Spectral statistics and many-body localization

Jan Šuntajs, Lev Vidmar, Janez Bonča

September 16, 2019

Jožef Stefan Institute, Ljubljana, Slovenia
Many-body localization (MBL) - what is it about?

1. Occurring in **INTERACTING** quantum systems with **DISORDER**

2. An **IDEAL INSULATOR** → at **ANY** temperature

3. Explains the **FAILURE** of some systems to **THERMALIZE**
Many-body localization (MBL) - what is it about?

1. Occurring in INTERACTING quantum systems with DISORDER

2. An IDEAL INSULATOR → at ANY temperature

3. Explains the FAILURE of some systems to THERMALIZE
Many-body localization (MBL) - what is it about?

1. Occurring in **INTERACTING** quantum systems with **DISORDER**

2. An **IDEAL INSULATOR** → at **ANY** temperature

3. Explains the **FAILURE** of some systems to **THERMALIZE**

Jan Šuntajs

Spectral statistics and MBL

September 16, 2019
Many-body localization (MBL) - what is it about?

1. Occurring in **INTERACTING** quantum systems with **DISORDER**

2. An **IDEAL INSULATOR** \rightarrow at **ANY** temperature

3. Explains the **FAILURE** of some systems to **THERMALIZE**
The properties of MBL systems

Introduction of the physical model

Numerical analysis of the spectral statistics
 - A brief introduction to spectral statistics
 - Spectral form factor (SFF)

Our recent results and conclusion
The outline of the presentation

1. The properties of MBL systems
2. Introduction of the physical model
3. Numerical analysis of the spectral statistics
 - A brief introduction to spectral statistics
 - Spectral form factor (SFF)
4. Quantum chaos challenges many-body localization

Jan Šuntajs,1 Janez Bonča,2,1 Tomaž Prosen,2 and Lev Vidmar1

1Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia
2Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

Closed quantum systems

Nandkishore, Huse, 2015
- **Closed** quantum systems

Presence of interactions

Nandkishore, Huse, 2015
MBL - a quick recap

- **Closed** quantum systems
- Presence of **interactions**
- Presence of **disorder**

Nandkishore, Huse, 2015
MBL - a quick recap

- **Closed** quantum systems

- Presence of **interactions**

- Presence of **disorder**
The properties of MBL systems

- The absence of ergodicity

Abanin, Altman, Bloch, Serbyn, 2018
The properties of MBL systems

- The **absence of ergodicity**

Abanin, Altman, Bloch, Serbyn, 2018

- **THE ENTANGLEMENT ENTROPY:**
 - Area law scaling for all eigenstates
 - Logarithmic growth in time
The properties of MBL systems

- The absence of ergodicity

- THE ENTANGLEMENT ENTROPY:
 - Area law scaling for all eigenstates
 - Logarithmic growth in time

Abanin, Altman, Bloch, Serbyn, 2018
The properties of MBL systems

- The absence of ergodicity

Abanin, Altman, Bloch, Serbyn, 2018

THE ENTANGLEMENT ENTROPY:
- Area law scaling for all eigenstates
- Logarithmic growth in time

Many-body localization in the Heisenberg XXZ magnet in a random field

Marko Žnidarič,1 Tomaž Prosen,1 and Peter Prelovšek1,2
1Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
2Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
(Received 31 August 2007; revised manuscript received 8 November 2007; published 25 February 2008)

Special properties of the energy spectra
- The subject of our numerical analysis
The properties of MBL systems

- The absence of ergodicity

Abanin, Altman, Bloch, Serbyn, 2018

THE ENTANGLEMENT ENTROPY:
- Area law scaling for all eigenstates
- Logarithmic growth in time

Many-body localization in the Heisenberg XXZ magnet in a random field

Marko Žnidarič,1 Tomaž Prosen,1 and Peter Prelovšek1,2
1Department of Physics, FMF, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
2Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
(Received 31 August 2007; revised manuscript received 8 November 2007; published 25 February 2008)

- Special properties of the energy spectra
 - The subject of our numerical analysis
The model

The hamiltonian - paradigmatic ‘quantum chaotic’/ergodic:

Heisenberg-like 1D

\[\hat{H} = \sum_{j \in \{1,2\}} J_j \sum_{\ell} \left(\hat{s}_\ell^x \hat{s}_{\ell+j}^x + \hat{s}_\ell^y \hat{s}_{\ell+j}^y + \Delta_j \hat{s}_\ell^z \hat{s}_{\ell+j}^z \right) + \sum_{\ell=1}^{L} w_\ell \hat{s}_\ell^z \]

- \(l \) - site, \(L \) - chain length

- \(w_\ell \): randomly disordered potential
The model

\[J_1 = J_2 = 1 \]

\[\Delta_1 = \Delta_2 = 0.55 \]

Disorder probability distribution:

\[p(w) \]

\[W \] - the disorder strength parameter
Our (numerical) analysis of the MBL systems

- We perform **full** or **partial** diagonalization of the Hamiltonians

 Spectrum: \(\{ E_1 \leq E_2 \leq \cdots \leq E_D \} \)

- **Partial diagonalization:** \(\approx 500 \) eigenstates from the middle of the spectra

- Maximum Hilbert space dimensions:

 \(D = 48620 \) (full)

 \(D = 184756 \) (partial)

- Between \(10^2 - 10^3 \) different disorder realizations for each model parameter
Why do we study energy spectra?

- Quantum chaos conjecture (Bohigas, Giannoni, Schmidt, 1984):
 - Quantum systems
 - Spectral properties match the predictions of the random matrix theory (RMT).
 - Corresponding classical systems
 - The dynamics are completely chaotic.
What about systems without a classical analogue?
Quantum chaos and energy spectra

- Many-body quantum chaos
 - GENERIC systems \rightarrow RMT-like spectral statistics
 - Montambaux et. al. (1993), Prosen (1999), Santos and Rigol (2008)

- RMT statistics \rightarrow hallmarks of **ergodicity** and **thermalization** in an isolated quantum system.
 - D’Alessio, Kafri, Polkovnikov, Rigol (2016)
We analyse the **statistical properties** of the energy spectra.

We rely on the findings of the **RMT**:

- **Ergodic** systems: spectral statistic match the **Gaussian orthogonal ensemble (GOE)**
- **MBL** systems: nearest levels distributed in accordance with the **Poisson** distribution

We compare our **RESULTS** with the above cases.
We analyse the **statistical properties** of the energy spectra.

We rely on the findings of the **RMT**:

- **Ergodic** systems: spectral statistic match the **Gaussian orthogonal ensemble** (GOE)
- **MBL** systems: nearest levels distributed in accordance with the **Poisson** distribution

We compare our **RESULTS** with the **above cases**.
The mean ratio of the level spacings

- The spacings between the **nearest** energy levels:
 \[
 \delta_n = E_{n+1} - E_n \geq 0
 \]

- We define the **level spacing ratio**:
 \[
 0 \leq \tilde{r}_n = \min\{\delta_n, \delta_{n-1}\} / \max\{\delta_n, \delta_{n-1}\} \leq 1
 \]

KEYNOTE: the limiting values of \(\langle \tilde{r} \rangle \) are well known:

- **Ergodic:** \(\langle \tilde{r} \rangle_{\text{GOE}} = 0.5307 \)
- **MBL:** \(\langle \tilde{r} \rangle_{\text{P}} = 2 \ln 2 - 1 \approx 0.3863 \)
The mean ratio of the level spacings

The spacings between the **nearest** energy levels:

\[\delta_n = E_{n+1} - E_n \geq 0 \]

We define the **level spacing ratio**:

\[0 \leq \tilde{r}_n = \min\{\delta_n, \delta_{n-1}\} / \max\{\delta_n, \delta_{n-1}\} \leq 1 \]

KEYNOTE: the limiting values of \(\langle \tilde{r} \rangle \) are well known:

Ergodic: \(\langle \tilde{r} \rangle_{\text{GOE}} = 0.5307 \)

MBL: \(\langle \tilde{r} \rangle_P = 2 \ln 2 - 1 \approx 0.3863 \)
The mean ratio of the level spacings

\[\langle r \rangle \]

\(W\)

\(L = 12\) \(L = 14\) \(L = 16\) \(L = 18\) \(L = 20\)

GOE

Poisson
Pros and cons of $\langle \tilde{r} \rangle$

Mean level spacings ratio:

- a commonly used indicator of a given system’s ergodicity
 + straightforward implementation
 - only considers correlation between the nearest energy levels

We would like to consider correlations between all the levels

- This is why we implement the spectral form factor (SFF)
 - the implementation is more demanding
Pros and cons of $\langle \tilde{r} \rangle$

Mean level spacings ratio:

- a commonly used indicator of a given system’s ergodicity
 - straightforward implementation
- only considers correlation between the nearest energy levels

We would like to consider correlations between all the levels

- This is why we implement the spectral form factor (SFF)
 - the implementation is more demanding
The spectral form factor (SFF)

Definition:

\[K(\tau) := \left\langle \frac{1}{D} \sum_{i,j} e^{-i(\varepsilon_i - \varepsilon_j)\tau} \right\rangle; \quad K(0) = D, \quad K(\tau \to \tau_H) = 1 \]

D - Hilbert space dimension \(\tau \to \) an external parameter

\(\langle \ldots \rangle \) over disorder realizations

Heisenberg time \(\tau_H \propto \) inverse mean level spacing
(largest sensible timescale of a system)

\(\{ \varepsilon_i \} \to \) energy levels after spectral unfolding
The spectral form factor (SFF)

Definition:

\[K(\tau) := \left\langle \frac{1}{D} \sum_{i,j}^{D} e^{-i(\varepsilon_i - \varepsilon_j)\tau} \right\rangle; \quad K(0) = D, \quad K(\tau \to \tau_H) = 1 \]

\(D \) - Hilbert space dimension \hspace{1cm} \(\tau \to \) an external parameter

\(\langle \ldots \rangle \) over disorder realizations

Heisenberg time \(\tau_H \propto \) inverse *mean level spacing* (largest *sensible* timescale of a system)

\(\{\varepsilon_i\} \to \) energy levels after *spectral unfolding*
The spectral form factor (SFF)

- A quick introduction to unfolding

![Spectral plots](image-url)
The spectral form factor (SFF)

- **Unfolding** → mean level spacing $= 1$

![Spectral plots](image)
SFF - KEYNOTES:

- we again expect different behaviour for ergodic and uncorrelated spectra

- we investigated the behaviour of the Thouless time τ_{Th}

- Thouless time $\tau_{Th} \rightarrow$ the onset of UNIVERSAL DYNAMICS
The spectral form factor (SFF)

\[K(\tau) \]

- \(W = 0.5 \)
- \(W = 8.0 \)
- \(K_{\text{GOE}}(\tau) \)

MBL

ERG

\[\tau_{\text{Th}} \]

\[\tau_{H} \]
The spectral form factor (SFF)
The spectral form factor (SFF)

\[K(\tau) \]

- \(W = 0.5 \)
- \(W = 8.0 \)

\[K_{\text{GOE}}(\tau) \]

- MBL
- ERG

DECAY

RAMP

\[\tau_{\text{Th}} \]

\[\tau_{\text{H}} \]
The spectral form factor (SFF)

We see universal behaviour after some transient time τ_{Th}

$K(\tau)$ for uncorrelated spectra

$$K_P(\tau) = 1$$

$K(\tau)$ in ergodic systems

$$K_{\text{GOE}}(\tau) = 2 - \tau \log \left(\frac{2\tau + 1}{2\tau - 1} \right)$$
Thouless time τ_{Th}: determines the energy scale at which the spectral correlations are universally determined by the GOE predictions (e.g., when the RAMP appears)

- large(r) $\tau_{\text{Th}} \rightarrow$ small(er) spectral correlation length E_{Th}
Thouless time τ_{Th}: determines the energy scale at which the spectral correlations are universally determined by the GOE predictions (e.g., when the RAMP appears)

Large(r) $\tau_{\text{Th}} \rightarrow$ small(er) spectral correlation length E_{Th}
We set out to find out different scalings

- How does τ_{Th} scale with the system size L?

- How does τ_{Th} scale with disorder strength parameter W?
We noticed some surprising results along the way

Quantum chaos challenges many-body localization

Jan Šuntajs,¹ Janez Bonča,² ¹ Tomaž Prosen,² and Lev Vidmar¹

¹Department of Theoretical Physics, J. Stefan Institute, SI-1000 Ljubljana, Slovenia
²Department of Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia

arXiv:1905.06345 [cond-mat.str-el], 15 May 2019
We first checked for consistency of the $K(\tau)$ and $\langle \tilde{r} \rangle$ results.
We then numerically extracted τ_{Th} values and performed a scaling analysis w.r.t. both L and W.

In the subsequent scaling analysis, we introduce the **physical Thouless time** t_{Th}, rescaling τ_{Th} by the mean level spacing δE of the raw spectra:

$$t_{Th} = \tau_{Th}/\delta E$$
We then numerically extracted τ_{Th} values and performed a scaling analysis w.r.t. both L and W

In the subsequent scaling analysis, we introduce the PHYSICAL THOULESS TIME t_{Th}, rescaling τ_{Th} by the mean level spacing δE of the RAW spectra:

$$t_{Th} = \tau_{Th}/\delta E$$
The results of the scaling analysis

We obtain the following double scaling:

\[t_{Th} = t_0 e^{W/\Omega} L^2 \]
Verification of the scaling: data collapse

\(W = 2.0 \)

\(L = 12 \)

\(t_{\text{HH}}/L^2 \)

\(K(\tau) \tau H e^{-W/\Omega} \)

\(W = 3.5 \)

\(L = 18 \)

\(\tau t_{\text{HH}} e^{-W/\Omega} \)

Nonuniversal

Universal
... Is there a MBL transition at all?

- a **SUPPOSED** MBL transition occurs for some **CRITICAL** disorder W^* when the energy spectrum becomes uncorrelated:

 $$ t_{\text{Th}}(W^*) = t_H $$

- t_H scaling is given by:

 $$ t_H \propto \exp(L \ln 2) $$

- combining these results gives us

 $$ W^* \approx \Omega \ln(2) L \propto L $$

- **IMPLIES ABSENCE OF MBL IN THE THERMODYNAMIC LIMIT!**
... Is there a MBL transition at all?

- a **SUPPOSED** MBL transition occurs for some **CRITICAL** disorder \(W^* \) when the energy spectrum becomes uncorrelated:

\[
t_{Th}(W^*) = t_H
\]

- \(t_H \) scaling is given by:

\[
t_H \propto \exp (L \ln 2)
\]

- combining these results gives us

\[
W^* \approx \Omega \ln(2) L \propto L
\]

IMPLIES ABSENCE OF MBL IN THE THERMODYNAMIC LIMIT!
... Is there a MBL transition at all?

- A **SUPPOSED** MBL transition occurs for some **CRITICAL** disorder W^* when the energy spectrum becomes uncorrelated:

 $$t_{\text{Th}}(W^*) = t_H$$

- t_H scaling is given by:

 $$t_H \propto \exp (L \ln 2)$$

- Combining these results gives us

 $$W^* \approx \Omega \ln(2) \ L \propto L$$

IMPLIES ABSENCE OF MBL IN THE THERMODYNAMIC LIMIT!
SFF - results

... Is there a MBL transition at all?

a **SUPPOSED** MBL transition occurs for some **CRITICAL** disorder W^* when the energy spectrum becomes uncorrelated:

$$t_{Th}(W^*) = t_H$$

- t_H scaling is given by:

$$t_H \propto \exp (L \ln 2)$$

combining these results gives us

$$W^* \approx \Omega \ln(2) L \propto L$$

- **IMPLIES ABSENCE OF MBL IN THE THERMODYNAMIC LIMIT!**
Verification of our results

- We tested our conclusions against more commonly used statistics.
- However, we interpreted our results DIFFERENTLY.
Verification of our results

- We tested our conclusions against more commonly used statistics.
- However, we interpreted our results **DIFFERENTLY**.
Verification of our results

- We tested our conclusions against more commonly used statistics.
- However, we interpreted our results **DIFFERENTLY**.

![Graph showing spectral statistics and MBL](image-url)
Verification of our results

- **BOTTOM LINE:** results for different spectral statistics seem consistent
Conclusions and further work

- Our results for the **PARADIGMATIC** class of models expected to give **MBL** show **NO INDICATIONS** of the MBL transition.

- The emergence of **QUANTUM CHAOS** for **ANY** disorder strength in the TD limit.
Conclusions and further work

- We need to test our assumptions on other models in which MBL is predicted.

- We need to examine and better understand the relationship between our results and the transport properties.
Thank you for your attention!