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1. Gauge Theory of States of Matter – General Ideas

I Goal: Use concepts and results from Gauge Theory, Current
Algebra, and GR to develop a “Gauge Theory of Phases/States of
Matter”, which complements the Landau Theory of Phases and
Phase Transitions for systems of condensed matter without local
order parameters, and which yields information on Green functions
of currents, whence, via Green-Kubo formulae, on transport
coefficients (conductivities).

I Use the Gauge Theory of States of Matter to classify (“topologically
protected”) correlated bulk- and surface states of interacting
systems of condensed matter without local order parameters.

I Key tools to develop a Gauge Theory of States of Matter are:

• “Effective Actions” = generating functionals of connected current
Green functions ↔ transport coeffs., in particular conductivities .

• Implications of Gauge Invariance ↔ current conservation ↔ Ward
ids., Locality & Power Counting on the form of Effective Actions
→ Classification of certain families of States of Matter.

• Gauge Anomalies and their cancellations (anomaly inflow) ↔
edge (surface) degrees of freedom ↔ “holography”; etc.



Applications to Condensed-Matter Physics
I Concrete Examples (among others) of applications of the

Gauge Theory of States of Matter” to the analysis of systems
of condensed matter and of their transport properties:

• Conductance quantization in ideal quantum wires
• Theory of the Fractional Quantum Hall Effect and of “Chern

insulators”
• Theory of chiral states of light in wave guides
• Time-reversal invariant planar “topological” insulators and

superconductors; chiral edge spin currents, chiral spin liquids
• Chiral magnetic effect2; higher-dimensional cousins of the

QHE3, 3D topological insulators, Weyl semi-metals, etc.

—

I Applications in other areas of physics, such as aerodynamics,
fluid dynamics, and cosmology, (work with Pedrini, Boyarsky,
Ruchayskiy, and others)

2Found in a preliminary form by A. Vilenkin; but see Alekseev-Cheianov-JF.
3Recently also studied by O. Zilberberg et al.



Digression on Effective Actions
Consider a physical system with matter degrees of freedom described by
fields ψ,ψ, . . . over a space-time, Λ, equipped with a metric gµν of
signature (−1, 1, 1, 1). Its dynamics is assumed to be derivable from an
action functional S(ψ,ψ, ...; gµν). We assume that there is a conserved
vector current (density) Jµ, with ∇µJµ = 0. If Jµ is carried by charged
degs. of freedom, it couples to the em field, here described by its vector
potential Aµ. The action of the system is then obtained by replacing
ordinary derivatives by covariant ones (“minimal substitution”), and then

Jµ(x) ≡ JµA (x) =
δS(ψ,ψ, ...; gµν ,Aν)

δAµ(x)
(1.1)

The Effective Action of the system on a space-time Λ with metric gµν
and in an external electromagnetic field with vector potential A is then
defined by, e.g., the functional integral4

Seff (gµν ,Aµ) := −i~ ln

(∫
DψDψD... exp

[ i

~
S(ψ,ψ, ...; gµν ,Aµ)

])
+ (divergent) const. (1.2)

4For an operator-definition see blackboard!



Properties of Seff
A precise definition of R.S. in (1.2) requires specifying initial and final
field configurations, e.g., corresponding to ground- or KMS-states.

1. The variational derivatives of Seff with respect to Aµ are given by
connected current Green functions:

δSeff (gµν ,Aµ)

δAµ(x)
= 〈Jµ(x)〉g ,A , (1.3)

and
δ2Seff (gµν ,Aµ)

δAµ(x) δAν(y)
= 〈Jµ(x)Jν(y)〉cg ,A , x 6= y , (1.4)

where 〈(·)〉g ,A = ..., etc. (↗ blackboard)

2. Consider effect of a gauge transformation, Aµ 7→ Aµ + ∂µχ, where
χ is an arbitrary smooth function on Λ, on the effective action, Seff .
After an integration by parts we find that

δSeff (gµν ,Aµ + ∂µχ)

δχ(x)
= ∇µ〈Jµ(x)〉g ,A = 0 (1.5)

vanishes, because Jµ is conserved. Thus, Seff is invariant under
gauge transformations !



Properties of Seff – ctd.

3. We may also vary Seff with respect to the metric gµν :

δSeff (gµν ,Aµ)

δgµν(x)
= 〈Tµν(x)〉g ,A ,

where Tµν is the energy-momentum tensor of the system. Using
local energy-momentum conservation, i.e., ∇µTµν = 0, we find that
Seff (gµν ,Aµ) is invariant under coordinate transformations on Λ.

A general (curved) metric gkj on the sample space can be used to
describe defects – disclinations – in a condensed-matter system.

Invariance of Seff under Weyl rescalings of the metric gkj (i.e., under

local variations of the density) implies that 〈T j
j (x)〉g ,A ≡ 0↔

scale-invariance (criticality) of the system.

4. If Hamiltonian of system exhibits positive energy gap above ground-
state energy (insulator) the zero-temperature conn. current Green
fcts. have good decay props. in space and time. In the scaling limit,
i.e., in the limit of very large distances and very low frequencies, its
eff. action then approaches a functional that is a space-time integral
of local, gauge-invariant polynomials in Aµ and derivatives of Aµ.



Form of effective actions in the scaling limit

These terms can be organized according to their scaling dimensions,
(power counting)

Properties 1 through 4 enable us to determine the general form of most
relevant terms in effective actions, Seff , (of insulators ...) in scaling limit!

Example: We consider an insulator with broken parity and time-
reversal confined to a flat 2D region. Then Seff (Aµ) tends to

σH

2

∫
Λ

A ∧ dA +
1

2

∫
Λ

d3x
√
−g [E (x) · εE (x)− µ−1B(x)2] + · · · ,

as the scaling limit is approached, where σH is the Hall conductivity, ε is
the tensor of dielectric constants, and µ is the magnetic permeability. –

Note: Chern-Simons term not gauge-invariant if ∂Λ 6= ∅ → holography!

We also use extensions of these concepts to non-abelian gauge fields and
currents only covariantly conserved. Such gauge fields may represent
“real” external fields; but also “virtual” ones merely serving to develop
the response theory needed to determine transport coefficients.

(For details, see my 1994 Les Houches lectures.)



2. Two-Dimensional Time-Reversal Invariant Topological
Insulators and Chiral Edge Spin Current

As a first application, we consider time-reversal invariant 2D topological
insulators (2D TRI TI) exhibiting chiral edge spin currents. We begin by
recalling the Pauli equation for a spinning electron:

i~D0Ψt = − ~2

2m
g−1/2Dk g 1/2g kl Dl Ψt , (2.1)

where m is the (effective) mass of an electron, (gkl ) = metric on sample
space Ω ⊆ R3. Pauli spinors Ψt are (time-dependent) sections of spinor
bundle over Ω:

Ψt(x) =

(
ψ↑t (x)

ψ↓t (x)

)
∈ L2(Ω, d vol .)⊗ C2 : 2-component Pauli spinor

Furthermore, the covariant derivatives are given by

i~D0 = i~∂t + eϕ− ~W0 · ~σ︸ ︷︷ ︸
Zeeman coupling

, ~W0 = µc2 ~B + · · · , (2.2)



U(1)em × SU(2)spin - gauge invariance

where ϕ = electrostatic potential, ~B = magnetic induction,
µ = magnetic moment of electron;

~
i

Dk =
~
i
∇k + eAk − ~Wk · ~σ + · · · , (2.3)

~∇ is the covariant gradient, ~A is the vector potential, the dots stand for
terms arising in a moving frame (ignored in the following), and

~Wk · ~σ := [(−µ̃ ~E + · · · ) ∧ ~σ]k︸ ︷︷ ︸
spin-orbit interactions

, with ~E = electric field , (2.4)

with µ̃ = µ+ e~
4mc2 , (the 2nd term is due to Thomas precession).

Pauli eq. (2.1) displays perfect U(1)em × SU(2)spin - gauge invariance.

We now consider an interacting gas of electrons confined to a region Ω of
a 2D plane, with ~B ⊥ Ω and ~E‖Ω. Then the SU(2) - connection, ~Wµ, is
given by

W 3
µ · σ3, with W K

µ ≡ 0, for K = 1, 2. (2.5)



Effective action of a 2D T-invariant topological insulator

From (2.5) we conclude that parallel transport of Pauli spinors splits into
parallel transport for spin ↑ and for spin ↓. The component ψ↑ of a Pauli
spinor Ψ couples to the abelian connection a + w , while ψ↓ couples to
a− w , where

aµ = −eAµ, and wµ = W 3
µ , (see (2.2)− (2.4)).

Under time reversal, T ,

a0 → a0, ak → −ak , but w0 → −w0, wk → wk . (2.6)

The dominant term in the effective action of a 2D TRI topological
insulator, with ~W as in (2.5), is a Chern-Simons term. If either w ≡ 0 or
a ≡ 0 a Chern-Simons term in a or in w alone would not be T -invariant.
If w ≡ 0 the dominant term would thus be given by

SΛ(A) =

∫
Λ

dt d2x
{
εE 2 − µ−1B2

}
, (2.7)

which is the effective action of a conventional insulator.



The Chern-Simons effective action

In the presence of both a and w , a combination of two Chern-Simons
terms is, however, T -invariant:

SΛ(a,w) =
σ

2

∫
Λ

{(a + w) ∧ d(a + w)− (a− w) ∧ d(a− w)}

= σ

∫
Λ

{a ∧ dw + w ∧ da} , (2.8)

up to boundary terms.5 The gauge fields a and w transform indep. under
gauge transformations (preserving (2.5)), and the action (2.8) is anoma-
lous under these gauge transformations on a 2D sample Ω with non-
empty boundary. The anomalous chiral boundary action,

σ
[
Γ+
∂Ω×R

(
(a + w)‖

)
− Γ−∂Ω×R

(
(a− w)‖

)]
, (2.9)

where

Γ
(±)
∂Λ (a) := 1

2

∫
∂Λ

[a+a− − a±
∂2
∓
� a±]du+ du−

cancels the anomalies of the bulk action.

5The eff. action (2.8) first appeared in a paper w. U. M. Studer in 1993!



Chiral edge spin currents

The boundary action is the generating functional of connected Green
functions of two counter-propagating chiral edge currents One of the two
counter-propagating edge currents has spin ↑ (in +3-direction ⊥ Ω), the
other one has spin ↓. Thus, a net chiral spin current, s3

edge , can be
excited to propagate along the edge.

The bulk response equations (analogous to Hall’s law) are given by

jk (x) = 2σεk`∂`B(x), sµ3 (x) =
δSΛ(a,w)

δwµ(x)
= 2σεµνλFνλ(x) (2.10)

The second equation also implies that ∃ chiral edge spin-currents.

We should ask what kinds of quasi-particles in the bulk of such materials
could produce the bulk Chern-Simons terms in (2.8): Knowing about the
induced Chern-Simons term of QED3, we argue that a 2D TRI topologi-
cal insulator with bulk eff. action given in (2.8) must exhibit two species
of charged quasi-particles in the bulk, with one species (spin ↑) related to
the other one (spin ↓) by T .



Experimental situation

Each species has two degenerate states per wave vector mimicking a
two-component Dirac fermion at small energies ⇒ quantization of σ !

Materials of this kind have been produced and studied in the lab of L.
Molenkamp in Würzburg.

The experimental data are not very clean, the likely reason being that,
due to small magnetic impurities and/or electric fields in the direction

⊥ Ω, condition (2.5) is violated, i.e., the SU(2)-gauge field ~Wµ does not
only have a non-vanishing 3-comp. in spin space and is genuinely
non-abelian. In this situation, the spin current is not conserved, anymore,
(but continues to be covariantly conserved), and T is broken.

The approach to 2D time-reversal invariant topological insulators out-
lined here can be generalized: Consider a state of matter with a bulk
spectrum of two species of quasi-particles related to one another by T .



Generalizations
Want to study transport properties of such systems → study response
of state when one species is coupled to a (real or virtual, abelian or
non-abelian) ext. gauge field6 W +, the other one to a gauge field W−

related to each other by time-reversal, T , according to

(W +
0 )T = W−

0 , (W +
k )T = −W−

k

Assuming again that the leading term in the effective action for the
gauge fields W + and W− is given by the sum of two identical
Chern-Simons terms, but with opposite signs, time-reversal invariance is
manifest, and one concludes that there are two counter-propagating
chiral edge currents generating current (Kac-Moody) algebras (at level 1,
for non-interacting electrons) based on the Lie group given by the gauge
group of the gauge fields W±. For non-interacting electrons, this group
can usually be determined from band theory!

If one gives up the requirement of time-reversal invariance one arrives at
a theory of chiral states of matter. In particular, if ~W is an SU(2)-
gauge field coupling to the spin of electrons (see (2.2) and (2.4)) one
finds a framework to describe chiral spin liquids; (Les Houches 1994).

6often dubbed “Berry connection” (!)



3. 3D Topological Insulators and Weyl Semi-Metals
Next, study 3D systems representing topological insulators and Weyl
semi-metals on a sample space-time Λ := Ω× R, with ∂Ω 6= ∅.
Eff. action describes response of systems to turning on external em field.
Until mid nineties, eff. action of 3D insulator thought to be given by

SΛ(A) =
1

2

∫
Λ

dt d3x{~E · ε~E − ~B · µ−1 ~B}+ “irrelevant” terms , (3.1)

where ε is the tensor of dielectric constants and µ is the magnetic
permeability tensor. The action (3.1) is dimensionless. In 70′s, particle
theorists taught us that one could add another dimensionless term:

SΛ(A)→ S
(θ)
Λ (A) := SΛ(A) + θ IΛ(A) , (3.2)

where IΛ is a “topological” term, the “instanton number”, given by

IΛ(A) =
1

4π2

∫
Λ

dt d3x ~E (~x , t) · ~B(~x , t) =

=
1

8π2

∫
Λ

F ∧ F =
Stokes

1

8π2

∫
∂Λ

A ∧ dA, (
e2

h
= 1) (3.3)



“Vacuum angle” and surface degrees of freedom
In particle physics, the parameter θ is called “vacuum (or ground-state)
angle”. The “partition function” of an insulator (after having integrated
over all matter degrees of freedom) is given by

Ξ
(θ)
Λ (A) = exp

(
iS

(θ)
λ (A)

)
,

with S
(θ)
Λ as in (3.2), (3.3). In the thermodynamic limit, Ω↗ R3, Ξ

(θ)
Λ (A)

is periodic in θ with period 2π and invariant under time reversal iff

θ = 0, π

For θ = π , ∂Λ 6= ∅, Ξ
(θ)
Λ (A) contains a factor only depending on A|∂Λ,

exp

(
± i

8π

∫
∂Λ

A ∧ dA

)
, (3.4)

breaking time reversal invariance: Must be cancelled by partition function
of surface degs. of freedom7 on ∂Λ exhibiting a Hall conducivity of

σH = ∓1

2
· e2

h
(3.5)

7I am indebted to H.-G. Zirnstein for instructive discussions of this point



Promoting the vacuum angle θ to an “axion”
As one learns from QED3, the “boundary partition function” (3.4) is the
partition function of one species of massless 2-component Dirac fermions
coupled to A|∂Λ. Gapless quasi-particles with spin 1

2 propagating along
∂Λ could mimick such Dirac fermions and cancel (3.4).

“Vacuum angle” θ could be ground-state expectation, θ = 〈ϕ〉, of
dynamical field, ϕ, called “axion”. → Replace topological term θ IΛ(A) by

IΛ(A, ϕ) :=
1

8π2

∫
Λ

ϕF ∧ F + S0(ϕ) , (3.6)

where S0(ϕ) is invariant under shifts ϕ 7→ ϕ+ nπ, n ∈ Z. → Realm of
axion-electrodynamics. The Maxwell-axion eqs. are found to be

~∇ · ~B = 0, ~∇∧ ~E + ~̇B = 0 ,

~∇ · ~E =
e2

8π2

(
~∇ϕ
)
· ~B ,

~∇∧ ~B = ~̇E − e2

8π2
{ϕ̇ ~B + ~∇ϕ ∧ ~E} . (3.7)



Generalized chiral magnetic effect

From (3.7) we infer formula for the current ~j generated in an em field in
the presence of an axion field – “generalized chiral magnetic effect” 8:

~j = − e2

4πh

(
ϕ̇ · ~B + ~∇ϕ× ~E

)
(3.8)

If ϕ only depends on time then eq. (3.8) describes the ordinary chiral
magnetic effect, and ϕ̇ = µ` − µr ≡ µ5 is the chiral chemical potential
that tunes the asymmetry between left-handed and right-handed quasi-
particles. The equation of motion for µ5 ≡ ϕ̇ may take the form of a
reaction-diffusion equation (BFR); see below.

Applications:
First consider a 3D spatially periodic (crystalline) system with a static

axion ϕ, so that µ5 = 0, ~E · ~B ≡ 0. Taking into account the periodicity of
exp
(
iIΛ(A, ϕ)

)
under shifts, ϕ 7→ ϕ+ 2nπ, n ∈ Z, invariance under lattice

translations implies that

8↗ACF, F-Pedrini (’98-2000), Hehl et al. (’08), S.-C. Zhang et al. (’10).



A 3D quantum Hall effect in axionic topological insulators

ϕ(~x) = 2π
(
~K · ~x

)
+ φ(~x) , (3.9)

where the vector ~K belongs to the dual lattice, and φ is invariant under
lattice translations. Neglecting φ, we find that

~∇ϕ = 2π ~K is “quantized”.

which, with eq. (3.8), implies Halperin’s 3D Hall effect with a quantized
Hall conductivity! (I thank G. Moore for telling me about this effect.)

—

But are there topological insulators with dynamical degrees of freedom
described by an axion field? It has been argued that axions may emerge
as effective degrees of freedom in:

• certain 3D topological insulators with anti-ferromagnetic short-range

order, (magnetic fluctuations playing the role of a dyn. axion)9 ; and in

• crystalline 3D Weyl semi-metals:

9a conjecture proposed by S.-C- Zhang (inspired by our work in cosmology)



Weyl semi-metals

These are systems with two energy bands exhibiting two (or, more
generally, an even number10 of) double-cones in “frequency-quasi-
momentum space”. Assuming that the Fermi energy is close to the apices
of those double-cones, such systems exhibit chiral quasi-particle states:
At low frequencies, namely near the apices of those double-cones, the
quasi-particles satisfy the Weyl equation of left- or right-handed Weyl
fermions, respectively; (electron spin ‖, or anti-‖ to momentum).
In such systems, the time-derivative, µ5 ≡ ϕ̇ of the axion field really has
the meaning of a (time-dependent) difference of chemical potentials of
left-handed and right-handed quasi-particles. It satisfies a (reaction-
diffusion) equation of motion of the kind

µ̇5 + τ−1µ5 − D 4 µ5 = L2 e2

2πh
~E · ~B , (3.10)

where τ is a relaxation time, D a diffusion constant, L a constant with
dimension of “length” related to the “axion decay constant” of particle
physics; (see BFR for a discussion of (3.10) in the context of cosmology).

10This folllows from the celebrated Nielsen-Ninomiya theorem



How one might discover “axions” in Weyl semi-metals
As time t →∞ (assuming D is small and ~E · ~B ≈ const.), µ5 approaches

µ5 '
τ(Le)2

2πh
~E · ~B . (3.11)

A non-vanishing initial value of µ5 may be triggered by strain applied to
the system, leading to a slightly `↔ r - asymmetric population of the
Fermi sea. Due to “inter-valley” scattering processes, a non-vanishing µ5

will then relax towards 0, with a relaxation time given by τ , unless an
electric field ~E and a magnetic induction ~B are applied to the system,
with ~E · ~B 6= 0, in which case µ5 relaxes towards the R.S. of (3.11).
Recalling Eq. (3.8) for the current density in the presence of an axion, we
conclude that the conductivity tensor, σ = (σk`)k,`=1,2,3, is given by

σk` = σ
(0)
k` +

τ(Lα)2

4π2
Bk B` ,

the first term on R.S. being the Ohmic conductivity (due to phonon- and
impurity scattering), and the second term a manifestation of the chiral
magnetic effect; (perhaps, too small to be detected in actual measnts.)



And how one might discover “axionic insulators”

People11 have described various other Gedanken experiments serving to
discover effects due to axions in Weyl semi-metals; but we won’t review
their ideas here. Instead, we describe some axionic effects in topological
insulators with an effective action given by – see (3.1) and (3.6) –

SΛ(A, ϕ) = SΛ(A) +
1

8π2

∫
Λ

ϕF ∧ F + S0(ϕ) , (3.12)

where S0(ϕ) is invariant under shifts ϕ 7→ ϕ+ nπ, n ∈ Z. It is compatible
with time-reversal invariance that S0(ϕ) has minima at ϕ = nπ. Then
the material described by (9.9) is not an ordinary insulator, but may
exhibit a Mott transition to a conducting state at a positive temperature:
The bulk of such a material will be filled with domain walls across which
ϕ jumps by (an integer multiple of) π. Applying the insight described
after (3.4) and (3.5), one predicts that such domain walls may carry
gapless two-component Dirac-type fermions. At sufficiently high
temperatures, domain walls can be expected to become macroscopic, and
this would then give rise to a non-vanishing conductivity.12

11e.g., theorists in Würzburg including J. Erdmenger
12↗ F-Werner (2014)



Instabilities in axionic topological insulators
It has been pointed out (F-Pedrini, 2000) that a dynamical axion ϕ with
µ5 ≡ ϕ̇ = const., or = a periodic function of time, t, will give rise to the
growth of a helical em field; modes of the magnetic induction ~B at wave
vectors of size ≤ const.µ5 will be unstable and exhibit unlimited growth.
This growth is stopped by the relaxation of µ5 to 0. (Our mechanism has
first been applied in cosmology.)

Another, albeit related instability has been pointed out by Ooguri and
Oshikawa: If ~E and ~B are time-indep., an external electric field ~E applied
to an axionic magnetic material is screened once its strength |~E | exceeds
a certain critical value Ec , the excess energy giving rise to a magnetic
field – see Phys. Rev. Lett. 108, 161803 (2012):



10. Summary, Open Problems

1. Apparently, concepts and methods from gauge theory can be used
to study general features of strongly correlated systems with
non-trivial interactions in cond-mat physics; e.g., to characterize
certain “topological states of matter” that cannot be characterized
by local order parameters. This has been illustrated in this lecture
by showing how ideas and results from gauge theory, in particular,
3D Chern-Simons theory, the chiral magnetic effect and axion
electrodynamics in (3 + 1)− D systems, yield rather surprizing
insights into properties of such states of matter.

2. What has been missing is an account of the bare-hands analysis of
spectral properties of many-body Hamiltonians describing “topol.
states of matter” at energies close to the ground-state energy and
to derive properties of quasi-particles, using multi-scale analysis.
I recommend the work of our distinguished colleagues in Rome and
elsewhere, who have addressed such problems, to the attention of
the audience! Of course, many questions remain open. . . .

I thank you for your attention, and, well, . . .

Sincerely, JF



“Survivre et Vivre” – almost half a Century later

Here is something more important to think about and to discuss
with you:

“... depuis fin juillet 1970 je consacre la plus grande partie de mon
temps en militant pour le mouvement Survivre, fondé en juillet à
Montréal. Son but est la lutte pour la survie de l’espèce humaine,
et même de la vie tout court menacée par le déséquilibre écologique
croissant causé par une utilisation indiscriminée de la science et de
la technologie et par des mécanismes sociaux suicidaires, et
menacée également par des conflits militaires liés à la prolifération
des appareils militaires et des industries d’armements. ...”

Alexandre Grothendieck

Réveillez-vous, indignez-vous!

(Stéphane Hessel)


