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Mathematical conventions

  local (many-body) Hamiltonians          spin chain of length L 

 

 
  

 Norm of Hamiltonian                      

 More useful is “local norm”         



  

Thermodynamic intuition

  local (many-body) Hamiltonians                  chain of length L 

 Evolution after 

       ……     should heat up to infinite temp.
  

  Possible obstruction: 

emergent local Ham



  

Obstruction…but usually also prethermalization

Possible obstruction: 

emergent local Ham

Initial state Trace state (featureless)Equilibrium state determined 
by                    :  “Prethermal state” 
  

Thermal 
value

“Prethermal state”

Thermalization time



  

Obstruction…but usually also prethermalization

 

 Prethermal state: “Quasi-stationary Noneq state”  (Berges, Gasenzer, 
2008-...)

 Phenomenon in near-integrable systems 

 This talk: situations where                   and 

 Only the obstruction is sometimes rigorous, not the 
thermalization and prethermalization (but Kos, Bertini, Prosen 2018)

Thermal 
value

“Prethermal state”

Thermalization time 

●      
● Mechanism not        but simply Fermi Golden Rule
● Not to be discussed here



  

Simplest example of obstruction:  high frequency

Baker-Campbell-Hausdorf?
No, converges only for 

Still, can construct

                           Exponentially slow heating!     

(Magnus, …..D’Alesio et al,…..  Rigourous 2017: Kuwahara et al, Abanin et al ) 



  

Motivation for this work

Replica resummation of the Baker-Campbell-Hausdorff series    
                               (Vajna, Klobas, Prosen, Polkovnikov, PRL 2018)

Kicked many-body model:  One-cycle unitary is 

time1 cycle

●                                      =====>     High-frequency regime

      

●                                     =====>     Moderate frequency but weak driving 

                      Exponentially Slow heating 

         ?????????



  

●                                      =====>     High-frequency regime 

      

●                                     =====>     Moderate frequency but weak driving

●                                       =====>     Moderate frequency but weak driving
 

                        Exponentially Slow heating

Exponentially Slow heating !

Exponentially Slow heating !

Numerics and Replica Resummation suggest

 



  

●                                      =====>     High-frequency regime 

      

●                                     =====>     Moderate frequency but weak driving

●                                       =====>     Moderate frequency but weak driving
 

                        Exponentially Slow heating

Exponentially Slow heating !

Exponentially Slow heating !

Weak driving always gives exponentially slow heating? No, in general

Is there some simple special structure to these models? Yes: this talk

weakly interacting phonons or fermions                   kinetic equation



  

A-posteriori motivation

Numerics by Prosen 2007:

‘Minimal decay rate’         of local Ham  

White:    

So it really matters whether          or            is small

                                     special structure  ?



  

Recall high-frequency regime 

Many local events needed to absorb one photon of 

                                                      frequency  
      

Dissipation only visible in order of PT 

(Magnus, …..D’Alesio et al,…..  Rigourous 2017: Kuwahara et al, Abanin et al ) 



  

Same logic: stability of doublons D 

Many local events needed to provide D-energy 

                                                        
      

(Sensarma et al, …..  Rigorous:  Abanin et al, Else et al   2017 ) 

   conserves dressed doublons



  

Same logic: stability of doublons D 

Many local events needed to provide D-energy 

                                                        
      

Wait... enough to have two distinct energy scales? 

No, crucial propery is:                                              can absorb only a discrete

small set of energies locally.  

Simplest examples:    

 Sum of commuting local terms with 
integer gaps    (as here)

 MBL systems  (stability of MBL)



  

So:  do we have “sums of commuting local terms with integer gaps” ?  

Yes,  both terms 
have this property    =====>  

Choose this 
one to continue

To absorb doublon D, need to match frequency 
up to error of 

n’th order PT: 

Mechanism of exp. slow dissipation is there ! 



  

Our Theorem  

Assumptions is “sufficiently Diophantine”

is sum of commuting local terms with integer gaps

periodicity

Result Take       small,                                 and go to                          

quasi-conserved       

             Can expect Prethermalization at

Alternative formulation



  

What means is “sufficiently Diophantine”

n’th order PT: 

Our case:                is the real small parameter

Recall: we need 

 Def:        is  Diophantine: 

        Most numbers are Diophantine: 



  

             
Proof idea:  Schrieffer-Wolf to exhibit conserved quantity

 Goal (first order)   for some 

 
 
        Brings us to (in rotated frame)

                 

                        ===>             conserved up to time                  

  



  

             

 Goal (first order)   for some 

 Suffices to solve linear ODE  with periodic 

 Solution: (write                            )

 Imposing periodicity at time t=1 :  
Resonance
Denominator

Proof idea:  Schrieffer-Wolf to exhibit conserved quantity



  

             
Crux:  locality preservation of map 

 
Resonance
denominator

Use crucially that

Smallest denominator-value on such         is

Diophantine condition   ===>   smallest denominator                not                      

                                            ===>  smallness of perturbation wins!                        
                     



  

Example and Extension 

Assume now:                                                  instead of 

New Diophantine condition:  

Then:     Both                                                                   quasi-conserved   

Recall

( but same applies for static                                                                 )   

kinetically constrained model

   
Example No local move possible



  

             Both                                                                   quasi-conserved   

General phenomenology:    

                         

● first order in       : no spin flips at all

● First dissipation (spin flips) at time

● Prethermalization

● Actually, even at order 4: dynamics is 
highly constrained
                                           further slowness
                               depending on state

 (magnetization, density of doublons)

● So even prethermalization might be 
very slow here ------ ‘translation 
invariant  (asymptotic)  MBL’

droplet mass



  

Mathematical excursion to spectral edge 

                                                                    

Our result: stable up to exp long time

Reality: stable for ever (groundstate close to                   GS)

Proofs:  Yarotsky ‘04,  Michalakis-Zwollak ‘14, Del Vechhio-Frohlich-Pizzo ‘18 

I think:   gives rise to eigenstate (breather) as well, but not at  
spectral edge

Result is known for some integrable models
 

Perhaps also infinite-time stability in bulk?   ….. Let’s 
have a symmetry

(in progress)



  

Conclusion

● Perturbative, rigorous view on slow heating in kicked Ising 
models 

● We identified conditions for slow heating:  small perturbations of 
Hamiltonians with commuting terms   +    Diophantine

● Not clear whether this indeed explains all the observed absence 
of heating in this model:  numerics needed.

● Also mechanism for creating kinetically constrained models 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

