

Abanin, Altman, Bloch, Serbyn, 2018

• THE ENTANGLEMENT ENTROPY:

- Area law scaling for all eigenstates
- Logarithmic growth in time

.

 The absence of ergodicity

Abanin, Altman, Bloch, Serbyn, 2018

• THE ENTANGLEMENT ENTROPY:

- Area law scaling for all eigenstates
- Logarithmic growth in time

H N

 The absence of ergodicity

Abanin, Altman, Bloch, Serbyn, 2018

• THE ENTANGLEMENT ENTROPY:

- Area law scaling for all eigenstates
- Logarithmic growth in time

PHYSICAL REVIEW B 77, 064426 (2008)

Many-body localization in the Heisenberg XXZ magnet in a random field

Marko Žnidarič,¹ Tomaž Prosen,¹ and Peter Prelovšek^{1,2} ¹Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia ²Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia (Received 31 August 2007; revised manuscript received 8 November 2007; published 25 February 2008)

Special properties of the energy spectra The subject of our numerical analysis

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 5/17

 The absence of ergodicity

Abanin, Altman, Bloch, Serbyn, 2018

• THE ENTANGLEMENT ENTROPY:

- Area law scaling for all eigenstates
- Logarithmic growth in time

PHYSICAL REVIEW B 77, 064426 (2008)

Many-body localization in the Heisenberg XXZ magnet in a random field

Marko Žnidarič,¹ Tomaž Prosen,¹ and Peter Prelovšek^{1,2} ¹Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia ²Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia (Received 31 August 2007; revised manuscript received 8 November 2007; published 25 February 2008)

Special properties of the energy spectra

The subject of our numerical analysis

Jan Šuntajs

Spectral statistics and MBL

4 D N 4 B N 4 B N 4 B

The model

The hamiltonian - paradigmatic 'quantum chaotic'/ergodic:

$$\begin{aligned} & \text{Heisenberg-like} & \text{1D} \\ \hat{H} &= \sum_{j \in \{1,2\}} J_j \sum_{\ell}^L \left(\hat{s}_{\ell}^x \hat{s}_{\ell+j}^x + \hat{s}_{\ell}^y \hat{s}_{\ell+j}^y + \Delta_j \hat{s}_{\ell}^z \hat{s}_{\ell+j}^z \right) + \sum_{\ell=1}^L w_\ell \hat{s}_{\ell}^z \end{aligned}$$

•
$$l$$
 - site, L - chain length

$$w_\ell$$
: randomly disordered potential

The model

$$J_1 = J_2 = 1$$

 $\Delta_1 = \Delta_2 = 0.55$

Disorder probability distribution:

W - the disorder strength parameter

Our (numerical) analysis of the MBL systems

• We perform full or partial diagonalization of the Hamiltonians Spectrum: $\{E_1 \leq E_2 \leq \cdots \leq E_D\}$

• Partial diagonalization: ≈ 500 eigenstates from the middle of the spectra

• Maximum Hilbert space dimensions:

 $\mathcal{D} = 48620$ (full) $\mathcal{D} = 184756$ (partial)

• Between $10^2 - 10^3$ different disorder realizations for each model parameter

		A DEVISE A SEA E	
Jan Šuntajs	Spectral statistics and MBL	September 16, 2019	7/17

Quantum chaos and energy spectra

Why do we study energy spectra?

• Quantum chaos conjecture (Bohigas, Giannoni, Schmidt, 1984):

Quantum systems

Spectral properties match the predictions of the random matrix theory (RMT).

Corresponding classical systems

The dynamics are completely chaotic.

Quantum chaos and energy spectra

• What about systems without a classical analogue?

16 N A 16 N

Quantum chaos and energy spectra

Many-body quantum chaos

GENERIC systems \rightarrow **RMT-like** spectral statistics Montambaux *et. al.* (1993), Prosen (1999), Santos and Rigol (2008)

RMT statistics → hallmarks of ergodicity and thermalization in an isolated quantum system.
D'Alessio, Kafri, Polkovnikov, Rigol (2016)

Statistical properties of the energy spectra

- We analyse the statistical properties of the energy spectra
- We rely on the findings of the **RMT**:
 - Ergodic systems: spectral statistic match the Gaussian orthogonal ensemble (GOE)
 - **MBL** systems: nearest levels distributed in accordance with the **Poisson** distribution

• We compare our **RESULTS** with the **above cases**.

	÷		
lon	<u> </u>	int	210
Jan	ິບເ	1110	ais

- A TE N - A TE N

Statistical properties of the energy spectra

- We analyse the statistical properties of the energy spectra
- We rely on the findings of the **RMT**:
 - Ergodic systems: spectral statistic match the Gaussian orthogonal ensemble (GOE)
 - **MBL** systems: nearest levels distributed in accordance with the **Poisson** distribution
- We compare our **RESULTS** with the **above cases**.

- A TE N A TE N

The mean ratio of the level spacings

• The spacings between the **nearest** energy levels:

$$\delta_n = E_{n+1} - E_n \ge 0$$

• We define the level spacing ratio:

$$0 \le \tilde{r}_n = \min\{\delta_n, \delta_{n-1}\} / \max\{\delta_n, \delta_{n-1}\} \le 1$$

• **KEYNOTE:** the limiting values of $\langle \tilde{r} \rangle$ are well known:

Ergodic: $\langle \tilde{r} \rangle_{\text{GOE}} = 0.5307$

MBL: $\langle \tilde{r} \rangle_{\rm P} = 2 \ln 2 - 1 \approx 0.3863$

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 10/17

イロト イポト イラト イラト

The mean ratio of the level spacings

• The spacings between the **nearest** energy levels:

$$\delta_n = E_{n+1} - E_n \ge 0$$

• We define the level spacing ratio:

$$0 \le \tilde{r}_n = \min\{\delta_n, \delta_{n-1}\} / \max\{\delta_n, \delta_{n-1}\} \le 1$$

• **KEYNOTE:** the limiting values of $\langle \tilde{r} \rangle$ are well known:

Ergodic: $\langle \tilde{r} \rangle_{\text{GOE}} = 0.5307$

MBL: $\langle \tilde{r} \rangle_{\rm P} = 2 \ln 2 - 1 \approx 0.3863$

イロト イポト イラト イラト

The mean ratio of the level spacings

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 10/17

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pros and cons of $\langle \tilde{r} \rangle$

Mean level spacings ratio:

- a commonly used indicator of a given system's ergodicity
 - + straightforward implementation
- - only considers correlation between the nearest energy levels

We would like to consider correlations between all the levels

• This is why we implement the spectral form factor (SFF)

• the implementation is more demanding

< ロ > < 同 > < 回 > < 回 >

Pros and cons of $\langle \tilde{r} \rangle$

Mean level spacings ratio:

- a commonly used indicator of a given system's ergodicity
 - + straightforward implementation
- - only considers correlation between the nearest energy levels

We would like to consider correlations between all the levels

- This is why we implement the spectral form factor (SFF)
 - the implementation is more demanding

Definition:

$$K(\tau) \coloneqq \left\langle \frac{1}{D} \sum_{i,j}^{D} \mathrm{e}^{-i(\varepsilon_i - \varepsilon_j)\tau} \right\rangle; \quad K(0) = D, \quad K(\tau \to \tau_{\mathrm{H}}) = 1$$

D - Hilbert space dimension $\tau \rightarrow$ an external parameter $\langle ... \rangle$ over disorder realizations

Heisenberg time $\tau_{\rm H} \propto$ inverse *mean level spacing* (largest **sensible** timescale of a system)

 $\{\varepsilon_i\} \rightarrow$ energy levels after *spectral unfolding*

イロト イポト イラト イラト

Definition:

$$K(\tau) \coloneqq \left\langle \frac{1}{D} \sum_{i,j}^{D} \mathrm{e}^{-i(\varepsilon_i - \varepsilon_j)\tau}
ight
angle; \quad K(0) = D, \quad K(\tau \to \tau_{\mathrm{H}}) = 1$$

D - Hilbert space dimension $\tau \rightarrow$ an external parameter $\langle ... \rangle$ over disorder realizations

Heisenberg time $\tau_{\rm H} \propto$ inverse *mean level spacing* (largest sensible timescale of a system)

 $\{\varepsilon_i\} \rightarrow$ energy levels after *spectral unfolding*

イロト イポト イラト イラト

• A quick introduction to unfolding

Spectral statistics and MBL

э

• Unfolding \rightarrow mean level spacing = 1

э

SFF - KEYNOTES:

we again expect different behaviour for ergodic and uncorrelated spectra

• we investigated the behaviour of the **Thouless time** au_{Th}

• Thouless time $\tau_{Th} \rightarrow$ the onset of UNIVERSAL DYNAMICS

< ロ > < 同 > < 回 > < 回 >

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 12/17

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 12/17

Spectral statistics and MBL

We see universal behaviour after some transient time au_{Th}

 $K(\tau)$ for **uncorrelated** spectra

 $K_{\rm P}(\tau) = 1$

$K(\tau)$ in ergodic systems

$$K_{\text{GOE}}(\tau) = 2 - \tau \log\left(\frac{2\tau + 1}{2\tau - 1}\right)$$

		÷			
	nr		1 In	t-0	10
ັບ	aı	ິ	un	ıa	15

September 16, 2019 12/17

.

A D b 4 A b

SFF - explaining the Thouless time $\tau_{\rm Th}$

 Thouless time τ_{Th}: determines the energy scale at which the spectral correlations are universally determined by the GOE predictions (e.g., when the RAMP appears)

• large(r) $\tau_{\rm Th} \rightarrow$ small(er) spectral correlation length $E_{\rm Th}$

SFF - explaining the Thouless time $\tau_{\rm Th}$

 Thouless time τ_{Th}: determines the energy scale at which the spectral correlations are universally determined by the GOE predictions (e.g., when the RAMP appears)

• large(r) $\tau_{\rm Th} \rightarrow$ small(er) spectral correlation length $E_{\rm Th}$

SFF - questions

• We set out to find out different scalings

• How does $\tau_{\rm Th}$ scale with the system size *L*?

• How does $\tau_{\rm Th}$ scale with disorder strength parameter W

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SFF - questions

We noticed some surprising results along the way

Quantum chaos challenges many-body localization

Jan Šuntajs,¹ Janez Bonča,^{2,1} Tomaž Prosen,² and Lev Vidmar¹ ¹Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia ²Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

arXiv:1905.06345 [cond-mat.str-el], 15 May 2019

4 D N 4 B N 4 B N 4 B N

We first checked for consistency of the $K(\tau)$ and $\langle \tilde{r} \rangle$ results

A B F A B F

• We then numerically extracted $\tau_{\rm Th}$ values and performed a scaling analysis w.r.t. both L and W

• In the subsequent scaling analysis, we introduce the **PHYSICAL THOULESS TIME** t_{Th} , rescaling τ_{Th} by the mean level spacing $\overline{\delta E}$ of the **RAW** spectra:

$$t_{\rm Th} = \tau_{\rm Th} / \overline{\delta E}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We then numerically extracted $\tau_{\rm Th}$ values and performed a scaling analysis w.r.t. both L and W

• In the subsequent scaling analysis, we introduce the **PHYSICAL THOULESS TIME** t_{Th} , rescaling τ_{Th} by the mean level spacing $\overline{\delta E}$ of the **RAW** spectra:

$$t_{\rm Th} = \tau_{\rm Th} / \overline{\delta E}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The results of the scaling analysis

We obtain the following double scaling:

$$t_{\rm Th} = t_0 {\rm e}^{W/\Omega} L^2$$

Jan Šuntajs

Spectral statistics and MBL

Verification of the scaling: data collapse

September 16, 2019 15/17

э

... Is there a MBL transition at all?

 a SUPPOSED MBL transition occurs for some CRITICAL disorder W* when the energy spectrum becomes uncorrelated:

 $t_{\rm Th}(W^*) = t_{\rm H}$

• $t_{\rm H}$ scaling is given by:

 $t_{\rm H} \propto \exp\left(L\ln 2\right)$

• combining these results gives us

 $W^* \approx \Omega \ln(2) L \propto L$

IMPLIES ABSENCE OF MBL IN THE THERMODYNAMIC LIMIT!

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 15/17

... Is there a MBL transition at all?

• a **SUPPOSED** MBL transition occurs for some **CRITICAL** disorder W^* when the energy spectrum becomes uncorrelated:

 $t_{\rm Th}(W^*) = t_{\rm H}$

• $t_{\rm H}$ scaling is given by:

 $t_{\rm H} \propto \exp\left(L\ln 2\right)$

• combining these results gives us

 $W^* \approx \Omega \ln(2) L \propto L$

IMPLIES ABSENCE OF MBL IN THE THERMODYNAMIC LIMIT!

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 15/17

... Is there a MBL transition at all?

• a **SUPPOSED** MBL transition occurs for some **CRITICAL** disorder W^* when the energy spectrum becomes uncorrelated:

 $t_{\rm Th}(W^*) = t_{\rm H}$

• $t_{\rm H}$ scaling is given by:

 $t_{\rm H} \propto \exp\left(L \ln 2\right)$

combining these results gives us

 $W^* \approx \Omega \ln(2) L \propto L$

IMPLIES ABSENCE OF MBL IN THE THERMODYNAMIC LIMIT!

Spectral statistics and MBL

... Is there a MBL transition at all?

• a **SUPPOSED** MBL transition occurs for some **CRITICAL** disorder W^* when the energy spectrum becomes uncorrelated:

 $t_{\rm Th}(W^*) = t_{\rm H}$

• $t_{\rm H}$ scaling is given by:

 $t_{\rm H} \propto \exp\left(L\ln 2\right)$

• combining these results gives us

 $W^* \approx \Omega \ln(2) L \propto L$

IMPLIES ABSENCE OF MBL IN THE THERMODYNAMIC LIMIT!

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019 15/17

- We tested our conclusions against more commonly used statistics
- However, we interpreted our results DIFFERENTLY

- We tested our conclusions against more commonly used statistics
- However, we interpreted our results DIFFERENTLY

- We tested our conclusions against more commonly used statistics
- However, we interpreted our results DIFFERENTLY

• **BOTTOM LINE:** results for different spectral statistics seem consistent

< 6 b

Conclusions and further work

• Our results for the **PARADIGMATIC** class of models expected to give **MBL** show **NO INDICATIONS** of the MBL transition

• The emergence of **QUANTUM CHAOS** for **ANY** disorder strength in the TD limit

Conclusions and further work

 We need to test our assumptions on other models in which MBL is predicted

• We need to examine and better understand the relationship between **our results** and the **transport properties**

Conclusions and further work

Thank you for your attention!