Prethermalization beyond high-frequency regime

Wojciech De Roeck (KULeuven)

with my former master student Victor Verreet
====> soon (?) on arxiv

(..... waiting for numerics)



Mathematical conventions

= |ocal (many-body) Hamiltonians [ spin chain of length L

L
H =Y ho;+Jofo},,

1=1

O

local (operator)

* Norm of Hamiltonian ||H|| ~ L

* More useful is “local norm”  H = O,.(2|J]| + |h|)



Thermodynamic intuition

* local (many-body) Hamiltonians f7, F, chain of length L

7H o
7H 1

, H2
el

, 7H 5
o T

 Evolution after t =n  U(n) =

Un, [J — e—zng—zHl

should heat up to infinite temp.

lim(O(t)) — limtr(O)

L t—oco [

for local O

= Possible obstruction:

emergent local Ham

UHgU™ = Hg + Ojcall€)

HE UnHEU_n — HE + OlOC(TLE)




Obstruction...but usually also prethermalization

(]}[E(]>l< — HE + Olocal(e)

Possible obstruction:

emergent local Ham Hg U"HryU ™" = Hg + Oloc(ne)

“Prethermal state”

Thermal
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Equilibrium state determined

Trace state (featureless)
by (Hg) = C" “Prethermal state”

Initial state



Obstruction...but usually also prethermalization

“Prethermal state”

Thermalization time T t

= Prethermal state: “Quasi-stationary Noneq state” (Berges, Gasenzer,
2008-...)
= Phenomenon in near-integrable systems H = Hiptegrable + gV

°* T ~ 1/g2
« Mechanism not Hg but simply Fermi Golden Rule
* Not to be discussed here

= This talk: situations where I Hg and 7= O(g™ )

= Only the obstruction is sometimes rigorous, not the
thermalization and prethermalization (but Kos, Bertini, Prosen 2018)



Simplest example of obstruction: high frequency

eH> cH- eH>
R

>

U _ e—’ieﬂge—ieﬂl ; e—iE(H2+H1)—|—’i010C(€2)

\ Baker-Campbell-Hausdorf?
No, converges only for ||H,LH ~ ]

Still, can construct  Hp = Hog = ¢(Hy + Hs) + 0106(62)

> Exponentially slow heating! | 7 ~ ¢!/¢

(Magnus, ..... D’Alesio et al,..... Rigourous 2017: Kuwahara et al, Abanin et al )



Motivation for this work

Replica resummation of the Baker-Campbell-Hausdorff series
(Vajna, Klobas, Prosen, Polkovnikov, PRL 2018)

Kicked many-body model: One-cycle unitary is

[ — el 20501 ol > ;(cos(0)o;+sin(0)o})

h J
T W .
- 1 cycle . time
|h| 4+ |J| <1 =====> High-frequency regime
Exponentially Slow heating
+ |h| < |J| ~ 1 =====> Moderate frequency but weak driving

DDV 77?



[ — ol 2 i 0i 011 ol > . (cos(0)o?+sin(0)c;)

|h| + |J| <1 =====> High-frequency regime

Exponentially Slow heating

+ |h| < |J]| ~ 1 =====> Moderate frequency but weak driving
Exponentially Slow heating !

oderate frequency but weak driving

/ Exponentially Slow heating !

Numerics and Replica Resummation suggest

U*HoqU = Heg + Oroo(e™ V), e=horJ



U — ¢l 2., 0011 ol >, (cos(0)o;+sin(0)o;)

|h| + |J| <1 =====> High-frequency regime

Exponentially Slow heating

+ |h| < |J]| ~ 1 =====> Moderate frequency but weak driving
Exponentially Slow heating !

+ |J| < |h| ~1 =====> Moderate frequency but weak driving

Exponentially Slow heating !

Weak driving always gives exponentially slow heating? No, in general

/ rate ~ (driving)”
weakly interacting phonons or fermions =———> Kkinélic equation

Is there some simple special structure to these models? Yes: this talk



JT/2 T

A-posteriori motivation

U = eiJZz- O; 0541 eiZ¢(hw0f‘|‘hzaf)

N 7-(/4

Numerics by Prosen 2007:

‘Minimal decay rate’ /\ of local Ham

UHgU™ = Hg + Oloc(A)

White: A < 1()_6

0 /4 7t/ 2

hx

So it really matters whether hm or hz IS small

> special structure ?




Recall high-frequency regime

H = JHy + hcos(t)H, J, h < )
oS

¢ J > Many local events needed to absorb one photon of
¢ J / frequency §?

———=>  Dissipation only visible in order of PT ~ Q/J

E— heating rate ~ e~/

(Magnus, ..... D’Alesio et al,..... Rigourous 2017: Kuwahara et al, Abanin et al )



Same logic: stability of doublons D(n; = 2)

A ()
o J .
0 ¢ J » Many local events needed to provide D-energy ()
Lo
v = D — annihilation rate ~ ¢~/

(r ~ O())

Hy = Hog = Z nz‘(nl — 1) 4+ (_’)(J/Q) conserves dressed doublons

(Sensarma et al, ..... Rigorous: Abanin et al, Else etal 2017)



Same logic: stability of doublons D(n; = 2)

H:QZRZ(RZ—1)+JH1 J<<Q
A 1
¢ L. local ded d
5 Many local events needed to provide D-energy
Q 3 0
Lo
— D — annihilation rate ~ =¥/

Wait... enough to have two distinct energy scales?

No, crucial propery is: () Z n; (nZ — 1) can absorb only a discrete

small set of energies locally. *

= Sum of commuting local terms with
——> Simplest examples: integer gaps  (as here)

= MBL systems (stability of MBL)



So: do we have “sums of commuting local terms with integer gaps” ?

U — el D005 ol > . (cos(0)o;+sin(f)o;)

Y (cos(B)af + sin(f)o7)

Yes, both terms

i
have this property =====>
Z 0;04., ~ doublonsD
Choose this
R one to continue

To absorb doublon D, need to match frequency
J » up to error of O(h) -

27 (frequency)

n'th order PT:  min |n — mzi\ > Ch"
meZ n

Mechanism of exp. slow dissipation is there !



Our Theorem H(t)=J@t)D +hW(t), tel0,1]

1 1
Assumptions T :— 2—/ dtJ(t) is “sufficiently Diophantine”
T Jo
D is sum of commuting local terms with integer gaps

periodicity H(t) = H(t + 1)

_C/hl/lO -
Result Take 4 small, € := ¢ and go to rotated frame

Canexpect [ > Prethermalizationat [) — constant



1 1

What means X = 2 dtJ (t ( ) Is “sufficiently Diophantine”
10
Recall: we need Nn'th order PT: ml% |TL — mx\ > h"
me

a(z)

meZ n—b

Def:  is Diophantine: min |n —mx| >

p>1

Most numbers are Diophantine:

size {x € [0,1] : a(z) > e} > 1 —Ce

Our case: Is the real small parameter

h
a(z)



Proof idea: Schrieffer-Wolf to exhibit conserved quantity
H(t)y=JD+ hW(t), te]|0,1]

= Goal (first order) forsome W, s.t. [Wy, D] =0

ehA(—i(’?t -+ H)e_hA — —Zat -+ JD -+ th -+ Oloc(hz)

Brings us to (in rotated frame)

A~ I~ A~ A~

10U (t) = HHU(t) (H(t), D] = O1p¢(h?)

===> [) conserved up to time h 2



Proof idea: Schrieffer-Wolf to exhibit conserved quantity
H(t)y=JD+ hW(t), te]|0,1]

= Goal (first order) forsome W, s.t. [Wy, D] =0

ehA(—i(’?t -+ H)e_hA — —Zat -+ JD -+ th -+ Oloc(hz)

» Suffices to solve linear ODE with periodic A

—i0; A+ (W —W;3)+[A, D] =0
= Solution: (write ' = ¢J[D, -])

A(t) = eV A(0) + / t dse =N (W — Wy)(s)

1 Resonance
= Imposing periodicity at time t=1: A(0Q) = e :
(0) N 1 & Denominator




Crux: locality preservation of map

1 Resonance .
A(0) = N 1 & denominator N = tJ|D, -]

Use crucially that [ = E commuting terms

1 1 X = fattening of X
= (0) = —=—(0)
er - e - X = supp(O)
Smallest denominator-value on such () is min (nJ) MOD (27T)
n<|X|
Diophantine condition ===> smallest denominator |X |~ not exp(—|X|)

===> smallness of perturbation wins! h|X|



Example and Extension
Recall U — e/ 2290951 gl22i(hz0i+haoy)

( but same applies for static H = Z Jojoy 1+ hof +hyof )
i

Assume now: h, < h, ~ J ~ 1 || instead of hi + hﬁ < J*~1

New Diophantine condition: min in1J + nohy + 2wng| >
1| +|nz|+|ns|<n n-"

Then: Both D = E ;01 M= E o quasi-conserved
i i

> kinetically constrained model

Example L L ¢® T HL L ¢ No local move possible




> Both [) — Z O'fgjo'gj_'_l M = Z gg” guasi-conserved
i

i
General phenomenology: . first order in h ., : no spin flips at all

* First dissipation (spin flips) at time h_4

. 1/h9-1
Prethermalization h (e

* Actually, even at order 4: dynamics is
highly constrained
- further slowness

depending on state

droplet mass ~ exp (droplet length)

@u@

(magnetization, density of doublons)

* S0 even prethermalization might be
very slow here ------ ‘translation
iInvariant (asymptotic) MBL’



Mathematical excursion to spectral edge

H =Y Jofol, + h.o} + hyo} h, << hy~dJ~1

Our result: stable up to exp long time

L L L LL L L LLL L L Reality: stable for ever (groundstate close to h, = () GS)

Proofs: Yarotsky ‘04, Michalakis-Zwollak ‘14, Del Vechhio-Frohlich-Pizzo ‘18

Perhaps also infinite-time stability in bulk? ..... Let’s

have a symmetry r . T T x T
1

PELH A4 ecrmidge e Crealhen aswel Butnota

(in progress) Result is known for some integrable models



Conclusion

 Perturbative, rigorous view on slow heating in kicked Ising
models

* We identified conditions for slow heating: small perturbations of
Hamiltonians with commuting terms + Diophantine

* Not clear whether this indeed explains all the observed absence
of heating in this model: numerics needed.

* Also mechanism for creating kinetically constrained models
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