Full Counting Statistics of energy transfers in (1+1)D CFT

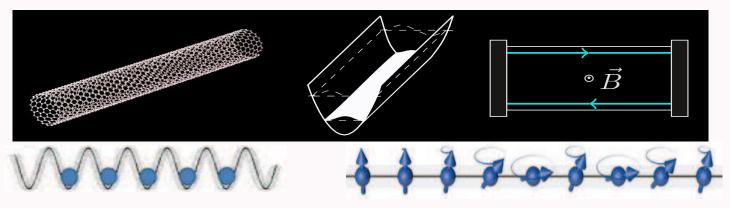
Krzysztof Gawędzki

Quantum Transport and Universality, Rome, September 2019

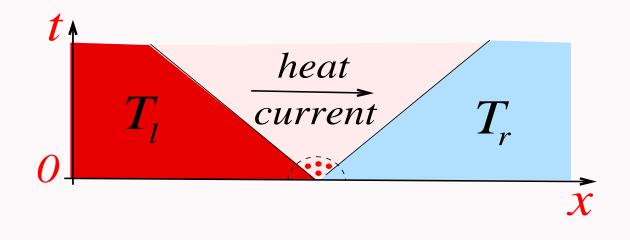
(based on K. G.-E. Langmann-P. Moosavi: J. Stat. Phys. **172**, 353 (2018) and K. G.-K. K. Kozlowski: arXiv:1906.04276[math-ph])

• Many one-dimensional quantum systems have massless low-energy excitations described by **Conformal Field Theory**

Examples: carbon nanotubes, electrons or cold atoms trapped in 1d potential wells, quantum Hall edge currents, XXZ spin chains



- (1+1)D CFT describes the low temperature equilibrium physics of such systems but also some of nonequilibrium situations as
 - evolution after **quantum quenches** to short-correlated pure states (see **Calabrese-Cardy**, J. Stat. Mech. 064003 (2016))
 - the **partitioning protocol** after two halves of a system in different equilibrium states are joined (see **Bernard-Doyon**, J. Stat. Mech. 064005 (2016))



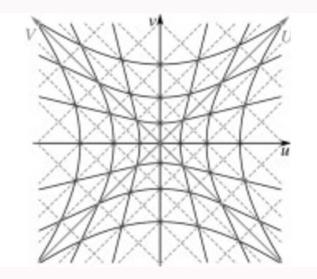
• What is a (1+1)D CFT?

It is a **QFT** in one space dimension with the projective representation in the **Hilbert** space of states of the symmetry group of (1+1)D**Minkowskian** conformal transformations

• Conformal transformations in (1+1)D spacetime are:

$$(x^-, x^+) \mapsto (f_+(x^-), f_-(x^+))$$

where $x^{\pm} \equiv x \pm t$



• Infinitesimally, the vector fields $\zeta_{\pm}(x^{\mp}) \partial_{\mp}$ are represented by the s.a. operators

$$\int \zeta_{\pm}(x^{\mp}) T_{\pm}(x^{\mp}) dx^{\mp}$$

where $T_{\pm}(x^{\mp})$ are the right- and left-moving components of the **energy**momentum tensor

• The energy density and energy current

 $e(t,x) = T_{+}(x^{-}) + T_{-}(x^{+})$ $j(t,x) = T_{+}(x^{-}) - T_{-}(x^{+})$

satisfy the local conservation law $\partial_t e + \partial_x j = 0$

• The Hamiltonian is $H = \int e(t, x) dx$ and the Gibbs equilibrium state at inverse temperature β_0 is

$\omega_{\beta_0}^{\rm eq}(A) =$		$\frac{\mathrm{Tr}\left(A \mathrm{e}^{-\beta_0 H}\right)}{\mathrm{Tr}\left(A \mathrm{e}^{-\beta_0 H}\right)}$	L 100 00 00 00 00 00 00 00 00 00 00 00 00
	_	$\operatorname{Tr}\left(\mathrm{e}^{-\beta_{0}H}\right)$	

where A are observables and the right-hand side requires passing through the thermodynamic limit

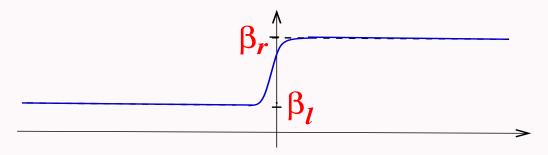
- Examples of (1+1)D CFT's
 - Free massless bosonic field
 - Free massless fermionic field
 - (local) Luttinger model
 - WZW models
 - Coset models (e.g. unitary minimal models)

• Smooth version of the partition protocol

We shall consider nonequilibrium "profile states" defined by

$$\omega^{\mathrm{neq}}(A) = \frac{\mathrm{Tr}(A \ \mathrm{e}^{-G})}{\mathrm{Tr}(\mathrm{e}^{-G})} \quad \text{for} \quad G = \int \beta(x) \, e(0, x) \, dx$$

where $\beta(x)$ is a smooth inverse-temperature profile with the values β_{ℓ} and (β_r) far on the left (right)



- Again, such states have to be defined by taking the thermodynamic limit of their finite-box version
- They are not invariant under the dynamics generated by H

• Finite-box CFT

- We shall work in a finite box $\left[-\frac{1}{4}L, \frac{1}{4}L\right]$ with the boundary conditions that guarantee that $T_+(x^-) = T_-(x^+)$ for $x = \pm \frac{1}{4}L$
- Such b. c. assure conservation of energy within the box. E.g. for the bosonic free field one may take the **Neumann** or the **Dirichlet** b. c.
- There is then only one independent component of the energy-moment. tensor $T_+(x^-) = T_+(x^- + L)$ with $T_-(x^+) = T_+(-x^+ \pm \frac{1}{2}L)$

$$T_{+}(x) = \frac{2\pi}{L^2} \sum_{n=\infty}^{\infty} e^{\frac{2\pi i n}{L}x} \left(L_n - \frac{c}{24} \delta_{n,0} \right) \equiv T(x)$$

where L_n satisfy the Virasoro algebra:

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{m+n,0}$$

with the central charge c

Infinitesimal \rightarrow global symmetry:

• Let $Diff_+^{\sim}S^1$ composed of smooth $f: \mathbb{R} \to \mathbb{R}$ s.t. f' > 0 and f(x+L) = f(x) + L be the covering group of the groups of orientation-preserving diffeos of the circle $S^1 = \mathbb{R}/L\mathbb{Z}$

• T(x) generates a unitary projective representation $f \mapsto U_f$ of $Diff_+^{\sim}S^1$ s. t.

$$U_f T(x) U_f^{-1} = f'(x)^2 T(f(x)) - \frac{c}{24\pi} (\mathsf{S}f)(x)$$

where $Sf = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2$ is the Schwarzian derivative of f

• If f_s is the flow of a vector field $-\zeta(x)\partial_x$ with $\zeta(x+L) = \zeta(x)$, i.e.

$$\partial_s f_s(x) = -\zeta(f_s(x)), \qquad f_0(x) = x$$

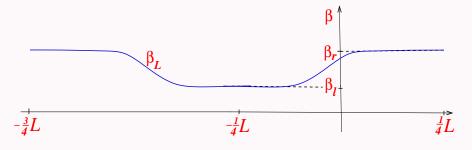
then

$$U_{f_s} = \exp\left[\mathrm{i}s \int_0^L \zeta(x) T(x) \, dx\right]$$

E.g. $U_{f_s} = e^{2\pi i s (L_0 - \frac{c}{24})}$ for the translations $f_s(x) = x - sL$

• Finite-box profile states

• For *L* big enough let $\beta_L(x) = \beta_L(x+L)$ be the profile extended from $\left[-\frac{1}{4}L, \frac{1}{4}L\right]$ to $\left[-\frac{3}{4}L, \frac{1}{4}L\right] \equiv \mathcal{I}_L$ by reflection:



• For

$$G_L = \int_{-\frac{1}{4}L}^{\frac{1}{4}L} \beta(x) e(0,x) dx = \int_{-\frac{1}{4}L}^{\frac{1}{4}L} \beta(x) \left(T_+(x) + T_-(x)\right) dx = \int_{\mathcal{I}_L}^{\frac{1}{4}L} \beta_L(x) T(x) dx$$

consider the finite-box nonequilibrium profile state

$$\omega_L^{\mathrm{neq}}(A) = \frac{\mathrm{Tr}(A \ \mathrm{e}^{-G_L})}{\mathrm{Tr}(\mathrm{e}^{-G_L})}$$

• Reduction of profile states to equilibrium states

• Let $\varphi_L \in Diff_+^{\sim}S^1$ be s.t. $\varphi'_L(x) = \frac{\beta_{0,L}}{\beta_L(x)}$ with $\beta_{0,L}$ fixed by the requirement that $\varphi_L(x+L) = \varphi_L(x) + L$. Then

$$\begin{split} \overline{U_{\varphi_L}G_L U_{\varphi_L}^{-1}} &= \int_{\mathcal{I}_L} \beta_L(x) U_{\varphi_L} T(x) U_{\varphi_L}^{-1} dx \\ &= \int_{\mathcal{I}_L} \beta_L(x) \varphi_L'(x)^2 T(\varphi_L(x)) dx - \frac{c}{24\pi} \int_{\mathcal{I}_L} \beta_L(x) (\mathsf{S}\varphi_L)(x) dx \\ &= \beta_{0,L} \int_{\mathcal{I}_L} \varphi_L'(x) T(\varphi_L(x)) dx - C_{0,L} \\ \overset{\mathbf{unber } C_{0,L}}{\overset{\mathbf{unber } C_{0,L}}} \end{split}$$

 \Rightarrow the conjugation by U_{φ_L} flattens the temperature profile !!!

• This implies that the nonequilibrium profile state is related to the equilibrium state by the conformal symmetry:

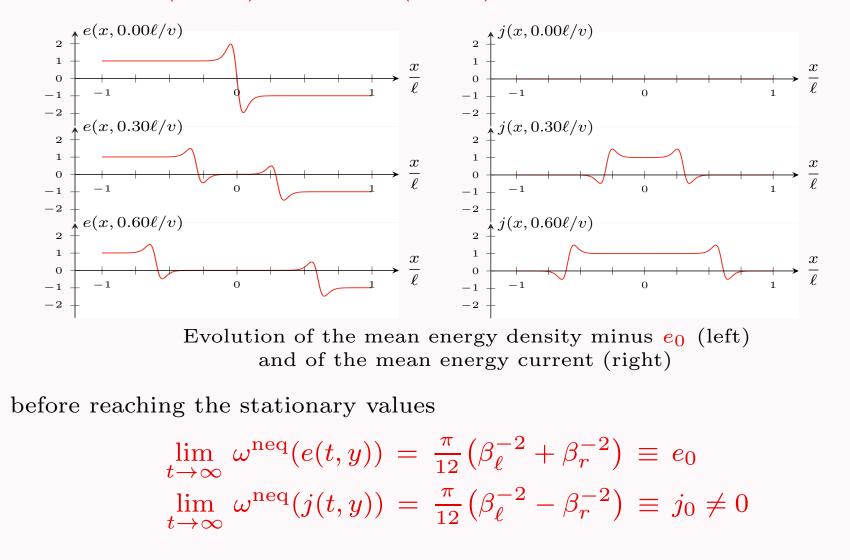
$$\omega_L^{\mathrm{neq}}(A) = \omega_{\beta_{0,L};L}^{\mathrm{eq}}\left(U_{\varphi_L}A U_{\varphi_L}^{-1}\right)$$

- May be applied e.g. to $A = \prod_i T_+(x_i^-) \prod_j T_-(x_j^+)$ since we know how it transforms under the conjugation by U_{φ_I}
- In the thermodynamic limit $L \to \infty$ one obtains for the 1-point function of $T_{\pm}(x^{\mp})$

$$\omega^{\mathrm{neq}}\left(T_{\pm}(x^{\mp})\right) = \frac{\pi c}{12\,\beta(x^{\mp})^2} - \frac{c}{24\pi}(\mathsf{S}\varphi)(x^{\mp})$$

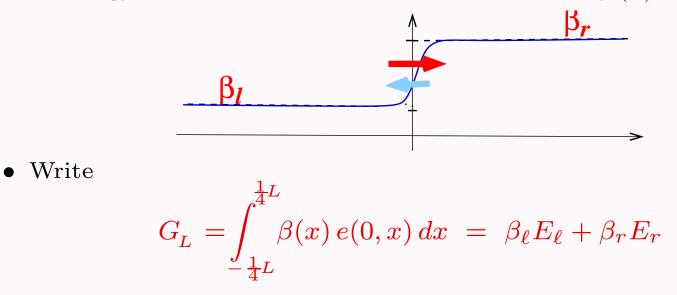
where $\varphi(x) = \int_0^x \frac{\beta_0}{\beta(x')} dx'$ with arbitrary β_0

• First derived for the local Luttinger model by Lebowitz-Langmann-Mastropietro-Moosavi in Phys. Rev. B 95, 235142 (2017) by resumming a perturbative series • The sum and the difference of the last formulae unravels a nontrivial evolution of $\omega^{neq}(e(t,x))$ and $\omega^{neq}(j(t,x))$ with traveling heat waves:



• Full counting statistics of energy transfers

- Full counting statistics (FCS) captures fluctuations of charge or energy transfers in extended quantum systems (Levitov-Lesovik, JETP 58, 230235 (1993))
- For the profile states, one may obtain an exact expression for the **FCS** of energy transfers across the kink in a kink-like $\beta(x)$ -profile



where E_{ℓ} and E_r are the energies in the part of the box $\left[-\frac{1}{4}L, \frac{1}{4}L\right]$ to the left and to the right of the kink

- One gets access to the **FCS** of energy transfers from two measurements of $G_L = \beta_\ell E_\ell + \beta_r E_r$ separated by time t, starting in state ω_L^{neq}
- By spectral decomposition

$$G_L = \sum_i g_i P_i, \qquad G_L(t) \equiv e^{itH_L} G_L e^{-itH_L} = \sum_i g_i P_i(t)$$

• If the 1^{st} measurement gives the value g_i and the 2^{nd} one the value g_j then

$$g_j - g_i = \beta_\ell \left(E_\ell(t) - E_\ell(0) \right) + \beta_r \left(E_r(t) - E_r(0) \right) = (\Delta\beta)(\Delta E)$$

where $\Delta \beta = \beta_r - \beta_\ell$ and $\Delta E = E_r(t) - E_r(0) = -(E_\ell(t) - E_\ell(0))$ is the net transfer of the energy across the kink during time t • By the **QM** rules the probability of the results (g_i, g_j) is

$$p_t(i,j) = \omega_L^{\mathrm{neq}} \Big(P_j(t) P_i \Big)$$

giving for the distribution of the energy transfers (called **FCS**):

$$p_{t,L}(\Delta E) = \sum_{i,j} \delta\left(\Delta E - \frac{g_j - g_i}{\Delta\beta}\right) \omega_L^{\text{neq}}\left(P_j(t)P_i\right)$$

• The Fourier transform of the distribution of ΔE (called the generating function of FCS) is

$$\mathcal{F}_{t,L}(\lambda) \equiv \int e^{i\lambda\Delta E} p_{t,L}(\Delta E) d(\Delta E)$$

= $\sum_{i,j} e^{\frac{i\lambda}{\Delta\beta}(g_j - g_i)} \omega_L^{neq} \left(P_j(t) P_i \right) = \omega_L^{neq} \left(e^{\frac{i\lambda}{\Delta\beta}G_L(t)} e^{-\frac{i\lambda}{\Delta\beta}G_L} \right)$
= $\omega_{\beta_{0,L};L}^{eq} \left(U_{\varphi_L} e^{\frac{i\lambda}{\Delta\beta}G_L(t)} e^{-\frac{i\lambda}{\Delta\beta}G_L} U_{\varphi_L}^{-1} \right)$

using the relation between the nonequilibrium and equilibrium states

• Upon lifting the conjugation by U_{φ_L} to the exponentials

$$\mathcal{F}_{t,L}(\lambda) = \omega_{\beta_{0,L};L}^{\mathrm{eq}} \left(\mathrm{e}^{\frac{\mathrm{i}\lambda}{\Delta\beta}U_{\varphi_{L}}G_{L}(t)U_{\varphi_{L}}^{-1}} \mathrm{e}^{-\frac{\mathrm{i}\lambda}{\Delta\beta}U_{\varphi_{L}}G_{L}U_{\varphi_{L}}^{-1}} \right)$$

• We have seen that

$$U_{\varphi_L} G_L U_{\varphi_L}^{-1} = \beta_{0,L} H_L - \underbrace{C_{0,L}}_{\checkmark}$$

By the same manipulations

$$U_{\varphi_L} G_L(t) U_{\varphi_L}^{-1} = \int_{\mathcal{I}_L} \zeta_{t,L}(y) T(y) \, dy - \underbrace{C_{t,L}}_{\mathbf{a} \text{ number}}$$

where

$$\underbrace{\zeta_{t,L}(y)}_{\beta_L\left(\varphi_L^{-1}(y)\right)} = \frac{\beta_{0,L}\,\beta_L\left(\varphi_L^{-1}(y)+t\right)}{\beta_L\left(\varphi_L^{-1}(y)\right)} \quad \text{and} \quad C_{t,L} = \frac{c}{24\pi} \int_{\mathcal{I}_L} \beta_L(x^+)(\mathsf{S}\varphi_L)(x)\,dx$$

effective profile

a number

• Using
$$H_L = \frac{2\pi}{L}(L_0 - \frac{c}{24})$$
 and setting $s = \frac{\lambda}{\Delta\beta}$, $\tau_s = \frac{(i-s)\beta_{0,L}}{L}$ one obtains

 $\mathcal{F}_{t,L}(\lambda)$

$$= \left[\omega_{\beta_{0,L};L}^{\text{eq}} \left(e^{\frac{i\lambda}{\Delta\beta} \int_{\mathcal{I}_{L}} \zeta_{t,L}(y) T(y) \, dy} e^{-\frac{i\lambda}{\Delta\beta} \beta_{0,L} H_{L}} \right) \right] e^{-\frac{i\lambda}{\Delta\beta} (C_{t,L} - C_{0,L})}$$

$$= \frac{\operatorname{Tr}\left(U_{f_{s}} e^{2\pi i \tau_{s}(L_{0} - \frac{c}{24})}\right)}{\operatorname{Tr}\left(e^{2\pi i \tau_{0}(L_{0} - \frac{c}{24})}\right)} e^{-is(C_{t,L} - C_{0,L})}$$

for $f_s \in Diff_+^{\sim}S^1$ denoting the flow of the vector field $-\zeta_{t,L}(y)\partial_y$

• The least explicit contribution is the boxed term

$$\frac{\operatorname{Tr}\left(U_{f_s} e^{2\pi \mathrm{i}\tau_s (L_0 - \frac{c}{24})}\right)}{\operatorname{Tr}\left(e^{2\pi \mathrm{i}\tau_0 (L_0 - \frac{c}{24})}\right)}$$

• $\operatorname{Tr}\left(e^{2\pi i \tau (L_0 - \frac{c}{24})}\right) \equiv \chi(\tau)$ is the character of the **Virasoro** algebra representation in the space of states of our **CFT** in the box

- Similarly, $\operatorname{Tr}\left(U_{f} e^{2\pi i \tau (L_{0} \frac{c}{24})}\right) \equiv \Upsilon(f, \tau)$ may be viewed as the character of the corresponding representation of the group $Diff_{+}^{\sim}S^{1}$
- We may then write:

$$\mathcal{F}_{t,L}(\lambda) = \frac{\Upsilon(f_s, \tau_s)}{\chi(\tau_0)} e^{-is(C_{t,L} - C_{0,L})}$$

• The Virasoro characters are well known for the unitary (positive-energy) representations but their $Diff_{+}^{\sim}S^{1}$ counterparts have not been studied

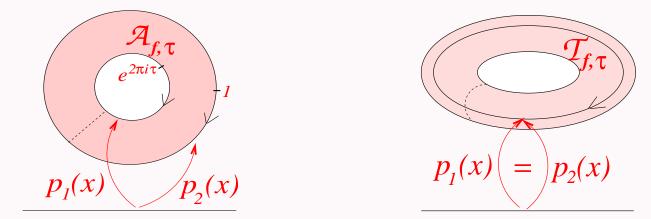
- Characters of $Diff_+^{\sim}S^1$
 - Consider the complex annulus

$$\mathcal{A}_{f,\tau} = \left\{ z \mid |\mathbf{e}^{2\pi \mathrm{i}\tau}| \le |z| \le 1 \right\}$$

with the boundary components parameterized by

 $p_1(x) = e^{2\pi i \tau} e^{-\frac{2\pi i}{L}f(x)}, \qquad p_2(x) = e^{-\frac{2\pi i}{L}x}$

and the complex torus $\mathcal{T}_{f,\tau}$ obtained from $\mathcal{A}_{f,\tau}$ by sewing ("**conformal welding**") its parameterized boundaries together



- According to **G. Segal** $\Upsilon(f,\tau) = \operatorname{Tr}\left(U_f e^{2\pi i \tau (L_0 \frac{c}{24})}\right)$ is proportional to the **partition function** on the torus $\mathcal{T}_{f,\tau}$ of the chiral **CFT**
- The complex torus $\mathcal{T}_{f,\tau}$ is isomorphic to $\mathcal{T}_{f_0,\hat{\tau}}$ for $f_0(x) \equiv x$ and some effective $\hat{\tau}$ in the upper half plane
- The existence of such an isomorphism implies the relation

$$\Upsilon(f,\tau) = C_{f,\tau} \Upsilon(f_0,\widehat{\tau}) = C_{f,\tau} \chi(\widehat{\tau})$$

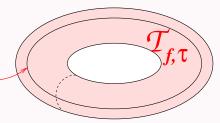
where $C_{f,\tau}$ is a complex number due to the projective nature of the chiral **CFT** partition functions

- We shall need $C_{f,\tau}$ only for $f = f_s$ with f_s a flow of a vector field
- $C_{f_s,\tau}$ may be found adapting the approach used by **Fewster-Hollands** in Lett. Math. Phys. **109** (2018), 747 to calculate $\langle 0|U(f_s)|0\rangle$

- The isomorphism $\mathcal{T}_{f,\tau} \cong \mathcal{T}_{f_0,\widehat{\tau}}$ and an inhomogeneous Riemann-Hilbert problem on $\mathcal{T}_{f,\tau}$
 - One searches for a holomorphic function Y on $\mathcal{A}_{f,\tau}$ s.t.

$$Y_1 - Y_2 = \frac{1}{L}(f - f_0) - \tau + \hat{\tau} \quad \text{for} \quad Y_i = Y$$

jump of a holomorphic function Y prescribed along the welding contour



 $\circ p_i$

- Y is found from the solution Y_1 (that exists for a single value of $\hat{\tau}$) of an explicit **Fredholm** equation in $L^2(\mathbb{R}/L\mathbb{Z})$
- The holomorphic function $W(z) = z e^{2\pi i Y(z)}$ on $\mathcal{A}_{f,\tau}$ has the boundary values $W_i = W \circ p_i = e^{2\pi i X_i}$ s.t. $X_1(x) = X_2(x) + \hat{\tau}$ so that $W_1 = e^{2\pi i \hat{\tau}} W_2$
- The map W realizes the isomorphism $\mathcal{T}_{f,\tau} \cong \mathcal{T}_{f_0,\widehat{\tau}} = \mathbb{C}^{\times}/(w \sim e^{2\pi i \widehat{\tau}} w)$

• **Theorem.** For the flow f_s of $-\zeta(x)\partial_x$ let $W_s(z)$ be the holom. functions on $\mathcal{A}_{f_s,\tau}$ with bd. values $W_{s;i} = e^{2\pi i X_{s;i}}$ that realize the isomorphisms $\mathcal{T}_{f_s,\tau} \cong \mathcal{T}_{f_0,\widehat{\tau}_s}$.

The proportionality constant between the $Diff_+^{\sim}S^1$ -character $\Upsilon(f_s, \tau)$ and the **Virasoro** character $\chi(\widehat{\tau}_s)$ and the effective modular parameter satisfy the **ODE**s

$$\partial_s \ln C_{f_s,\tau} = -i \frac{c}{24\pi} \int_{\mathcal{I}_L} \zeta(x) (SX_{s;1})(x) dx$$
$$\partial_s \hat{\tau}_s = \int_{\mathcal{I}_L} \zeta(x) (X'_{s;1}(x))^2 dx$$

that determine them completely since $C_{f_0,\tau} = 1$ and $\hat{\tau}_0 = \tau$

• The main tool in the proof is the transformation property of the **Euclidian** 1-point function

$$\left\langle T(z) \right\rangle_{\mathcal{T}_{f_s,\tau}} = W_s'(z)^2 \left\langle T(W_s(z)) \right\rangle_{\mathcal{T}_{f_0,\hat{\tau}_s}} + \frac{c}{12} \left(\mathsf{S}W_s \right)(z)$$

of the holomorphic component of the energy momentum tensor

The integral of bd. value of the left-hand side against $\zeta(x)$ produces $\partial_s \ln \Upsilon(f_s, \tau)$ and of the 1st term on the right-hand side gives $\partial_s \ln \chi(\hat{\tau}_s)$

• **Corollary.** The result allows to control the finite-volume generating function for the **FCS** of energy transfers

$$\mathcal{F}_{t,L}(\lambda) = \frac{C_{f_s,\tau_s} \chi(\widehat{\tau}_s)}{\chi(\tau_0)} e^{-is(C_{t,L} - C_{0,L})}$$

where $s = \frac{\lambda}{\Delta\beta}$, $\tau_s = \frac{(i-s)\beta_{0,L}}{L}$, and f_s is the flow of $-\zeta_{t,L}(x)\partial_x$ if we replace τ by τ_s and $\zeta(x)$ by $\xi_{t,L}(x) \equiv \zeta_{t,L}(x) - \beta_{0,L}$

• FCS for energy transfers in the thermodynamic limit

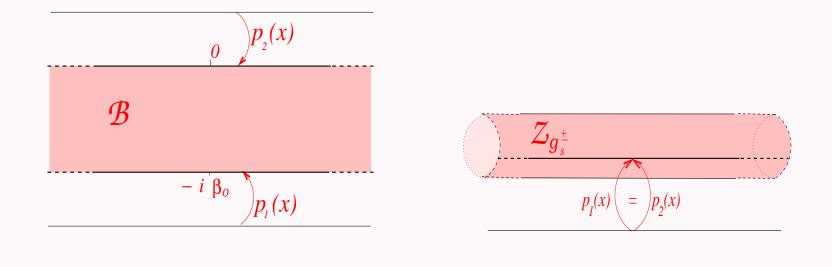
• In the $L \to \infty$ limit, the conformal welding of tori becomes that of infinite cylinders $\mathcal{Z}_{q_s^{\pm}}$ obtained from the band

$$\mathcal{B} = \left\{ z \mid -\beta_0 \le \operatorname{Im}(z) \le 0 \right\}$$

with the boundary parameterizations

$$\mathbb{R} \ni x \mapsto p_1(x) = -i\beta_0 + g_s^{\pm}(x), \qquad \mathbb{R} \ni x \mapsto p_2(x) = x$$

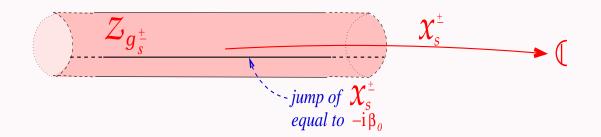
by setting $p_1(x) = p_2(x)$

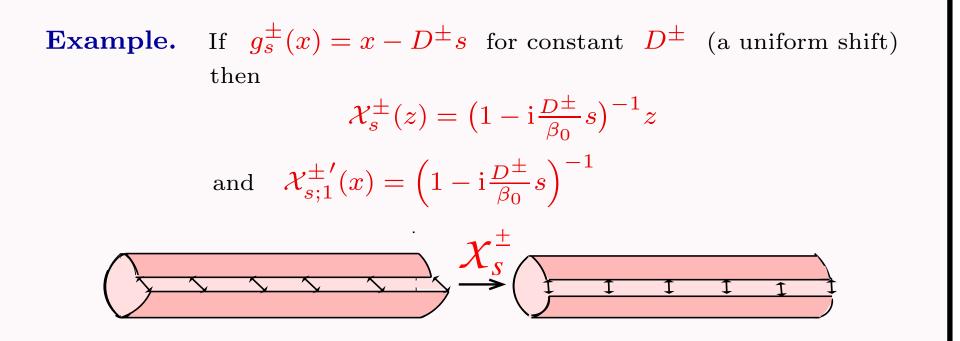


• $g_s^{\pm}(x) = f_s^{\pm}(x) + \beta_0 s$ for the flow f_s^{\pm} of the vector field $-\zeta_t^{\pm}(x)\partial_x$ where

$$\zeta_t^{\pm}(x) = \beta_0 \frac{\beta \left(\varphi^{-1}(\pm x) \pm t\right)}{\beta \left(\varphi^{-1}(\pm x)\right)} \qquad \text{for} \qquad \varphi(x) = \int_0^x \frac{\beta_0}{\beta(x')} dx'$$

- The complex cylinder $\mathcal{Z}_{g_s^{\pm}}$ is isomorphic to \mathcal{Z}_{id} with the isomorphism given by a holomorphic functions \mathcal{X}_s^{\pm} on \mathcal{B} with boundary values $\mathcal{X}_{s;i}^{\pm} = \mathcal{X}_s^{\pm} \circ p_i$ s.t. $\mathcal{X}_{s;1}^{\pm} = \mathcal{X}_{s;2}^{\pm} i\beta_0$
- Finding \mathcal{X}_s^{\pm} is a **Riemann-Hilbert** problem on $\mathcal{Z}_{g_s^{\pm}}$ that reduces to solving an explicit **Fredholm** equation in $L^2(\mathbb{R})$ for $\mathcal{X}_{s;1}^{\pm'} 1$





- The main problem was to prove the uniform convergence on compacts of the derivatives of functions $X_{s;1}$ solving the finite-volume **Fredholm** eqn to the derivatives of functions $\mathcal{X}_{s;1}^{\pm}$ solving the infinite-volume one
- This was done by a detailed analysis of particular classes of **Fredholm** operators in $L^2(\mathbb{R})$ and it formed the technical core of our work

• **Theorem.** $\mathcal{F}_t(\lambda) = \lim_{L \to \infty} \mathcal{F}_{t,L}(\lambda) = \prod_{\pm} \mathcal{F}_t^{\pm}(\lambda)$ where $\mathcal{F}_t^{\pm}(\lambda)$ are the contributions of the right- and left-movers and

$$\partial_{\lambda} \ln \mathcal{F}_{t}^{\pm}(\lambda) = \frac{1}{\Delta\beta} \left(S_{\mathrm{Sch}}(\mathcal{X}_{s;1}^{\pm}) + \mathrm{i}\frac{c}{24\pi} \int \left(\beta(x) - \beta(x^{\pm}) \right) (\mathsf{S}\varphi)(x) \, dx \right)$$
$$S_{\mathrm{Sch}}(\mathcal{X}_{s;1}^{\pm}) = -\mathrm{i}\frac{c}{24\pi} \int \xi_{t}^{\pm}(x) \left((\mathsf{S}\mathcal{X}_{s,1}^{\pm})(x) - \frac{2\pi^{2}}{\beta_{0}^{2}} \left(\mathcal{X}_{s;1}^{\pm'}(x) \right)^{2} \right) dx$$

for $\xi_t^{\pm}(x) = \zeta_t^{\pm}(x) - \beta_0$ and $\mathcal{X}_{s;1}^{\pm}(x)$ given by a conformal welding of the infinite cylinder $\mathcal{Z}_{g_s^{\pm}}$

- Corollary. $\mathcal{F}_t(\lambda)$ is universal depending only on the profile $\beta(x)$ and the central charge c of the CFT (entering as a power)
- Remark. The action $S_{\text{Sch}}(\mathcal{X})$ of diffeomorphisms of \mathbb{R} controls the regime of the Sachdev-Ye-Kitaev model dominated by the Goldstone boson of the conformal symmetry breaking

• Under the map

$$z \mapsto \frac{1 - i e^{\frac{2\pi}{v \beta_0} z}}{1 + i e^{\frac{2\pi}{v \beta_0} z}} \equiv u(z)$$

the conformal welding of the edges of the band \mathcal{B} becomes the conformal welding of the boundaries of the unit discs Δ_{\pm} composing $\mathbb{C}P^1$

- The latter welding may be studied numerically as discussed by **Sharon-Mumford** in Int. J. Computer Vision **70**, 55 (2006) who used it to code 2D shapes by elements of $Diff_+S^1/SL_2(\mathbb{R})$
- The numerical algorithms give a direct access to the functions $\mathcal{X}_{s;1}^{\pm'}(x)$ and permit to simulate $\mathcal{F}_t(\lambda)$ (work in progress with **L**. Chevillard)

• For long times, the leading contribution to $\mathcal{F}_t^{\pm}(\lambda)$ comes from the term

$$i \frac{\pi c}{12 \beta_0^2} \int \xi_t^{\pm}(x) \left(\mathcal{X}_{s;1}^{\pm'}(x) \right)^2 dx$$

in $S_{\text{Sch}}(\mathcal{X}_{s;1}^{\pm})$ with $\xi_t^{\pm}(x)$ approaching $D^{\pm} \mathbf{1}_{\mathcal{I}_t^{\pm}}(x)$ where $D^{\pm} = \begin{cases} \frac{\beta_0 \Delta \beta}{\beta_\ell} \\ -\frac{\beta_0 \Delta \beta}{\beta_r} \end{cases} \qquad |\mathcal{I}_t^{\pm}| = \begin{cases} \frac{\beta_0}{\beta_\ell} t \\ \frac{\beta_0}{\beta_r} t \end{cases}$

On \mathcal{I}_t^{\pm} the functions $\mathcal{X}_{s;1}^{\pm'}$ should approach the constants $\left(1 - i\frac{D^{\pm}}{\beta_0}s\right)^{-1}$ resulting from uniform-shift welding of $\mathcal{Z}_{g_s^{\pm}}$ for $g_s^{\pm}(x) = x - D^{\pm}s$

• This gives the large-deviations asymptotics of Bernard-Doyon J. Phys. A: Math. Theor. 45, 362001 (2012)

$$\lim_{t \to \infty} \frac{1}{t} \ln \mathcal{F}_t(\lambda) = \frac{\pi c}{12} \left(\frac{1}{\beta_{\ell} - i\lambda} - \frac{1}{\beta_{\ell}} + \frac{1}{\beta_r + i\lambda} - \frac{1}{\beta_r} \right) \equiv \Phi(\lambda)$$

- The formula for $\Phi(\lambda)$ also agrees with the large-volume long-time limit of the **Levitov-Lesovik** formula for free fermions
- For long times $p_t(\Delta E) \simeq e^{-tI(\frac{\Delta E}{t})}$ with the **rate function**

$$I(\sigma) = \max_{\nu \in [-\beta_r, \beta_\ell]} \left(\nu \sigma - \Phi(-i\nu) \right) = \begin{cases} \beta_\ell \sigma + o(\sigma) & \text{for } \sigma \to \infty \\ -\beta_r \sigma + o(\sigma) & \text{for } \sigma \to -\infty \end{cases}$$

possessing the Gallavotti-Cohen symmetry $I(-\sigma) = I(\sigma) + \sigma \Delta \beta$

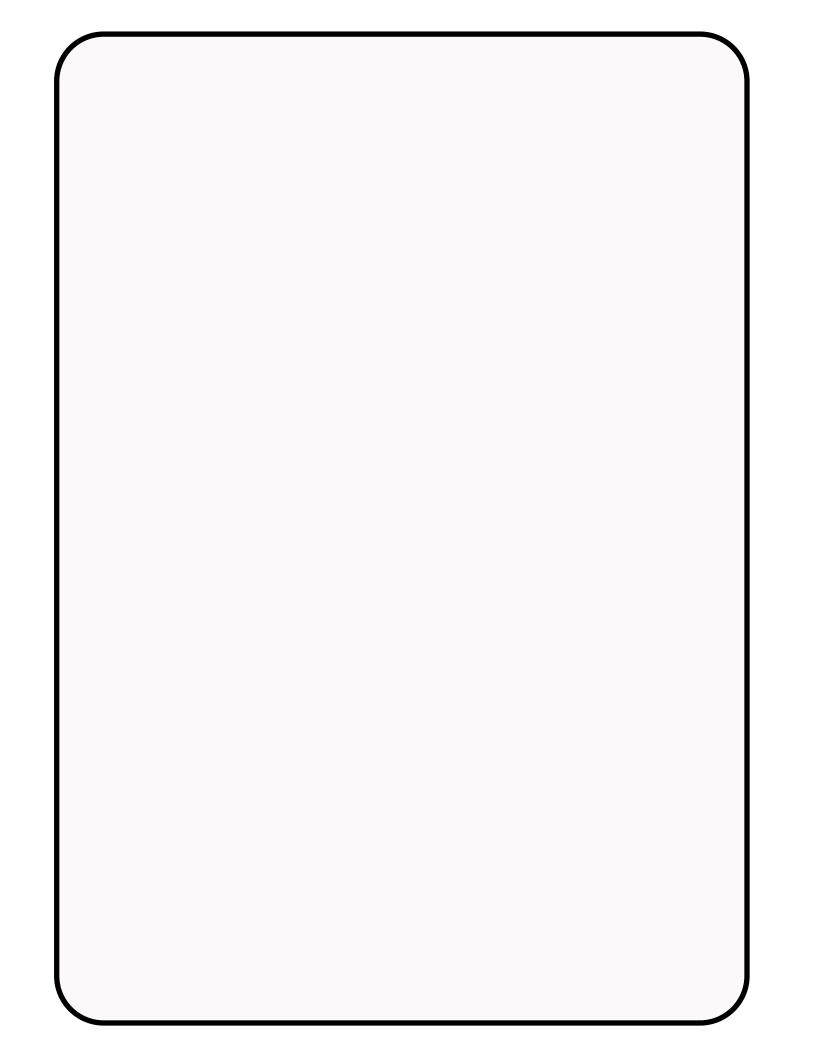
• $\Delta E(t)$ is distributed at large t as a Lévy process with the jump rates

$$w(x,y) = \frac{\pi c}{12} \left(e^{-\beta_{\ell}(y-x)} \theta(y-x) + e^{-\beta_{r}(x-y)} \theta(x-y) \right)$$

where $\theta(\cdot)$ is the **Heaviside** step function

Conclusions

- In a **CFT** conformal symmetries may be used to map inhomogeneous situations to homogeneous ones allowing to express the nonequilibrium states with temperature profile in terms of equilibrium ones
- As an example of a quantum probability question in a nonequilibrium **CFT** we analyzed the **FCS** of energy transfers in such profile states
- The finite volume **FCS** was expressed by characters of $Diff_+^{\sim}S^1$ that were reduced to **Virasoro** characters using conformal welding of tori
- In the thermodynamic limit the **FCS** was rephrased in terms of the **Schwarzian** action of fields obtained from conformal welding of cylinders and it showed a universal form with a large deviations regime
- In **CFT**'s with the current-algebra symmetries, the **FCS** of charge transfers in states with chemical potential profile may be treated similarly using gauge transformations



• 1st moment
$$\langle (\Delta E)(t) \rangle = \frac{1}{i} \partial_{\lambda} |_{\lambda=0} \mathcal{F}_t(\lambda)$$

$$= \frac{\pi c}{12\beta_0^2 \Delta \beta} \sum_{\pm} \hat{\xi}_t^{\pm}(0) + \frac{c}{24\pi\Delta\beta} \sum_{\pm} \int (\beta(x) - \beta(x^{\pm})) (\mathsf{S}\varphi)(x) \, dx$$

where $\hat{\xi}_t^{\pm}(p) = \int e^{ipy} \xi_t^{\pm}(y) dy$

• 2nd moment
$$\langle (\Delta E)(t); (\Delta E)(t) \rangle^c = -\partial_{\lambda}^2 |_{\lambda=0} \ln \mathcal{F}_t(\lambda)$$

$$= \frac{c}{48\pi^2(\Delta\beta)^2} \sum_{\pm} \int \frac{p(p^2 + \frac{4\pi^2}{\beta_0^2})}{1 - e^{-\beta_0 p}} \,\widehat{\xi}_t^{\pm}(p) \,\widehat{\xi}_t^{\pm}(-p) \, dp$$