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Quench dynamics
a many-body system time evolves unitarily

|Ψt > = e−iHt |Ψ0 > (ρ = |Ψ > < Ψ | )
ρt = e−iHtρ0eiHt

QUANTUM QUENCH !  

!  

g0 → g

H(g0) |Ψ0 > = EGS |Ψ0 >
H = H(g)

coined by J. Cardy

typical examples
spin lattice systems 

quantum field theories



Quench dynamics
a many-body system time evolves unitarily

|Ψt > = e−iHt |Ψ0 > (ρ = |Ψ > < Ψ | )
ρt = e−iHtρ0eiHt

QUANTUM QUENCH !  

!  

g0 → g

H(g0) |Ψ0 > = EGS |Ψ0 >
H = H(g)

coined by J. Cardy

typical examples
spin lattice systems 

quantum field theories

L

finite-dimensional  
local Hilbert space 

𝔇 ∼ #Ld



P H Y S I C A L R E V I E W V O L U M E 1 0 7 , N U M B E R 2 J U L Y 15 , 1957 

Quantum Recurrence Theorem 
P . BOCCHIERI AND A. LOINGER 

Istituto di Fisica deWUniversitd, Pavia, Italy, and Istituto Nazionale di Fisica Nuclear e, Sez. di Milano, Italy 
(Received October 9, 1956) 

A recurrence theorem is proved, which is the quantum analog of the recurrence theorem of Poincare\ 
Some statistical consequences of the theorem are stressed. 

IT is well known that in classical mechanics the 
following recurrence theorem holds, due to Poincare" 

(1890)1: "Any phase-space configuration (q,p) of a 
system enclosed in a finite volume will be repeated as 
accurately as one wishes after a finite (be it possibly 
very long) interval of time.,, 

In this paper we shall show that a similar recurrence 
theorem holds in quantum theory; it can be formulated 
as follows: "Let us consider a system with discrete 
energy eigenvalues En; if \F(tf0) is its state vector in the 
Schrodinger picture at the time to and e is any positive 
number, at least one time T will exist such that the 
norm \[^f(T)-^(to)\\ of the vector V(T)-y(t0) is 
smaller than e."2 

The proof of this theorem is simple and can be 
sketched in the following way: The equation of motion 
is 

i(d*(t)/dt) = H*(t); (1) 
the formal solution is 

00 

* ( 0 = £ r» exp(ivn-iEj)u(E»), (2) 

(the rn's being real positive numbers). From (2), 

| l ^ ( r ) - ^ ( / o ) | h 2 i : r n
2 ( l - c o s E n r ) ; (r^T-t0), (3) 

and, if JV is suitably chosen, 

Lrn2(l-cosEnT)<€. (4) 
.n=JV 

Consequently, it is sufficient to prove that there is a 
value of r such that 

N-l 
£ ( l - c o s E n r ) < 6 . 
71=0 

(5) 

But this is actually the case according to a standard 
result of the theory of the almost-periodic functions.3 

1 For a modern formulation of this theorem see A. Wintner, 
The Analytical Foundations of Celestial Mechanics (Princeton 
University Press, Princeton, 1947), p. 9.0. 

2 Besides this recurrence theorem, a quasi-ergodic theorem for 
*(*) exists [J. von Neumann, Z. Physik 57, 30 (1929), Sec. 4, 
p. 35]. However, it holds under very restrictive hypotheses, 
which most probably cannot be satisfied by any system having 
physical interest. 

3 See, e.g., Harald Bohr, Fastperiodische Funktionen (Verlag 
Julius Springer, Berlin, 1932), p. 31. 

Furthermore it is easy to prove that this quantum 
recurrence theorem does not hold in general if the 
system has a continuous energy spectrum. The situation 
here is quite similar to the classical one: the quantum 
systems having a continuous energy spectrum corre-
spond to classical systems not bounded to a finite 
volume. The analogy with the classical case is even 
deeper, since it is easy to prove (see Appendix) that 
also for the expectation values of the q's and p's a 
recurrence theorem holds, which in the classical limit 
goes over into the theorem of Poincare. 

The quantum recurrence theorem has statistical 
consequences rather similar to those of the Poincare's 
theorem in the classical case. 

Using Poincare's theorem, Zermelo (1896) was able 
to invalidate the unrestricted (nonstatistical) formu-
lation of the Boltzmann ^-theorem and to conclude 
that the "Stosszahlansatz" is, strictly speaking, in 
contradiction with the dynamical laws, the effect of the 
"Stosszahlansatz" being that of averaging out the 
fluctuations.4 

The quantum analog to the "Stosszahlansatz" is the 
assumption about the number of transitions,5 which is 
obtained by using the quantum-dynamical equations 
of motion and the conventional statistical postulate of 
equal a priori probabilities and random a priori phases. 

Analogously to the classical case, the quantum 
recurrence theorem shows that we cannot hope to 
obtain the assumption about the number of transitions 
without postulates of statistical nature. 

Our theorem shows furthermore that a similar con-
clusion is valid also for the probability transport 
equation. 

Finally we would like to emphasize that (contrary to 
a wide-spread belief) the expectation values of the 
macroscopic observables will not maintain indefinitely 
their equilibrium values, once they have attained them. 

APPENDIX. PROOF OF THE SIMULTANEOUS 
RECURRENCE OF THE EXPECTATION 
VALUES OF THE p's AND THE q's 

The state vector is 
^ (0 = Zm rm exp(i<pm-iEmt)u(Em). 

4 See, e.g., W. Pauli, "Gekuerzte Vorlesung ueber statistische 
Mechanik," lecture notes, Zurich, 1951 (unpublished), p. 5; and 
also L. Rosenfeld, Acta Phys. Polonica, 14, 3 (1955); D. ter 
Haar, Revs. Modern Phys. 27, 289 (1955). 

5 Formula (D1.30) of the review article by ter Haar quoted in 
reference 3. 
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recurrence theorem does not hold in general if the 
system has a continuous energy spectrum. The situation 
here is quite similar to the classical one: the quantum 
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recurrence theorem holds, which in the classical limit 
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Time averaged state

Renyi entropies:  �  

(von Neumann entropy:  � )

Sα =
1

1 − α
log tr[ρ̄α

0,t]

SvN = − tr[ρ̄0,t log ρ̄0,t]

complete characterisation of the eigenvalue distribution  (Hausdorff moment problem)

e−Ldf(t1−t2) = < Ψt1 |Ψt2 > = < Ψ0 |eiH(t1−t2) |Ψ0 > ∼ exp(Ld
∞

∑
n=1

(−i)n 𝔢n(t2 − t1)n

n! )
Loschmidt echo

Entropy of the time-averaged state 2/4
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Useful properties of �  in the thermodynamic limit: 
• existence of the limit of infinite time

• �  has only the solution �

f(t)

f(t) = 0 t = 0
see ,e.g, Karrasch and Schuricht, Phys.Rev. B 87, 195104 (2013)



exponentially small in the system’s 
size for any nonzero �τ1 − τ2
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|⋯]

the integration domain can be reduced 
into a region where �  
can be series expanded about �
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>
τ1 ≈ τ2

MF, SciPost Phys. 6, 059 (2019)

Entropy of the time-averaged state 3/4 



exponentially small in the system’s 
size for any nonzero �τ1 − τ2

tr[ ρ̄α
0,t] = tr[⋯ρ̄2

0,t⋯] = tr[⋯∬
t

0

dτ
t2

|Ψτ1
> < Ψτ1

|Ψτ2
> < Ψτ2

|⋯]

the integration domain can be reduced 
into a region where �  
can be series expanded about �

log < Ψτ1
|Ψτ2

>
τ1 ≈ τ2

asymptotic expansion in the limit of a large number of sites

tr[ ρ̄α
t ] ∼ ∭

[0,t L]α

dατ
tαLd α

2
e−𝔢2

(τα − τ1)2 + ∑α−1
j=1 (τj − τj+1)2

2 ∼ α− 1
2 (

𝔢2

2π
)1 − α

2 t1−αLd 1 − α
2

Sα[ ρ̄t] =
d
2

log L +
1
2

log
𝔢2t2

2π
+

log α
2(α − 1)

+ O(L− d
2 )

SvN[ ρ̄t] ∼
d
2

log L +
1
2

log
𝔢2t2

2π
+

1
2

MF, SciPost Phys. 6, 059 (2019)

Entropy of the time-averaged state 3/4 



An interesting consequence

supp(O)

approximate support of �eiHtOe−iHt

ℓ = |supp(O) |

MF, SciPost Phys. 6, 059 (2019)

�  can be replaced by �  L L̃ ≤ ℓ + 2vLRt + 2ξ

correlation length 
in the initial state

Lieb-Robinson bound

Lieb and Robinson, Comm. Math. Phys. 28, 251 (1972)
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The equilibrium thermodynamics of a system of bosons with repulsive delta-function 
interaction is shown to be derivable from the solution of a simple integral equation. The excitation 
spectrum at any temperature T is also found. 

I. INTRODUCTION 

The ground-state energy of a system of N bosons 
with repulsive delta-function interaction in one di-
mension with periodic boundary condition was calcu-
lated by Lieb and Liniger.I The Hamiltonian for the 
system is 

N a2 
H = - L -2 + 2c I b(Xi - Xi)' C > 0, (1) 

1 aX i i>i 

and the periodic box has length L. Using Bethe's 
hypothesis2 they showed that the k's in the hypothesis 
satisfy 

(_l)N-I exp (-ikL) = exp - k)} (2) 

where 
O(k) = -2 tan-I (k/c), -7T < 0 < 7T. (3) 

Taking the logarithm of (2) is a somewhat subtle 
process. In this paper we shall first discuss this point 
and show that all states of (I) are given by Bethe's 
hypothesis with real k's. The main purpose of the 
paper is to then evaluate the thermodynamical 
properties of the system at a finite temperature T. 

While we try to maintain mathematical rigor in the 
rest of the paper, it is to be emphasized that Sees. III 
and IV are far from rigorous. 

U. PROOF OF BETHE'S HYPOTHESIS 
FOR ALL STATES 

We first take the logarithm of (2): 

where 
kL = 27Tlk + IO(k - k'), 

k' 

Ik = integer, if N = odd, 
Ik + t = integer, if N = even. 

* Partially supported by NSF Grant GP873 I. 
1 E. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). 
2 H. A. Bethe, Z. Physik 71, 205 (1931). 

(4) 

(5) 

Now, for any set ofreal 1's, 11> 12 , ••• ,IN' Eq. (4) 
has a unique real solution for the k's, kI' k2' ... , kN • 
The proof of this statement (similar to but simpler 
than the proof of a corresponding statement3 for the 
Heisenberg-Ising problem) follows. Let 

OI(k) = J: O(k) dk. 

Define 
N N 

B(kl>' .. , kN) = tL I k; - 27T I Tiki 
1 1 

- t I 0I(k i - ks )· (6) 
i,S 

Equation (4) is the condition for the extrema of B. 
Now the second-derivative matrix B2 of B is positive-
definite. [The first sum in (6) contributes a positive-
definite part to B2 • The second sum contributes 
nothing. Each term in the third sum is negative-
semidefinite, since = O'(k) < 0.] Furthermore 
for large values of I k 2 , B --+ tL(I k 2). Thus, B has 
one and only one extremum, namely, a minimum. 

It is further clear from this argument that the 
solution above represents a point S in k space which 
moves continuously as c i is changed. [In fact, 
dki/d(c-1) can be computed.] Now when c-l = 0, 
01 = ° and the minimum of B occurs at 

(7) 

Now the problem with c- l = 0 is the problem of 
free particles with the condition that 'IjJ = ° whenever 
Xi = Xi (any i :F j). All eigenfunctions of H for this 
problem are easily seen to be the same as that of free 
fermions in the segment 0 ::::;; Xl ::::;; X 2 ::::;; X3 ::::;; ••• ::::;; 

XN ::::;; L. Thus, when c-I = 0, all eigenfunctions are 
of Bethe's form, with the k's given by (7) and with all 
the 1's different. 

• C. N. Yang and C. P. Yang, Phys. Rev. 150, 321 (1966). 
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Bya continuity argument with respect to c-1 we ob-
tain the following: 

Theorem: For any set of I's satisfying (5), no two 
of which are identical, there is a unique set of real 
k's satisfying (4), with no two k's being identical. 
With this set of k's, one eigenfunction of H, of Bethe's 
form, can be constructed. The totality of such eigen-
functions form a complete set for the boson system. 

The numbers I are quantum numbers for the problem. 

III. ENERGY AND ENTROPY FOR A SYSTEM 
WITH N = ro 

We now consider the problem for N = 00 and L = 
00 at a fixed density D = N/L. For the ground state, 
the quantum numbers I/L form1 a uniform lattice 
between - D/2 and D/2. The k's then form1 a non-
uniform distribution between a maximum k and a 
minimum k. For an excited state, (5) shows that the 
quantum numbers I/L are still on the same lattice, 
but not all lattice sites are taken, and the limits 
- D/2 and D/2 are no longer respected. We shall call 
the omitted lattice sites J;/ L. We would want to define 
corresponding "omitted k values" to be called holes. 
This can be easily done: Given the /'s, Eq. (4) defines 
the set of k's as proved in the last section. Now, 

Lh(p) == pL - 2: ()(p - k') (8) 
k' 

is a continuous monotonic function of p. At P = ± 00, 

it is equal to ± 00. Those values of p where Lh(p) = 
27TI are k's. Those values of p where Lh(p) = 27TJ 
will be defined as holes. 

For a large system, there is thus a density distribu-
tion of holes as well as one of k's: 

Lp(k) dk = No. of k's in dk, 
LPh(k) dk = No. of holes in dk. (9) 

By definition, the number of k's and holes in the 
interval dk is the number of times Lh(k) ranges over 
values 27TI and 27TJ in this interval. 

Thus, 

dh(k) = 27T(p + Ph) == 27Tj'(k). (lOa) 
dk 

Equation (8) gives 

h(k) = k - L:8(k - k')p(k') dk'. (lOb) 

Differentiation with respect to k gives 

27Tf= 27T(p + Ph) = 1 + 2e P . foo (k') dk 
-00 e2 + (k - k')2 

(11) 

The energy per particle for the state is 

E/N = D-1L:p(k)k2 dk, (12) 
where 

D = N/L = L: p(k) dk. (13) 

The entropy of the "state" is not zero since the 
existence of the omitted quantum numbers J; allows 
many wavefunctions of approximately the same 
energy to be described by the same P and Ph' In fact, 
for given P and Ph' the total number of k's and holes 
in dk is L(p + Ph) dk, of which Lp dk are k's and 
Lph dk are holes. Thus the number of possible choices 
of states in dk consistent with given P and Ph is 

[L(p + Ph) dk]! 
[Lp dk]! [Lph dk]! 

The logarithm of this gives the contribution to the 
entropy from dk. Thus, the total entropy is, putting 
the Boltzman constant equal to 1, 

S = '2 {(Lpdk + Lp"dk)ln(p + Ph) 
- Lp dk In P - Lph dk In Ph} 

or 

SIN = D-1L:[(p + ph)ln(p + Ph) 

- pIn P - Ph In Ph] dk. (14) 

IV. THERMAL EQUILIBRIUM 

At temperature T, we should maximize the contri-
bution to the partition function from the states 
described by P and Ph' In other words, given p, Ph 
is defined by (11). One then computes the contribution 
to the partition function 

exp (S - ET-l), (14') 

where Sand E are given by (14) and (12). The equi-
librium P is then obtained by maximizing this contri-
bution when P is varied subject to the condition (13). 

The above described procedure leads in a straight-
forward manner to the following condition on the 
equilibrium p: 

-A + e + Tin.£. 
Ph 

- Teloo dq In (1 + ..e.) = 0 
7T -00 e2 + (k - q)2 Ph' 

where A is a Lagrange multiplier for the condition (13). 
Writing 

(15) 
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Yang-Yang entropy

lim
L→∞

SYY

L
= − ∑

α
∫ dλ[ρα(λ) + ρh

α(λ)][ρα(λ)log ρ(λ) + ρh
α(λ)log ρh(λ)]

e−Q

tr[e−Q]
entropy of the state 

maximises the entropy at 
fixed expectation value of �Q
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this comes to hand for determining the "thermodynamic entropy"  
after a quantum quench from a homogeneous state

SvN = sup
ρMS

(−tr[ρMS log ρMS])

BAtime

(∃) lim
t→∞

lim
|B|→∞

ρA(t) = TrB[ρMS]
ρMS → {

ρGibbs ∝ e−βH generic H
ρGGE ∝ e−∑n λnQn integrable H

conserved (quasi)local charges



Integrable systems  
with a TBA description

Thermodynamic entropy 5/5

TBA equations for an excited state represented by �
e−Q

tr[e−Q]

log( ̂ϑ−1 − 1̂) ⃗u = − ⃗q − ̂T ̂σ log(1̂ − ̂ϑ) ⃗u
⃗a = ( ̂σ ̂ϑ−1 + ̂T ) ⃗ρ

ϑℓ(λ) =
ρℓ(λ)

ρℓ(λ) + ρh
ℓ(λ)

filling function 
(interacting generalisation of the occupation number)

density of hole excitations

fixed by the Hamiltonian 

bare charge associated with the stateun(λ) = 1

TBA equations for an excited state represented by �  Z−1 exp( − ∑
n

q(n/ξ)
n )
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TBA equations for an excited state represented by �  
in the limit � , when �

Z−1 exp( − ∑
n

q(n/ξ)
n )

ξ → ∞ [H, ∑
n

qx
n] = 0

∂tρα;x,t(λ) + ∂xvα;x,t(λ)ρα;x,t(λ) = o(ξ0)

e′�α(λ) = 2πσα[ρα;x,t(λ) + ρh
α;x,t(λ)] + 2π∑

β
∫ dμTα,β(λ − μ)vα;x,t(μ)ρα;x,t(μ)

dressed velocity

(defined as !  after the addition of a rapidity)

ΔE
ΔP

ρα; x
ξ
(λ)⟩

Integrable systems  
with a TBA description Bertini, Collura, De Nardis, MF, Phys. Rev. Lett. 117, 207201 (2016)

Castro-Alvaredo, Doyon, Yoshimura, Phys. Rev. X 6, 041065 (2016)

Bonnes, Essler, Läuchli, Phys. Rev. Lett. 113, 187203 (2014)
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∫ dμTα,β(λ − μ)vα;x,t(μ)ρα;x,t(μ)

dressed velocity

(defined as !  after the addition of a rapidity)

ΔE
ΔP

ρα; x
ξ
(λ)⟩

Integrable systems  
with a TBA description

this comes to hand for determining the "thermodynamic entropy"  
after a quantum quench from an inhomogeneous state

Ψ0⟩ = ΨL⟩ ⊗ ΨR⟩
x = ζξ

Jt = ξ

ξ→∞ ρα;ζ(λ)⟩
H

| (L)
0 i
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locally quasistationary state (LQSS)

Bertini, Collura, De Nardis, MF, Phys. Rev. Lett. 117, 207201 (2016)

Castro-Alvaredo, Doyon, Yoshimura, Phys. Rev. X 6, 041065 (2016)

Bonnes, Essler, Läuchli, Phys. Rev. Lett. 113, 187203 (2014)



1. … of the state 

2. … of the time averaged state 

3. thermodynamic entropy 

4. entanglement entropy (half chain/subsystem) 

5. …

SvN = − tr[ρ̄0,t log ρ̄0,t]

SvN = − tr[ρ(t)log ρ(t)]

SvN = sup
ρMS

(−tr[ρMS log ρMS])

∼
SGibbs generic H,  homogeneous  |Ψ0 >
SGGE integrable H,  homogeneous  |Ψ0 >
SLQSS integrable H,  inhomogeneous  |Ψ0 >

∂tSYY
x,t (λ) + ∂x[vx,t(λ)SYY

x,t (λ)] ∼ 0
entropy "per unit rapidity"      Yang-Yang entropy 

SvN[A] = − tr[ρA(t)log ρA(t)]

= 0

∼
1
2 (log Ld + log

e𝔢2t2

2π )

Entropy
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Bipartite 
entanglement

A BB

Schmidt decomposition

no classical (thermal) 
correlations

pure state

Ψ⟩ =
M

∑
n=1

pn ΨA
n⟩ ⊗ ΨB

n⟩

complete orthogonal bases 
of the corresponding spaces

quantum correlations between A and B

entanglement entropy  �SvN = − ∑
n

pn log pn



Entanglement entropy 1/9

Bipartite 
entanglement

A BB

Schmidt decomposition

no classical (thermal) 
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pure state

Ψ⟩ =
M

∑
n=1

pn ΨA
n⟩ ⊗ ΨB

n⟩

complete orthogonal bases 
of the corresponding spaces

quantum correlations between A and B

entanglement entropy  �SvN = − ∑
n

pn log pn

critical non-criticalE

volume law �SvN(A) ∼ |A |

area law �SvN(A) ∼ |∂A |

Eisert, Cramer, Plenio, Rev. Mod. Phys. 82, 277 (2010)
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Bipartite 
entanglement

A BB

Schmidt decomposition

no classical (thermal) 
correlations

pure state

Ψ⟩ =
M

∑
n=1

pn ΨA
n⟩ ⊗ ΨB

n⟩

complete orthogonal bases 
of the corresponding spaces

quantum correlations between A and B

entanglement entropy  �SvN = − ∑
n

pn log pn

critical non-criticalE

volume law �SvN(A) ∼ |A |

area law �SvN(A) ∼ |∂A |

Eisert, Cramer, Plenio, Rev. Mod. Phys. 82, 277 (2010)

log-breaking of area law �SvN(A) ∼ log |A |

(integrable systems)



Semi-classical theory

A. Low-entangled initial state

B. Strong correlations only between quasiparticle excitations with opposite velocities

C. Low entanglement (entangled semiclassical excitations are close to one another)

D. Entanglement not transferred when excitations scatter

E. Translational invariance (semiclassical excitations originated everywhere)

| 0i
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time
H

A BB
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Calabrese, Cardy, J.Stat. Mech. P04010 (2005)
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0 i
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time

A BB

Semi-classical theory

A. Low-entangled initial state

B. Strong correlations only between quasiparticle excitations with opposite velocities

C. Low entanglement (entangled semiclassical excitations are close to one another)

D. Entanglement not transferred when excitations scatter

E. Translational invariance (semiclassical excitations originated everywhere)

F. Bipartite entanglement equivalent to  

"particle entanglement" of the set of semiclassical excitations in A

Entanglement entropy 2/9

very effective in noninteracting spin chains
still not exploited in the presence of interactions 

(several issues to be understood and solved)

Bertini, MF, Piroli, Calabrese, J. Phys. A 51, 39LT01 (2018)



tensor product of pairs (or groups) of semiclassical quasiparticles

time

λ2 λ1 λ4 -λ1 λ3 -λ3 λ5 -λ2 -λ4 -λ5

x1 x2 x3 x4 x5

t

initial state

Bertini, MF, Piroli, Calabrese, J. Phys. A 51, 39LT01 (2018)

Semi-classical theory: no interaction

Entanglement entropy 3/9



tensor product of pairs (or groups) of semiclassical quasiparticles

time

λ2 λ1 λ4 -λ1 λ3 -λ3 λ5 -λ2 -λ4 -λ5

x1 x2 x3 x4 x5

t

⇢A(t) ⇠ tr{x2,�2},{x1,�1},{x5,�5},{x2.��2},{x5,�5},{x5,��5},...[| 0i h 0|]
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· · ·⌦ | (x1)
0 i h (x1)

0 |⌦ | (x2)
0 i h (x2)

0 |⌦ · · ·
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the spatial bipartite entanglement is equivalent to the particle bipartite entanglement

initial state

Bertini, MF, Piroli, Calabrese, J. Phys. A 51, 39LT01 (2018)

Semi-classical theory: no interaction

Entanglement entropy 3/9



tensor product of pairs (or groups) of semiclassical quasiparticles

time

λ2 λ1 λ4 -λ1 λ3 -λ3 λ5 -λ2 -λ4 -λ5

x1 x2 x3 x4 x5

t

⇢A(t) ⇠ tr{x2,�2},{x1,�1},{x5,�5},{x2.��2},{x5,�5},{x5,��5},...[| 0i h 0|]
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the spatial bipartite entanglement is equivalent to the particle bipartite entanglement

initial state

Bertini, MF, Piroli, Calabrese, J. Phys. A 51, 39LT01 (2018)

Semi-classical theory: no interaction

Entanglement entropy 3/9

Example (quantum Ising model, …):

ρλ = tr−λ[ρλ,−λ] = (1 − ϑλ)bλb†
λ + ϑλbλb†

λ
δSvN

δxδλ
= s(ϑλ) ≡

−ϑλ log(ϑλ) − (1 − ϑλ)log(1 − ϑλ)
2π

pair structure



time

λ2 λ1 λ4 -λ1 λ3 -λ3 λ5 -λ2 -λ4 -λ5

x1 x2 x3 x4 x5

t

⇢ = ⇢L ⌦ ⇢R
<latexit sha1_base64="sS5JsfIoi6Bra2+MDltxE1977Ug="></latexit><latexit sha1_base64="sS5JsfIoi6Bra2+MDltxE1977Ug="></latexit><latexit sha1_base64="sS5JsfIoi6Bra2+MDltxE1977Ug="></latexit><latexit sha1_base64="sS5JsfIoi6Bra2+MDltxE1977Ug="></latexit>

1. Time evolution encoded in the population of particles in the subsystem


2. The entanglement is computed at the initial time

r1 r2

Semi-classical theory: no interaction

Entanglement entropy 3/9

Bertini, MF, Piroli, Calabrese, J. Phys. A 51, 39LT01 (2018)

S[r1,r2](t) = ∫ dλθH(−vλ)∫
r2

max(r2+2vλ)t,r1

dxfx−vλt(λ) + ∫ dλθH(vλ)∫
min(r1+2vλ)t,r2

r1

dxfx−vλt(λ)

fx(λ) = θh(x)s[ϑR
λ ] + θH(−x)s[ϑL

λ ]



Half-chain entropy 
no interaction

time

λ2 λ1 λ4 -λ1 λ3 -λ3 λ5 -λ2 -λ4 -λ5

x1 x2 x3 x4 x5

t

⇢ = ⇢L ⌦ ⇢R
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0

d
dt

S[0,∞](t) = ∫ dλ |vλ(0) |SYY
λ (0) = ∫ dλ

d
dt ∫

∞

0
dxSYY

λ (x)

it was interpreted as the rate at which the two 
parts exchange thermodynamic entropy 
(through attributing a thermodynamic entropy to each particle)   

Alba, Phys. Rev. B 97, 245135 (2018)
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what’s the entanglement between the semiclassical particles of a pair?

1. entanglement is computed at the initial time


2. being quasi-localised, a semiclassical pair 
can not be affected by the inhomogeneity 

thermodynamic entropy per given rapidity
Alba, Calabrese, PNAS 114, 7947 (2017)

the entanglement entropy of one particle should be the 
same as in the corresponding homogeneous quench

Train of thought

Alba, Bertini, MF, Scipost 7, 005 (2019)
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Figure 3: Pictorial representation of the functions �↵,�(⇣) (cf. (40)), its inverse
Z↵,�(�) (cf. (41)), and of J↵,�(⇣) (cf. (63)). In (a) a quasiparticle is produced at
time 0 at position ⇣t. The function �↵,�(⇣) gives its ray at time t. In (b) Z↵,�(�)t
is the position at time 0 of the particle that at time t is on the ray �. In (c) two
quasiparticles with opposite rapidities � and �� are created. The function J↵,�(⇣)
gives the ray at time t of the quasiparticle whose partner with rapidity �� is at ray
⇣.

From now on we take the limit t0/t ! 0, dropping the dependence on t0 and t in �↵,� and
Z↵,�. With a slight abuse of notations, we indicate by �↵,�(⇣)t the position at time t of the
quasiparticle that started at position ⇣t at time 0 and by Z↵,�(�)t the position at time 0 of
the quasiparticle that is at position � t at time t. The functions �↵,� and Z↵,� are pictorially
illustrated in Fig. 3. Using these definitions, one immediately has

Z↵,�(�↵,�(⇣)) = ⇣ . (42)

We mention that the function Z↵,�(�)t has been already introduced in Refs. [74,75], where it
is called “characteristics”.

An important property of Z↵,�(�) and �↵,�(⇣) is that they are monotonic functions of their
arguments. This is a direct consequence of the non-crossing condition (34) of the trajectories.
To show the monotonicity of Z↵,�(�) it is useful to observe that (41) implies

(� � v↵,�(�))@�Z↵,�(�) = Z↵,�(�). (43)

Moreover, a trivial consequence of (34) is

Z↵,�(�)
� � v↵,�(�)

> 0 8� . (44)

Equation (43) and (44) imply that Z↵,� and, in turn, its inverse �↵,�(⇣) are monotonic.

4.1 Flow of conserved quantities

In this section we show how the information about the quasiparticles’ trajectories can be used
to determine the flow of conserved quantities. The latter are represented by functions of x
and t written in terms of a single-particle contribution g↵,�(x , t) that satisfies the continuity
equation (13), namely

G(x , t) =
NsX

↵=1

Z
d� g↵,�(x , t) , (45)

where
@t g↵,�(x , t) + @x v↵,�(x , t)g↵,�(x , t) = 0 . (46)

This definition includes the expectation values of all local and quasilocal conserved-charge
densities, for which (cf. (7))

g↵,�(x , t) = q↵,� ⇢↵,�(x , t) , (47)
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Figure 7: Entanglement dynamics after a bipartite quench in the XXZ chain. In the
initial state two semi-infinite chains are prepared in the Néel state |N, 0i (24) (left)
and the tilted ferromagnetic state (25) (right), respectively. The figure shows the
half-chain entropy plotted versus the time after the quench. The different curves are
tDMRG data for the chain with� = 5, 10 and several values of ✓ (tilting angle). The
dashed lines are linear fits. The slope of the lines is fixed by the prediction of the
quasiparticle picture (82).

shows the largest difference |Sent�Sth|, namely, the quench from the state |Ni⌦|N,✓ i (cf. (24)).
In this case, however, the entanglement growth is much faster, posing a severe limitation to
the timescales accessible by tDMRG. The time evolution of the entanglement entropy after
the quench for different values of the tilting angle ✓ and of the anisotropy � is reported in
Figure 8. For short times the tDMRG data exhibit large finite-time effects and are not described
by (82). On the other hand, for t ¶ 6 the numerical data become compatible with the slope
S0ent. Still, much larger timescales are needed to provide a robust verification of (82).

8 Conclusions

We investigated the dynamics of the entanglement entropy after quenches from a piecewise
homogeneous initial states in interacting integrable systems. By combining the quasiparticle
picture for the entanglement spreading with the GHD approach, we derived an analytic pre-
diction for the entropy evolution after the quench. Remarkably, the entanglement production
rate, i.e., the growth rate of the entanglement between two half-infinite chains is described
by a simple formula that we provided. This depends only on the thermodynamic macrostate
(GGE) that describes local properties near the interface between the two chains at infinite
time, as it was pointed out in Ref. [61]. We showed, however, that the entanglement produc-
tion rate is different from the rate of exchange of thermodynamic entropy between the two
half-infinite chains. This is in contrast with quenches in free-fermion models [65] and in ho-
mogeneous systems [33, 34] and it is a genuine effect of the combination of inhomogeneity
and interactions.

Our work calls attention to several interesting directions for future research. An immediate
one is to provide a more robust independent numerical check, going beyond the tDMRG time
scales that we accessed in this work. Moreover, our analytic formula for the entanglement
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