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Many one-dimensional quantum systems have massless low-energy
excitations described by Conformal Field Theory

Examples: carbon nanotubes, electrons or cold atoms trapped in
1d potential wells, quantum Hall edge currents, XXZ spin chains




¢ (14+1)D CFT describes the low temperature equilibrium physics of such

systems but also some of nonequilibrium situations as

e evolution after quantum quenches to short-correlated pure states
(see Calabrese-Cardy, J. Stat. Mech. 064003 (2016))

e the partitioning protocol after two halves of a system in different
equilibrium states are joined (see Bernard-Doyon, J. Stat. Mech.

064005 (2016))
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e What isa (1+1)D CFT?

It is a QFT in one space dimension with the projective representation
in the Hilbert space of states of the symmetry group of (1+1)D

Minkowskian conformal transformations

e Conformal transformations in (14 1)D spacetime are:

(z7,27) = (fy(z7), f-(=T))

where T = ¢ + ¢




e Infinitesimally, the vector fields (4 (w:F) (9:|: are represented
by the s.a. operators

/ (1 (&F) T () doF

where T (x:F) are the right- and left-moving components of the energy-
momentum tensor

The energy density and energy current

e(t,) = T (@) +T-(a")  j(t,2) = Ty(a™) — T_(a™)

satisfy the local conservation law Oie + 0,7 = 0

e The Hamiltonian is H = f t az da: and the Gibbs equilibrium
state at inverse temperature [3( is

Tr(A4 e=foH)

Tr (e—BOH) J

where A are observables and the right-hand side requires passing through
the thermodynamic limit
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e Examples of (1 4+ 1)D CFT’s

Free massless bosonic field
Free massless fermionic field
(local) Luttinger model
WZW models

Coset models (e.g. unitary minimal models)




Smooth version of the partition protocol

We shall consider nonequilibrium “profile states” defined by

r e C
w'®(A) = TTS?eG)) for G = /B(az) e(0,x) dx

where [(z) is a smooth inverse-temperature profile with the values [y
and (fB,) far on the left (right)
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e Again, such states have to be defined by taking the thermodynamic limit

of their finite-box version

e They are not invariant under the dynamics generated by H




e Finite-box CFT

e We shall work in a finite box [—% L, + .| with the boundary conditions
that guarantee that T4 (x7) = T_(21) for = = +1L

Such b.c. assure conservation of energy within the box. E.g. for the
bosonic free field one may take the Neumann or the Dirichlet b. c.

There is then only one independent component of the energy-moment.

tensor T4 (z7) =Ty (x~ + L) with T_(z7) =Ty (—2xT £ L)

C

ﬂ&%o) — T(a:)

with the central charge c




Infinitesimal — global symmetry:

o Let Diff:Sl composed of smooth f:R — R st. />0 and
f(a: + L) = f(a:) + L be the covering group of the groups of orientation-
preserving diffeos of the circle S' = R/LZ

e T'(z) generates a unitary projective representation f U; of Diff_:Sl

“T(f(z) — 5= () ()

2B . o -
where Sf = ; is the Schwarzian derivative of f

o If fs is the flow of a vector field —C(:C)ax with ((z + L) = ((x), i.e.
asfs( )_ _C(fs ) fO( )

U, = exp 13/ C }

Eg U._ = e?™15(Lo=37) for the translations fs(x) =x — sL




Finite-box profile states

e For L big enough let 81 (x) = Br(x + L) be the profile extended
from [—+L,%L] to [—2L,1L] =7Z; by reflection:

1
ZL

= | B(x)e(0,x) dx :/ Ty (z)+T-(x)) d

consider the finite-box nonequilibrium profile state

T (A e_GL)
Tr(e_GL)




e Reduction of profile states to equilibrium states

o Let ¢, € Diff; 8" be s.t. ¢l(x) = 5% with fo,r fixed

by the requirement that goL(aj + L) — QOL(x) + [.. Then

UsoLGL UQO_L1 = /BL () USOLT(:C) U~ dx

®
7y, L

— /BL(x) Spi(x)?T(gpL(a:))da: — 2;/5]:(3;) (S, )(z) da

1y, 1y,

\ - J/
Ve

a number Cj f,

Bo,LHr — Co, L

— the conjugation by ULPL flattens the temperature profile !!!




This implies that the nonequilibrium profile state is related to the
equilibrium state by the conformal symmetry:

ne L e —1
wr q(A) = WBE,L;L (USOLA USOL )

May be applied e.g. to A = H T+( )H T ( . ) since we know how
it transforms under the conjugation by U

In the thermodynamic limit L — oo one obtains for the 1-point function
of Ty (x™T)

wneq(mm) = SaeEr — 5 (59)EF)

where ©(x fx BO da: with arbitrary (g
First derived for the local Luttinger model by Lebowitz-Langmann-
Mastropietro-Moosavi in Phys. Rev. B 95, 235142 (2017) by

resumming a perturbative series




e The sum and the difference of the last formulae unravels a nontrivial evolu-
tion of w"®9 (e(t, :I:)) and w"°q (] (t, :I:)) with traveling heat waves:
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Evolution of the mean energy density minus eqg (left)
and of the mean energy current (right)

before reaching the stationary values

lim w"(e(t,y)) =

t— o0

lim w™™4(5(t,9)) =

t— 00




e Full counting statistics of energy transfers

e Full counting statistics (FCS) captures fluctuations of charge or energy
transfers in extended quantum systems (Levitov-Lesovik, JETP 58,

230235 (1993))

For the profile states, one may obtain an exact expression for the FCS
of energy transfers across the kink in a kink-like [(x)-profile

Br

b

B |

L
GL — B(x) 6(07 x) dr = BEEE + BT‘ET‘
Ji1p
4
where Fy and F, are the energies in the part of the box [—
to the left and to the right of the kink




e One gets access to the FCS of energy transfers from two measurements

of G, = ByEy+ BrE, separated by time ¢, starting in state w?/eq

e By spectral decomposition

G = Zgipia Gr(t) = ™ML Gre L = Zgipi(t)

e If the 1°* measurement gives the value ¢; and the 2°¢ one the value g;j
then

9j — 9i = Be(Ee(t) — E¢(0)) + Br (Er(t) — Er(0)) = (AB)(AE)

where AB =0, — By and AE = E,(t) — E-(0) = —(FE,(t) — E»(0))

is the net transfer of the energy across the kink during time ¢




e By the QM rules the probability of the results (g;, gj) is
pe(i,g) = Wi (P (t) )
giving for the distribution of the energy transfers (called FCS):
g 9gi
p,r(AE) = Y 8(AE - 1) 0o (P () P
1,]

e The Fourier transform of the distribution of AF (called the genera-
ting function of FCS)

Fir(\) = / e F p, 1 (AE) d(AE)

_ ZeAB (95—9i) w]zeq (pj (t)Pi) — w%eq(eA’B

eq (UgoLeAB GL(t) — 12 )

_wBOLL

using the relation between the nonequilibrium and equilibrium states




e Upon lifting the conjugation by USOL to the exponentials

U, G (t)U—1 0, G U—1
Fer(N) = Z%LL(e A Up, GrL o ApUs,GL )

e We have seen that

USOLGL Ug;Ll — BOL L COL

N——

: , b
By the same manipulations a number

Uy, GL(t) Us;Ll = [ G,o(y)T(y)dy — Cy L
Iy, "
a number
where

Bo,r Br (w; (y)+t .
G, (y) = - L(gol’l ) +i) and Cy 1 = 55 [Br(z7)(Se)(z) dx
N—— BL (SOL (?J)) Ty

effective profile




o Using H, = (Lo~ 57) and setting 5= x5, Ts = Oﬂ)LBO,L

one obtains

Fi. (M)

i) . .
Ce,.(¥)T(y)dy _ ix _ A _
,ZCS . (e AB fIL t e AP 50,LHL> e AP (C¢,.—Co,L)

Tr (Uf e27Ti7'S (Lo— i))

e—15(Ct, L —Co,L)

for fs € Diff_:Sl denoting the flow of the vector field —(; 1, (y)0y




The least explicit contribution is the boxed term

Tr (U 027175 (Lo — %))

TI‘( 27miTg (Lg— = 59 )

Tr( Zaitr(be = _4)) = x(7) is the character of the Virasoro algebra
representation in the space of states of our CFT in the box

Similarly, I (U e2miT(Lo— 24)) Y(f,7) may be viewed as the

character of the corresponding representation of the group szf+5'1

We may then write:

T (fs,Ts e _
Fop) = T s o

The Virasoro characters are well known for the unitary (positive-energy)

representations but their Diff:Sl counterparts have not been studied




e Characters of Diff:S1

e Consider the complex annulus
Agr = {z]17m| <2l <1}
with the boundary components parameterized by

p1(z) = e E @, £

and the complex torus 'Tfﬂ- obtained from .Afﬂ- by sewing

(“conformal welding”) its parameterized boundaries together




@

According to G. Segal Y(f,7)=Tr (Uf e27iT(Lo— 53 is proportional
to the partition function on the torus 7f , of the chiral CFT

The complex torus 7},7- is isomorphic to 7}077@ for fo(r) =2 and some
effective 7 in the upper half plane

The existence of such an isomorphism implies the relation

T(f,7) = CfrY(fo,7) = Crrx(T)

where Cfﬂ- is a complex number due to the projective nature of the chiral
CFT partition functions

We shall need Cy , only for f = fs with fs a flow of a vector field

Cfsﬂ' may be found adapting the approach used by Fewster-Hollands
in Lett. Math. Phys. 109 (2018), 747 to calculate <O‘U(fs)‘0>




e The isomorphism 7;, =7 > and an inhomogeneous
Riemann-Hilbert problem on 7 .

e One searches for a holomorphic function Y on .Afﬂ- s. t.

Yi-Ya=2(f—fo)—7+7 for Y;=Yop;

jump of a holomorphic function Y -
prescribed along the welding contour

e Y is found from the solution Y7 (that exists for a single value of 7)
of an explicit Fredholm equation in L2 (R/LZ)

e The holomorphic function W (z) = 2e2™MY (2) op Ay + has the
boundary values W; = W op; = e2T%Xi g t. X3 (r) = Xo(x) + 7
so that Wi = GQWi?WQ

e The map W realizes the isomorphism 7Ty . = T, 7= CX/(w ~ eQWi?w)




e Theorem. For the low fs of —((z)0; let Ws(z) be the holom.
functions on Afsﬂ' with bd. values Wj.; = e?™Xsii that realize the
isomorphisms Tr, , = ,TfoﬂA's‘

The proportionality constant between the Diff:Sl—character Y(fs,T)

and the Virasoro character X(7s) and the effective modular parameter
satisfy the ODEs

OsInCy_ ;

AN

83 Ts

that determine them completely since Cfoﬂ' =1 and 79 =T




e The main tool in the proof is the transformation property of the Euclidian

1-point function

(T(2)) Wi(2)? (T(Ws(2)))_ + 15 (SWa)(2)

Tfsﬂ' Tf()a?s

of the holomorphic component of the energy momentum tensor

The integral of bd. value of the left-hand side against ((x) produces
Os In Y (fs,7) and of the 1°* term on the right-hand side gives s In x(7s)

]
Corollary. The result allows to control the finite-volume generating

function for the FCS of energy transfers

Cr v x(Fs)
Fop () = Hore XT6) —is(@1,-Co,1)

Te = (i_SQBO’L, and fs is the flow of —(; 1(7)0x
by 7s and ((z) by & r(x)=Cn(z) — Bo,L




FCS for energy transfers in the thermodynamic limit

In the L — oo limit, the conformal welding of tori becomes that
of infinite cylinders Zgi obtained from the band

B = {z| — Bo <Im(z) <0}
with the boundary parameterizations

Roz—pi(z)=—iBo+g5(x), ROz pa(z)=2x
by setting p1(z) = p2(x)




. gg: () = fsi (r) + Bos for the flow fsi of the vector field —Ctj: ()0,

Loy Ble (£r) £ 1) _ (" B0
¢ () = PBo 5(90_1(:1:33)) for o(x) —/O B dx

e The complex cylinder Z j: is isomorphic to Z., with the isomorphism
+
given by a holomorphic funct1ons X, on B with boundary values
+ + i

S5

+
e Finding XS is a Riemann-Hilbert problem on Z + that reduces to

s /
solving an explicit Fredholm equation in L2 (R) for ij,:l —1

equal to- 'Bo




Example.

e The main problem was to prove the uniform convergence on compacts of

the derivatives of functions Xs;l solving the finite-volume Fredholm

eqn to the derivatives of functions Xsl,Ll solving the infinite-volume one

e This was done by a detailed analysis of particular classes of Fredholm

operators in [L?2 (R) and it formed the technical core of our work




e Theorem. F;(A) = lim F1(}) =[] F"(\) where F,5(\) are
— 0O +

the contributions of the right- and left-movers and

A FEN) = 35 (Ssn(¥E) +igis [ (B@)-5*) Se)(w) de

Ssen(¥ih) = ~igiz [ € @((64E) @) — (A @)?) da

for ff': () = Ctj: (r) — Bo and ij,zl (r) given by a conformal welding
of the infinite cylinder Zgi

e Corollary. F:()\) is universal depending only on the profile 3(x) and
the central charge c¢ of the CFT (entering as a power)

e Remark. The action Sgc,(X) of diffeomorphisms of R controls the
regime of the Sachdev-Ye-Kitaev model dominated by the Goldstone

boson of the conformal symmetry breaking




e Under the map
2T
1 —ievPo”
27
1+ ievPo”

\
4

the conformal welding of the edges of the band /5 becomes the conformal

welding of the boundaries of the unit discs A+ composing cpPl

e The latter welding may be studied numericallly as discussed by Sharon-
Mumford in Int. J. Computer Vision 70, 55 (2006) who used it to code
2D shapes by elements of DiffiS'/SLa(R)

/
e The numerical algorithms give a direct access to the functions X:,Zl ()

and permit to simulate ft()\) (work in progress with L. Chevillard)




e For long times, the leading contribution to ]:t:i:()\) comes from the term

1250 /ft Xsi{( )) dx

in Sgch(X:,:l) with ft (r) approaching Dilzi (r) where
’ '
+ = +
_ B _
D~ = B BgAB ‘It ‘ — Bo ;
Br Br

/ + \—1
On It:t the functions ij-:l should approach the constants (1 —§2= 8)

iB 0

)

resulting from uniform-shift welding of Zgi for gg: (r)=ax — D*s

e This gives the large-deviations asymptotics of Bernard-Doyon
J. Phys. A: Math. Theor. 45, 362001 (2012)

. 1 TC 1
lim — InF(A) = (B —

t— 00 12 ¢—iA Be




e The formula for CD()\) also agrees with the large-volume long-time limit

of the Levitov-Lesovik formula for free fermions

AFE
e For long times p:(AFE) = e (=) with the rate function

— —1 — BEO--I_O(O') for o —> 0O
Vg[rilgfiﬁe](ya CI)( IV)) - _B’I"O-_I_O(O') for o— —o0

possessing the Gallavotti-Cohen symmetry [(—o) = I(0) + cApB

° AE(t) is distributed at large ¢t as a Lévy process with the jump rates

w(z,y) = % (e—Be(y—w)g(y —z) e PriE=vg(y — y))

where 6(-) is the Heaviside step function




Conclusions

In a CFT conformal symmetries may be used to map inhomogeneous
situations to homogeneous ones allowing to express the nonequilibrium
states with temperature profile in terms of equilibrium ones

As an example of a quantum probability question in a nonequilibrium

CFT we analyzed the FCS of energy transfers in such profile states

The finite volume FCS was expressed by characters of Diff:Sl that

were reduced to Virasoro characters using conformal welding of tori

In the thermodynamic limit the FCS was rephrased in terms of the
Schwarzian action of fields obtained from conformal welding of cylinders

and it showed a universal form with a large deviations regime

In CFT’s with the current-algebra symmetries, the FCS of charge
transfers in states with chemical potential profile may be treated similarly
using gauge transformations







e 1°" moment <(AE)(t)> = }—@\A:O Fr(N)

— 1258A5 th 2471'CA5 zj::/(ﬁ(x)_

where ft = [ elpyft y)dy

e 2" moment <(AE)(t) ; (AE)(t)>C = —8?\ In F¢ ()

x=0

; p(p BT ) .,
= Sraar / O EE(p) & (—p) dp
+




