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Phenomenology of MBL

For a many-body quantum system with disorder, we may observe the following, which
may be thought of as essential features of many-body localization (MBL):

1. Absence of transport

2. Anderson localization in configuration space (as in, e.g. IPR measures)

3. Area law entanglement

4. Violation of ETH (eigenstate thermalization hypothesis)

5. Absence of level repulsion

6. Logarithmic growth of entanglement for an initial product state



Typical example: disordered spin chain

Spin chain with random interactions and a weak transverse field on Λ = [−K ,K ] ∩ Z :
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This operates on the Hilbert space H =
⊗

i∈Λ C2, with

Sz
i =

(
1 0
0 −1

)
,Sx

i =

(
0 1
1 0

)
operating on the i th variable.

Assume γi = γΓi with γ small. Random variables hi , Γi , Ji are independent and
bounded, with bounded probability densities.



Ergodicity breaking and the emergence of an extensive set of local
integrals of motion (LIOMs)

Loosely speaking, ergodicity should mean the spreading of wavepackets throughout the system.
In an extreme case, there may be a complete set of of conserved quantities (quasilocal in
nature) – a complete failure of ergodicity.

How do we know if a system has a complete set of quasilocal LIOMs? Can we construct them?

We seek a quasilocal unitary that diagonalizes H. That is, D = U?HU is diagonal, and
quasilocality means that the effect of U on a set of spins that span a distance L in the lattice
should be (identity) + (exponentially small in L). There may be rare, nonpercolating regions
where this property fails (resonant regions).

Then we may define LIOMs τi = USz
i U

?.

It is clear that [H, τi ] = [D,Sz
i ] = 0.

Likewise [τi , τj ] = 0.

Properties 1-6 listed above for MBL should follow if one can find a complete set of LIOMs1

1Huse, Nandkishore, Oganesyan, PRB ’14; Serbyn, Papic, Abanin, PRL ’13



One spin

For guidance, consider what happens for a single spin. Then

H =

(
h γ
γ −h

)
and for γ � h the eigenfunctions are close to ( 1

0 ) and ( 0
1 ). The eigenfunctions

resemble the basis vectors. This means the basis vectors can be used to label the
eigenfunctions.

At the other extreme, if γ � h the eigenfunctions are close to ( 1
1 ) and

(
1
−1

)
. With

complete hybridization, there is no meaningful way to associate eigenfunctions with
basis vectors.



Perturbative and non-perturbative approaches

One may construct LIOMs perturbatively2.

But rare regions where perturbation theory breaks down have the potential to spoil
MBL. I will outline a nonperturbative construction3 (which, however, depends on a
physically reasonable assumption on eigenvalue statistics – essentially that the level
spacings in a system of n spins are no smaller than some exponential in n.)

It is especially important to have a nonperturbative proof of an MBL phase, as some
are questioning the numerical evidence for MBL4.

2Integrals of motion in the many-body localized phase, Ros, Müller, Scardicchio NP ’15
3Imbrie, On many-body localization for quantum spin chains, JSP ’16
4Quantum chaos challenges many-body localization, S̆untajs, Bonc̆a, Prosen, Vidmar arXiv:1905



What about the level spacing condition?

Assumption LLA(ν,C ). Consider the Hamiltonian H in boxes of size n. Its
eigenvalues satisfy

P

(
min
α 6=β
|Eα − Eβ| < δ

)
≤ δνCn,

for all δ > 0 and all n.

I have been developing tools for proving level-spacing conditions in simpler systems
(noninteracting).

But in this talk I will focus on explaining the key mechanisms at work in the proof.

Then, I will connect these to recent work by others on the nature of the transition out
of the MBL phase.



Percolation picture validated for large disorder or weak interactions in 1d

Proof controls the probability of resonance for processes, and shows that the graph of
resonances is non-percolating.

Then is possible to define quasilocal similarity transformations on H that diagonalize
it, deforming the tensor product basis vectors into the exact eigenfunctions.



Resonances in the first step
Initially, the only off-diagonal term is γiS

x
i , which is local, so we may start by looking

at single-flip resonances.

Let the spin configuration σ(i) be equal to σ with the spin at i flipped.
Let the associated change in energy be ∆Ei ≡ Eσ − Eσ(i)

We say that the site i is resonant if |∆Ei | < ε ≡ γ1/20 for at least once choice of
σi−1, σi+1. Then for nonresonant sites the ratio γi/∆Ei is ≤ γ19/20.

A site is resonant with probability ∼ 4ε. Hence resonant sites form a dilute set where
perturbation theory breaks down.

Rotate away interaction terms J(i) ≡ γiSx
i for nonresonant sites i by defining

A ≡
∑

nonresonant i

A(i) with A(i)σσ(i) =
J(i)σσ(i)

Eσ − Eσ(i)

and a renormalized Hamiltonian:

H(1) = eAHe−A = H + [A,H] +
[A, [A,H]]

2!
+ . . . = H0 + Jres + J(1).



Properties of the new Hamiltonian:

The new interaction J(1) is quadratic and higher order in γ – the leading-order term
has been eliminated.

Note that A(i) commutes with A(j) or J(j) if |i − j | > 1.

Thus we preserve quasi-locality of J(1); it can be written as
∑

g J
(1)(g), where g is a

sum of connected graphs involving spin flips J(i) and associated energy denominators.

Define resonant blocks by taking connected components of the set of sites belonging
to resonant graphs. We perform exact rotations O in small, isolated resonant blocks to
diagonalize the Hamiltonian there.



Graph-based notion of resonance. Moment bounds control probability.
Use a sequence of length scales Lk = (15/8)k , and continue rotating away interactions
of lower order than γLk .

J(k) is a sum of connected graphs J
(k)
σσ̃ (g); quasilocality is preserved.

(Each graph g is a walk in spin-configuration space, whose trace in physical space is connected)

Denominators

A graph of order Lk is resonant if A
(k)
σσ̃ (g) ≡ J

(k)
σσ̃(g)

E
(k)
σ −E

(k)
σ̃

> (γ/ε)Lk .

Fractional moment bounds on graphs and the Markov inequality imply that the
probability that g is resonant is < εLk ; then it is OK to sum over exp(O(Lk)) graphs in
the associated percolation problem.



Backtracking

The moment method breaks down for walks that return to previously visited sites in
physical space. But backtracking sections can be handled with L∞ bounds has they
have a greater decay rate.

looping segments

1

Figure 6: Timeline of the walk. Arches connect pairs of times where the walk is at the
same site/block.

This is because the spatial graph of the looping portion of the walk is triply connected.
That is, any surface separating u (the starting point of the looping section) from v (the
final point) will be crossed at least three times by the walk. (Topologically, the number
of crossing must be odd, and a singlet crossing would disconnect the segment.) As a
result, the length of the graph within the looping segment must be at least three times
the distance from u to v, so 2

3
of the steps are “wasted”. We can conclude that the sum

of the lengths of the looping segments cannot be greater than 3
2
· 1

8
|gj′| = 3

16
|gj′|.

1

Figure 7: A walk executing loops exhibits triple connectivity.

The next step is to identify certain time intervals containing the looping segments
where inductive bounds (non-probabilistic) will be used in place of Markov inequality
bounds. We will need to keep a reasonable fraction of the timeline out of the covering
intervals, otherwise we will not get the needed probability decay with |gj′|. The denom-
inator graph has long-range links, so looping segments will affect the character of the
denominator graph in some neighborhood.

If we consider the denominator graph prior to the identification of vertices on the
timeline, it is devoid of loops. This is because each time a denominator is produced, it
connects one or more loop-free graphs A to a disconnected, loop-free graph J . (More
precisely, for a graph gj′ of J that goes from x to y, gd

j′ does not connect x to y, so the
new denominator cannot create a loop.) Some denominators are dropped when they
are incorporated into jump steps, but this does not spoil the loop-free property. (It is
useful to keep in mind the “nested” character of the denominator links. Graphs are
constructed as “walks of walks,” so the denominator xy in A

(i+1)
xy (gi′) encompasses all
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Resonant regions (= Griffiths regions) need buffer zones

These are regions where we have failure of the bounds needed to control the rotations.

Buffer zones are needed so that the smallness ∼ γL of a graph crossing the buffer is
much smaller than the typical ∆E = 2−L in the resonant region.

Resonant Region

L

Buffer zoneBuffer zone

The buffer zone is expected to be thermalized by the resonant region.

In 1-d the buffer zone has volume comparable to that of the resonant block, so we can
diagonalize H in the combined region, eliminating internal interactions while keeping
the level-spacing larger than the interactions with spins outside.



Renormalization group picture
In RG terms, the rotations removing terms in the Hamiltonian up to order γL is
analogous to “integrating out” short distance degrees of freedom in traditional RG.

At the same time, resonant regions up to some size R are “eliminated” once L is large
enough so that the remaining interaction terms are smaller than the level spacing in
the region (with its buffer zone, total size R + 2L). At that point, the region hosts a
“metaspin” which takes 2R+2L values, but the interactions are so small that there is
little hybridization with spins elsewhere.

Deep in the localized region, this RG has the property that the density of remaining
resonant regions (including their buffer zones with width given by the running RG
length L) goes to zero with L.

Note two effects are in play:
(1) Elimination of smaller resonant regions reduces the density.
(2) Fattening of the buffer zones on the remaining regions increases the density.
My MBL proof shows that (1) dominates (2) deep in the weak coupling/strong
disorder region, and the density goes to zero as L→∞.



Avalanche effect

For weaker disorder/stronger interactions, the decay rate can be reduced to the point
where no buffer size can insulate the resonant region from the rest of the chain: the
avalanche instability5.

Matrix elements connecting the resonant region with spins outside the buffer zone
should behave as γL2−(R+2L)/2. For this to be small compared with the level spacing
∼ 2−(R+2L), we need γL ≤ 2−(R+2L)/2. This means that the buffer size must satisfy

L ≥
1
2 log 2 · R

log γ−1 − log 2
.

This diverges when γ increases toward 1/2.

At some point, then, increasing γ causes (2) to dominate (1); i.e. the fattening effect
dominates the eliminations, and the density of resonant regions grows with L.

5Many-body delocalization as a quantum avalanche. Thiery, Huveneers, Müller, De Roeck, PRL ’18



Flow equations

To capture this physics, define a 2-parameter RG flow6 via the following parameters:

ζ−1 = log γ−1, so that ζ is the localization length governing decay of matrix elements.
ζ−1

c = log 2, the critical decay rate for the avalanche instability.
` = log L is the RG flow parameter.
ρ(`) is the density of resonant regions after running the RG up to scale L = e`.

Then ρ should increase if ζ > ζc, decrease if ζ < ζc. Simplest equation:

dρ

d`
= bρ(ζ − ζc).

6Kosterlitz-Thouless scaling at many-body localization phase transitions, Dumitrescu, Goremykina,
Parameswaran, Serbyn, Vasseur, PRB ’19



Back-reaction of resonant regions on decay rate

Even though small resonant regions are eliminated in this RG, they renormalize the
decay rate by providing shortcuts where decay of matrix elements will cease.

Decay can be described in terms of an “Agmon metric,” where resonant regions are
contracted to points.

In the MBL proof at weak coupling, I showed that the sum over scales of the density of
resonant regions at that scale is small, so exponential decay is preserved (at a reduced
rate)7.

Effectively, a decay e−ζ
−1|x−y | becomes e−ζ

−1(1−ρ)|x−y |, so we obtain the second flow
equation:

dζ−1

d`
= −cρζ−1.

7The idea goes back to Fröhlich, Spencer, CMP 1983.



KT flow

Thus we arrive at the following system of flow equations, proposed by Dumitrescu et al
as a way to describe the transition out of the MBL phase:

dρ
d` = bρ(ζ − ζc), dζ−1

d` = −cρζ−1.KOSTERLITZ-THOULESS SCALING AT MANY-BODY … PHYSICAL REVIEW B 99, 094205 (2019)

at all steps [45]. This avalanche process is supported by
exact diagonalization studies on toy models that incorporate
“random-matrix-type” inclusions [47,48]; however, it remains
to be tested for fully microscopic lattice models.

We emphasize that the growth of ETH bubbles by ab-
sorbing spins is controlled by the effective interaction matrix
elements of these resonances, which have to be carefully
considered. Tracking the evolution of the effective coupling
strengths and the degree of instability to thermalization at long
distances is the purview of RG methods, to which we now
turn.

B. Kosterlitz-Thouless scaling

We now argue that the basic ingredients of the avalanche
discussed above give rise to a Kosterlitz-Thouless scaling at
the MBL transition, with minimal additional assumptions.
Already implicit in the avalanche discussion is a degree of
coarse graining, due to the presence of fully thermal regions
at intermediate scales that arise out of microscopic configura-
tions. We shall proceed with this picture, which we emphasize
is not tied to any specific model, and will comment further on
its validity below.

Given the presence of thermal regions that grow to drive the
delocalization transition, it is natural to work with variables
that capture the distributions of individual locally thermal
blocks and their effectiveness in thermalizing neighboring
regions. First, we identify the average density of thermal
blocks ρ(�) as a scaling variable. Here, � = �0e−� is the RG
scale at which we are probing the system and �0 ∼ 1/a is
the cutoff scale set by the lattice spacing a. As the second
scaling variable, we identify the length scale ζ (�) that governs
the effective matrix element �(�) ∼ e−x/ζ (�) at a distance x
from the boundary of a thermal block. These scaling variables
control the distributions of physical observables, that are
themselves broad at criticality due to the strong randomness
inherent to the MBL transition.

It remains to deduce the RG equations that describe how
ρ, ζ , transform as the RG flows to longer length scales.
Following the avalanche scenario outlined above, we first
demand that at any scale, the density of thermal regions ρ

increases (decreases) under the RG if the typical localization
length ζ at that scale is larger (smaller) than some critical
value ζc, corresponding to the onset (absence) of avalanche
processes. The simplest flow equation consistent with this is

dρ

d�
= bρ(ζ − ζc) + . . . , (2)

where b ∼ O(1) is a positive constant, and the ellipsis denote
higher order terms in ρ and (ζ − ζc). In RG language, Eq. (2)
indicates that thermal resonances are relevant if ζ > ζc; they
proliferate even when they are asymptotically rare. Accord-
ingly, we set ζ−1

c = ln 2 [32].
Next, we consider the effect of the resonant regions on

the matrix elements. Intuitively, ζ should be renormalized by
thermal spots, and must grow under coarse-graining. Thermal
inclusions can “shortcut” the exponential decay of matrix el-
ements in the MBL phase, leading to an effective localization
length ζ that is larger than the microscopic one. To leading

Thermal

MBL
ζ−1

ζ−1
c

ρ

FIG. 2. Kosterlitz-Thouless RG flow obtained by integrating
Eqs. (2) and (3). The MBL phase corresponds to a line of fixed
points with ρ = 0 for ζ < ζc. For ζ > ζc, even an infinitesimally
small bare density of resonances grows under RG, driving the flow
to the thermal phase. The dotted line denotes a schematic line of
microscopic parameters, tuned, e.g., by decreasing disorder strength
W . Note that many RG trajectories initially approach the MBL
fixed line even if they eventually flow to the thermal phase; this
nonmonotonicity naturally explains why numerical simulations often
overestimate the extent of the MBL phase.

order, the simplest RG equation consistent with this reads

dζ−1

d�
= −cρζ−1 + . . . , (3)

where c is a positive constant, and we assumed that ζ is not
renormalized in the absence of thermal regions (ρ = 0). A
similar equation can be derived from the “law of halted decay”
of Ref. [32].

Equations (2) and (3) yield RG flows of the Kosterlitz-
Thouless form (Fig. 2), whose physical interpretation we now
discuss. For ζ−1 > ζ−1

c , these RG equations admit a line of
stable fixed points corresponding to the MBL phase, where
the effective density of the thermal regions vanishes at long
wavelengths, i.e., ρ∞ ≡ ρ(� → ∞) → 0. Points along this
line may be parameterized by the fixed-point value of the
typical localization length ζ∞ = ζ (� → ∞). For ζ−1 < ζ−1

c ,
ρ is relevant and flows to infinity, indicating the proliferation
of thermal spots: this is the delocalized, thermal phase. At
the critical point, ζ−1

∞ jumps discontinuously, analogous to
the stiffness discontinuity in the usual XY transition [49].
Assuming that the disorder strength W is the parameter that
tunes across the transition, ζ−1 evolves as

ζ−1
∞ = ζc

−1 + c1
√

W − Wc + . . . , (4)

for W > Wc, whereas it is formally 0 in the delocalized phase.
We emphasize that ζ−1

c = ln 2 is a universal number in this
scenario, which does not depend on microscopic details other
than the dimension of the on-site Hilbert space. In general, it is
given by the entropy density of the system at infinite effective
temperature—corresponding to the level spacing in the middle
of the many-body spectrum.

Whereas the typical localization length ζ remains finite
up until the transition, finite-size scaling is controlled by an
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These equations should be familiar as they
also describe the Kosterlitz-Thouless
transition. There is a line of semi-stable
fixed points along the ζ−1-axis, which
terminates at ζ−1

c . To the left, all flows are
driven to full thermalization with ρ = 1.
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at all steps [45]. This avalanche process is supported by
exact diagonalization studies on toy models that incorporate
“random-matrix-type” inclusions [47,48]; however, it remains
to be tested for fully microscopic lattice models.

We emphasize that the growth of ETH bubbles by ab-
sorbing spins is controlled by the effective interaction matrix
elements of these resonances, which have to be carefully
considered. Tracking the evolution of the effective coupling
strengths and the degree of instability to thermalization at long
distances is the purview of RG methods, to which we now
turn.

B. Kosterlitz-Thouless scaling

We now argue that the basic ingredients of the avalanche
discussed above give rise to a Kosterlitz-Thouless scaling at
the MBL transition, with minimal additional assumptions.
Already implicit in the avalanche discussion is a degree of
coarse graining, due to the presence of fully thermal regions
at intermediate scales that arise out of microscopic configura-
tions. We shall proceed with this picture, which we emphasize
is not tied to any specific model, and will comment further on
its validity below.

Given the presence of thermal regions that grow to drive the
delocalization transition, it is natural to work with variables
that capture the distributions of individual locally thermal
blocks and their effectiveness in thermalizing neighboring
regions. First, we identify the average density of thermal
blocks ρ(�) as a scaling variable. Here, � = �0e−� is the RG
scale at which we are probing the system and �0 ∼ 1/a is
the cutoff scale set by the lattice spacing a. As the second
scaling variable, we identify the length scale ζ (�) that governs
the effective matrix element �(�) ∼ e−x/ζ (�) at a distance x
from the boundary of a thermal block. These scaling variables
control the distributions of physical observables, that are
themselves broad at criticality due to the strong randomness
inherent to the MBL transition.

It remains to deduce the RG equations that describe how
ρ, ζ , transform as the RG flows to longer length scales.
Following the avalanche scenario outlined above, we first
demand that at any scale, the density of thermal regions ρ

increases (decreases) under the RG if the typical localization
length ζ at that scale is larger (smaller) than some critical
value ζc, corresponding to the onset (absence) of avalanche
processes. The simplest flow equation consistent with this is

dρ

d�
= bρ(ζ − ζc) + . . . , (2)

where b ∼ O(1) is a positive constant, and the ellipsis denote
higher order terms in ρ and (ζ − ζc). In RG language, Eq. (2)
indicates that thermal resonances are relevant if ζ > ζc; they
proliferate even when they are asymptotically rare. Accord-
ingly, we set ζ−1

c = ln 2 [32].
Next, we consider the effect of the resonant regions on

the matrix elements. Intuitively, ζ should be renormalized by
thermal spots, and must grow under coarse-graining. Thermal
inclusions can “shortcut” the exponential decay of matrix el-
ements in the MBL phase, leading to an effective localization
length ζ that is larger than the microscopic one. To leading
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ζ−1
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ρ

FIG. 2. Kosterlitz-Thouless RG flow obtained by integrating
Eqs. (2) and (3). The MBL phase corresponds to a line of fixed
points with ρ = 0 for ζ < ζc. For ζ > ζc, even an infinitesimally
small bare density of resonances grows under RG, driving the flow
to the thermal phase. The dotted line denotes a schematic line of
microscopic parameters, tuned, e.g., by decreasing disorder strength
W . Note that many RG trajectories initially approach the MBL
fixed line even if they eventually flow to the thermal phase; this
nonmonotonicity naturally explains why numerical simulations often
overestimate the extent of the MBL phase.

order, the simplest RG equation consistent with this reads

dζ−1

d�
= −cρζ−1 + . . . , (3)

where c is a positive constant, and we assumed that ζ is not
renormalized in the absence of thermal regions (ρ = 0). A
similar equation can be derived from the “law of halted decay”
of Ref. [32].

Equations (2) and (3) yield RG flows of the Kosterlitz-
Thouless form (Fig. 2), whose physical interpretation we now
discuss. For ζ−1 > ζ−1

c , these RG equations admit a line of
stable fixed points corresponding to the MBL phase, where
the effective density of the thermal regions vanishes at long
wavelengths, i.e., ρ∞ ≡ ρ(� → ∞) → 0. Points along this
line may be parameterized by the fixed-point value of the
typical localization length ζ∞ = ζ (� → ∞). For ζ−1 < ζ−1

c ,
ρ is relevant and flows to infinity, indicating the proliferation
of thermal spots: this is the delocalized, thermal phase. At
the critical point, ζ−1

∞ jumps discontinuously, analogous to
the stiffness discontinuity in the usual XY transition [49].
Assuming that the disorder strength W is the parameter that
tunes across the transition, ζ−1 evolves as

ζ−1
∞ = ζc

−1 + c1
√

W − Wc + . . . , (4)

for W > Wc, whereas it is formally 0 in the delocalized phase.
We emphasize that ζ−1

c = ln 2 is a universal number in this
scenario, which does not depend on microscopic details other
than the dimension of the on-site Hilbert space. In general, it is
given by the entropy density of the system at infinite effective
temperature—corresponding to the level spacing in the middle
of the many-body spectrum.

Whereas the typical localization length ζ remains finite
up until the transition, finite-size scaling is controlled by an
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Like the vortices, Griffiths regions represent
nonperturbative effects, and the tendency
of these effects to grow or shrink with the
flow determines the phase reached from
any starting point in the diagram. Vortex
binding is analogous to resonant region
elimination discussed above.

When bound, vortices renormalize the
stiffness. Likewise, when eliminated,
Griffiths regions renormalize the decay rate.

Note: the basic mechanisms of elimination and short-cuts have been incorporated in
many phenomenological RG models of the MBL transition. The KT picture may be a
kind of mean-field approximation, and it remains to be seen whether it will become the
definitive theory of the transition.


	Introduction
	Overview


