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Universitá di Milano

September 23, 2019
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Introduction

Several condensed matter systems admit an emerging QFT description: this
offers in principle the possibility of explaining properties of interacting
non-relativistic fermions in terms of the analogue of high energy phenomena
(anomalies, bosonization etc).

The symmetries of the QFT description are however broken by lattice or
non-linear bands effects; such terms are usually irrelevant in the RG sense
but their role is often crucial in particular in transport. The final behavior
depends on a delicate interplay between emerging QFT and irrelevant terms.

I will focus mainly on the analogue of the chiral anomaly in interacting
lattice Weyl semimetals ; later I will briefly mention related results on 1d
interacting fermions close to the quantum critical point or with
quasi-periodic disorder.
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Weyl semimetals

Weyl semimetals are materials with an emerging desciption in terms of
massless 3 + 1 Dirac fermions. Nielsen and Ninomiya (1983) proposed that
the analogue of the Adler-Bell-Jackiw anomaly can be observed in solids (no
many body interaction was considered).

The goal seemed attainable in Weyl semimetals (e.g. Burkov et al (2011))
and indeed observation have been reported (see e.g. Ong et al (2015))

The anomaly is expressed by the celebrated triangle graph and in principle
by a series of radiative corrections
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Anomaly and Adler-Bardeen
non-renormalziation

One of the main properties of the anomaly in QFT is the
non-renormalization (Adler-Bardeen 1969): all the radiative interaction
corrections cancel out and the anomaly is exactly determined by its lowest
order contribution in perturbation theory (triangle graph).

The AB result is based on a delicate cancellation between Feynman graphs,
plagued by ultraviolet divergences. Cancellations order by order rely heavily
on Lorentz invariance and chiral classical symmetry. Simplified derivations
(Fujkawa, Atiah-Singer) works in semicalssical case.

Is the anomaly non.renormalization valid with a finite lattice and without
Lorentz invariance, that is in Weyl semimetals? In other words, the lattice
corrections do exactly cancel, or produce a small but finite contribution?
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Vieri Mastropietro (Universitá di Milano)Anomaly non-renormalization in Weyl semimetals (and related problems)September 23, 2019 4 / 33



Anomaly and Adler-Bardeen
non-renormalziation

In the positive case maybe one could get an example of universality like
QHE or the optical conductivity on graphene.

The non-linear corrections to the dispersion relation are RG irrelevant but
can produce finite contributions. Also the AB argument is purely
perturbative; one cannot exclude non-perturative corrections.

Also interesting from a QFT perspective; violation of Lorentz invariance have
implications or not on the anomaly cancellation (Coleman Glashow 1999)

In the case of weak short range interactions non-renormalization can be
established non-perturbatively (series uniformlly convergent summing up to
zero). The proof do not uses cancellations but a completely different and
more robust mechanism.
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Interacting lattice Weyl semimetal

We focus on the simple situation of a minimal number of Weyl nodes, i.e.
two with opposite chirality, assuming broken time reversal symmetry. It is
not restrictive to consider a simple model (Delplace Carpentier EPL 2010)

h0(~k) =

(
t⊥ cos k3 − µ+ t′ + α(~k) t(sin k+ + i sin k−)

t(sin k+ − i sin k−) −t⊥ cos k3 + µ− t′ − α(~k)

)
with α(k) = −t′(cos k+ cos k− − 1), where t, t′ are planar hoppings, t⊥ is
the perpendicular hopping and µ describes the difference of densities. If
|µ− t′| ≤ t⊥ there are 2 Fermi points (0, 0,±pF ) with t⊥ cos pF = µ− t.

We add an interaction so that the interating model is

H =

∫
d~kψ+

~k
h0(~k)ψ−~k

+ U

∫
d~pv̂(~p)ρ~pρ−~p + νN3

where ρ~p =
∫

d~k
(2π)3 ψ̂

+
~k+~p

ψ̂−~k
is the local density, v̂(~p) is a short range

potential, and ψ± = (a±, b±); N3 = NA −NB is the staggered fermion
number. ν is a counterterm to fix the Weyl points.
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Emerging description

In absence of interaction the 2-point function g(x) close to the Weyl point
have the form, if k = k′ ± pF

χ(k′)

Z0

(
−ik0 ± v03k′3 v+(k+ − ik−)
v0+(k+ + ik−) −ik0 ∓ v03k′3

)−1
(1 +R(k))

with Z0 = 1, v03 = t⊥ sin pF , v0± = t.

The model admits an effective description in term of massless Dirac particles
with a local interaction. This QFT model is invariant under a global
ψ± → e±iαψ± and chiral ψ± → e±iγ5αψ±; the second symmetry is not true
in the lattice model.

In contrast to graphene, the velocity can be small and the Weyl points
arbitrarily close. They are in general renormalized (their location is obtaining
from ν by inversion).
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Background e.m. field

Let us now couple the system to an external e.m. field Aµ, µ = 0, 1, 2, 3.
We denote by 〈·〉A the interacting Gibbs state of the system in the presence
of the external field and 〈·〉 = 〈·〉0. The coupling is defined via the Peierls
substitution.

The axial density is chosen, following NN, as the flow between Weyl points.

ρ̂5~p =

∫
d~k

(2π)3
sin k3
Z̄

ψ̂+
~k+~p

ψ̂−~k

and ρ5 ∼ ρ+ − ρ−.

Z̃ has to be chosen so that ρ̂5~p is proportional to ±(total density)

〈ρ̂5p; ψ̂−
k+p±

F

ψ̂+

k+p±
F

〉 = ±〈ρ̂p; ψ̂−
k+p±

F

ψ̂+

k+p±
F

〉(1 +O(k,p))

The lattice chiral density is not exactly local: therefore, one has to couple it
to the A field via the Peierls substitution, in order to ensure full lattice
gauge invariance, and denote by ρ5x(A) the gauge-invariant chiral density.
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Background e.m. field

The generating function of correlations can be written as a Grassmann
integral as

eW (A,A5,φ) =

∫
P (dψ) eV (ψ)+B(A,ψ)+(A5

µ, j
5
µ(A))+(ψ,φ),

V contains the interaction and ν term. We call Γ5
µ,µ1,..µn and Γµ,µ1,..µn the

derivatives with respect to A5
µ, Aµ1 , .. and Aµ, Aµ1 , .. at A = 0.

By Gauge invariance

∂αW (Aµ,+∂µα,A
5
0, φe

iα) = 0

so that pµΓµ,µ1,..µn = 0 implying the conservation of the current
< pµjµ >A= 0 in presence of an e.m. field. Of course no conservation
holds for the ”chiral current”; there is no associated symmetry.
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Background e.m. field

Response in A

〈ρ̂5p〉A = iΓ5
0,ν(p)Âν,p +

i

2

∫
dp1dp2 Γ5

0,ν,σ(p1,p2)δÂν,p1
Âσ,p2

+ ...

Γ5
µ,µ1,...,µn are derivatives of W , that is 〈̂5µ,p; ̂ν,+p1

; ̂σ,p2
〉+

〈̂5µ,p; ∆̂ν,σ,p1,p2〉+ 〈∆̂5
µ,ν,p,p1

; ̂σ,p2
〉+ 〈∆̂5

µ,σ,p,p2
; ̂ν,p1

〉+ 〈∆̂5
µ,ν,σ,p1,p2

〉
where ∆, ∆5.are derivative of B or j5 (Schwinger terms).

In the non interacting case p1 + p2 = (p0, 0), one has (Nielsen and
Ninomiya (1983 ):

p0Γ5
0,ν,σ(p1,p2) =

e2

~2
1

2π2
p1,αp2,βεαβνσ

This is same expression of the anomaly for ψ̄γµγ5ψ for massless QED (but
for Weyl semimetal strictly speaking is not an anomaly but a simulation).
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Âσ,p2

+ ...

Γ5
µ,µ1,...,µn are derivatives of W , that is 〈̂5µ,p; ̂ν,+p1

; ̂σ,p2
〉+

〈̂5µ,p; ∆̂ν,σ,p1,p2〉+ 〈∆̂5
µ,ν,p,p1

; ̂σ,p2
〉+ 〈∆̂5

µ,σ,p,p2
; ̂ν,p1

〉+ 〈∆̂5
µ,ν,σ,p1,p2

〉
where ∆, ∆5.are derivative of B or j5 (Schwinger terms).

In the non interacting case p1 + p2 = (p0, 0), one has (Nielsen and
Ninomiya (1983 ):

p0Γ5
0,ν,σ(p1,p2) =

e2

~2
1

2π2
p1,αp2,βεαβνσ

This is same expression of the anomaly for ψ̄γµγ5ψ for massless QED (but
for Weyl semimetal strictly speaking is not an anomaly but a simulation).
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Main Result

What happens in presence of interaction U 6= 0? The interaction produce
non-universal modiifcation in the physical quantities; the Fermi points are
shifted and are given by ±pF + b±U + . . ., with b± 6= 0, and the interacting
Fermi velocities are given by vi = v0i + aiU... Such quantities are expressed
by series in U with non trivial coefficients.

The anomaly is expressed by the celebrated triangle graph and in principle
by a series of radiative corrections

+ + + . . .

5

ν

σ

5

ν

σ

5

ν

σ

v̂ v̂

v̂

The contributions of such terms is e2

~2
1

2π2 p1,αp2,β +AU + CU2 + .... Do
such corrections cancel or not?
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Main Result

Theorem(Giuliani Mastropietro Porta arXiv:1907.00682 ) There exists
U0 > 0, independent of the distance between the Fermi points, such that, if
|U | < U0, fixing ν = ν(λ) and Z5 = Z5(λ) we have
p0Γ5

0,ν((p0, 0)) = O(p30 log |p0|) and, if p1 + p2 = (p0, 0),

p0Γ5
0,ν,σ(p1,p2) =

e2

~2
1

2π2
p1,αp2,βεαβνσ,

up to an error O(P 3 logP ), with P = max{|p1|, |p2|}.

A0 = A1 ≡ 0, A2(t, x) = Bx1, A3(t, x) = −Et we get, at quadratic order,

∂t〈N5
t (A)〉A = e2

~2c
1

2π2EB where N5 =
∑
x ρ

5
x
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Remarks

The anomaly non-renormalization holds exactly with finite lattice and short
range interaction: all correction cancel out exactly.

The mechanism is different from the AB one and non-perturbative.

Related to universality of optical conductivity in graphene; all interaction
corrections cancel out in the Hubbard model on the honeycomb lattice
(Giuliani Mastropietro Porta CMP 2012; PRB 2012)

Important to understand if is true with Coulomb interactions or strong
coupling.

One can see QFT as an effective theory emerging from some deeper
unknown description free of uv divergences and with less symmetries. Weyl
semimetals provide an example of emerging QED from a non Lorentz
invariant background. The correlations have small corrections (proportional
to the ratio between the momentum scale and the lattice ) but the anomaly
non-renormalization is a robust property: no corrections are present.
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RG an effective potential

The proof of universality combines two main ingredients: (a) invariance
under local gauge transformation and Ward Identities; (b) regularity
properties of the correlations Γ5

µ,ν,σ.

We perform an exact RG analysis integrating momentum scales of
decreasing size ∼ γh, γ > 1. We get a sequence of effective potentials V h

at scale h = 0,−1,−2, ... V h is given by a local part and an irrelevant part,
expressed by by sum of non-local monomials

∫
dxdyWh

n,mψ
nAm

Tke kernels Wh
n,m are expressed in terms of a convergent power series in U

and rcc νh, Z
h
µ , Z

5,h
µ . Technical part; cluster expansion and Gram bound for

fermionic determinants (Ma,β = (fα, gβ), |detM | ≤∏α ||fα||||gα||). In
order to achieve convergence Feynman graphs cannot be used; one needs
cancellations by anticommutativity (classical trick in constructive QFT:
Caianello 1956, Gawedski-Kupianenen 1985)

Finiteness of radius of convergence (uniformly in sin pF ) is in (Mastropietro
JSP 2015; JPA 2015). The RG has two regimes, the first with dimension
7/2− 5/4n the second with dimension 4− 3

2n

Vieri Mastropietro (Universitá di Milano)Anomaly non-renormalization in Weyl semimetals (and related problems)September 23, 2019 14 / 33



RG an effective potential

The proof of universality combines two main ingredients: (a) invariance
under local gauge transformation and Ward Identities; (b) regularity
properties of the correlations Γ5

µ,ν,σ.

We perform an exact RG analysis integrating momentum scales of
decreasing size ∼ γh, γ > 1. We get a sequence of effective potentials V h

at scale h = 0,−1,−2, ... V h is given by a local part and an irrelevant part,
expressed by by sum of non-local monomials

∫
dxdyWh

n,mψ
nAm

Tke kernels Wh
n,m are expressed in terms of a convergent power series in U

and rcc νh, Z
h
µ , Z

5,h
µ . Technical part; cluster expansion and Gram bound for

fermionic determinants (Ma,β = (fα, gβ), |detM | ≤∏α ||fα||||gα||). In
order to achieve convergence Feynman graphs cannot be used; one needs
cancellations by anticommutativity (classical trick in constructive QFT:
Caianello 1956, Gawedski-Kupianenen 1985)

Finiteness of radius of convergence (uniformly in sin pF ) is in (Mastropietro
JSP 2015; JPA 2015). The RG has two regimes, the first with dimension
7/2− 5/4n the second with dimension 4− 3

2n
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Boiunds

It is convenient to separate

W (h)
n,m = W

(h)
n,m;0 +W

(h)
n,m;1

where
(h)
n,m;0 depends only on the rcc, while W

(h)
n,m;1 depends on the irrelevant

terms.

Convergence allows the following non-perturbative bound holds:∫ ∗
dx dy |W (h)

n,m;i(x,y)| eκ
√

2hd(x,y) ≤ Cn,m2(4−
3
2n−m)h2θih.

with θ = 0 if i = a, θ = 1 if i = 2.

Note the improvement when some irrelevant quartic term contribute. This
improvement plays a key role in the proof.

The above bound has immediate implications on the regularity propertiies of
the Γ̂n,m.
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Regularity properties and RG

The anomaly is expressed by the derivative of Γ̂5
µ,ν,σ which is bounded by∑

h≤0 2−h2h, which is infinite; Γ̂5
µ,ν,σ is continuous but not differentiable.

However one can decompose as Γ̂5
1,µ,ν,σ + Γ̂5

2,µ,ν,σ; the second term has at
least a U vertex so by the previous bound is differentiable. The same is true
for the Schwinger terms which are differentiable.

The only non differentiable term is a renormalized triangle graph with
vertices and velocities at scale h; again we can write the propagators as the
relativistic part and a rest, and the vertices and velocities as their value at
h = −∞ plus a rest. In conclusion the renormalized triangle is a relativistc
triangle (non differentiable) and a rest which is differentiable
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Regularity properties and RG

In conclusion the following decomposition is found

Γ5
µ,ν,σ(p1,p2) = Γ5,rel

µ,ν,σ(p1,p2) +H5
µ,ν,σ(p1,p2),

where Γ5,rel
µ,ν,σ(p1,p2) =

ZµZνZσ
Z3v1v2v3

Iµ,ν,σ(p̄1, p̄2) where Iµ,ν,σ(p1,p2) is the
undressed relativistic chiral triangle graph with momentum cutoff and
p̄ = (p0, v1p1, v2p2, v3p3)-

5

ν

σ

5

ν

σ

= +
5

ν

σ

H

The fact that H5
µ,ν,σ depend on the irrelevant term implies that is more

regular, that is differentiable.
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Renormalization Group analysis

We now combine the use of Ward Identities (WI) with the regularity
properties of Γ5,rel

µ,ν,σ and H5
µ,ν,σ.

The WI implies that the vertex renormalizations are proportional to the
velocities:

Z0 = Z, Z1 = Z2 = v1Z, Z3 = v3Z,

Iµ,ν,σ(p1,p2) can be computed explicitly, leading to
pµIµ,ν,σ(p1,p2) = 1

6π2 p1,αp2,βεαβνσ, where p = p1 + p2, and
p1,νIµ,ν,σ(p1,p2) = 1

6π2 p1,αp2,βεαβµσ (non conservation of current in QED
with momentum cut-off).

p̄α = vαpα and note that vαvβvνvσεαβνσ = v1v2v3εαβνσ.
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Renormalization Group analysis

The second term H5
µ,ν,σ(p1,p2) is essentially impossible to evaluate directly,

being an infinite series. However, we know by the WI that p1,νΓ5
µ,ν,σ = 0

In contrast with Γ5,rel
µ,ν,σ, H5

µ,ν,σ(p1,p2) has continuous derivatives hence we
can write in Taylor up to order 1. By the WI we get the condition

H5
µ,ν,σ(0,0) = 0,

∂H5
µ,ν,σ

∂p2,β
(0,0) = − 1

6π2 ενβµσ.

The contribution of H depend only on the derivatives fixed above so that

pµΓ5
µ,ν,σ(p1,p2) = pµΓ5,rel

µ,ν,σ(p1,p2) + pµ
∑
j=1,2 pj,α

∂H5
µ,ν,σ

∂pj,α
(0,0) =

1
2π2 p1,αp2,βεαβνσ. This ends the proof.

Perfect universality even without Lorentz invariance. Convergence is
independent from the distance between Fermi points (anomaly does not
depend on the size of infrared regime). Essentially impossible to see by
direct graph cancellation (in contrast to QFT).

Open problem (at least on a rigorous side); long range interaction or
disorder. The decomposition used above cannot be used.
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pµΓ5
µ,ν,σ(p1,p2) = pµΓ5,rel

µ,ν,σ(p1,p2) + pµ
∑
j=1,2 pj,α

∂H5
µ,ν,σ

∂pj,α
(0,0) =

1
2π2 p1,αp2,βεαβνσ. This ends the proof.

Perfect universality even without Lorentz invariance. Convergence is
independent from the distance between Fermi points (anomaly does not
depend on the size of infrared regime). Essentially impossible to see by
direct graph cancellation (in contrast to QFT).

Open problem (at least on a rigorous side); long range interaction or
disorder. The decomposition used above cannot be used.
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1d non integrable chains

Natural question: for which properties is the behavior found in Bethe ansatz
solvable models 1d generic even when the Luttinger description breaks down
and the physics is dominated by irrelevant terms?

We consider static T = 0 properties close to critical point, where the
quadratic corrections to the dispersion relation tend to dominate.
cos(k′ ± pF )− cos pF = ± sin pF sin k′ + (cos k′ − 1)

We perform a two-regime RG analysis (Bonetto Mastropietro AHP 2018,
EPL 2018); in the infrared linear regime the scaling dimension is 2− n/2
(quartic terms marginal), in the ultraviolet quadratic one is 3/2− n/4
(quartic terms relevant)
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One dimensional case

In the first quadratic regime the interaction is relevant; however there is only
one singularity so in the spiness case there is no local quartic term, and
terms with derivatives are irrelevant.

In the second regime there are 2 fermi points: equal to Thirring model if the
bare interaction is suitably tuned up to irrelevant terms.

In order to compute the transport coefficients one separates the correlation
expression in a dominant relativistic part (which is now non continuous) and
a rest (depending on the irrelevant terms) which is continuous.

Big difference: the dominant part correspond to an interacting QFT (not to
a free one as in d = 3 + 1); a massless Thirring model with a momentum
cut-off; it verifies chiral symmetry while the lattice model not.

However the cut-off breaks the local phase symmetry and produces an extra
term in the WI for this interacting QFT theory (the relativistic anomaly).
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One dimensional case

The extra term in the WI for the relativitic emerging theory can be
decomposed in a dominant part plus terms which are negligiblle

The dot is a term depending on the cut-off and formally vanishing removing
the cut-off. The bubble is just the anomaly in d = 1 + 1 and is 1/4π
(Benfatto Falco Mastropietro 2011).

One get a closed expression for the relativistic dominant part correlations
(non differentiable).
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One dimensional case: spinless

The transport coefficients are expressed by the relativistic part (known )
while the contribution from the irrelevant terms are fixed by the lattice WI

One gets the remarkably simple Luttinger liquid relations unofomly up to the
quantum critical point; D is the Drude weight and κ is the susecptibility

D = Kv/π κ = K/πv

where (r is the distance from criticality)

K =
1− τ
1 + τ

, τ = λ
v(0)− v(2pF )

2πv
+O(λ2r) v = sin pF (1 +O(λr))

µ = µR + ν, ν = λv(o)pF /π +O(λ), µR = − cos pF = ±1∓ r. τ is the
anomaly of the emerging theory.

Moreover at criticality one gets the non interacting values

K → 1 D/D0 → 1

as r → 0. µc is shiifted by the interaction (see e.g. Zotos et al (2016)).
Main point: the O(λr) are bounds on convergent series.
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Spinless case
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D and K as function of density (or magnetic field), both in Heisenberg or
non solvable cases. D/D0 and K tend to 1: Features found in the
solvable case persists up to the criticapl point.
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One dimensional case: spinful

In the spinful case in the first quadratic regime the interaction is relevant
and there are no cancellations; the estimated radiu of convergence decreases
with r.

The linear dominant term is the one of the model with several interactions;
there are several anomalies in the emerging WI.

The LL relations are stil true in the convergence regime
D = Kv/π κ = K/πv with

K =

√
(1− 2νρ)−ν24
(1 + 2νρ)−ν24

v = sin pF
(1 + ν4)2 − 4ν2ρ
(1− ν4)2 − 4ν2ρ

ν4 = λv(0)/2π sin pF + .. νρ = λ(v(0)− v(2πF )/2)/2π sin pF + ..

νρ, ν4 are the anomalies of the emerging theory.

One cannot take the r → 0 limit; however for λ small one can see that K
does not tend to the non interacting value 1 but D becomes close to D0.
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Spinful case
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Contrary to the spinless case, we cannot get pF = 0. K show the
tendency to a strongly interacting fixed point while D is close to the non
interacting value. Cfr the behavior of the Hubbard model by Bethe ansatz
(e.g. Schultz 1993)
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Small divisors and Quantum Many body
Physics

Another case when irrelevant terms are crucial; interacting
Aubry-Andre’ model (XXZ chain with quasi random disorder)

H = −ε(
∑
x∈Λ

(a+
x+1ax + a+

x−1a
−
x ) +∑

x∈Λ

u cos(2π(ωx+ θ))a+
x a
−
x + U

∑
x,y

v(x− y)a+
x a
−
x a

+
y a
−
y

with v(x− y) = δy−x,1 + δx−y,1.

ω irrational.

Umklapp terms (marginal or relevant) are effectly irrelevant except at
half filling, as they do not fill momentum conservation from the Fermi
points; Due to incommensurability however momenta are almost
conserved, hence it is not clear if this improvement with respect to
scaling dimension holds.
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The Aubry-Andre’ model

In the non interacting case U = 0 the states are obtained by the
antisymmetrization (fermions) of the eigenfunctions of almost
Mathieu equation

−εψ(x+ 1)− εψ(x− 1) + u cos(2π(ωx+ θ))ψ(x) = Eψ(x)

Deeply studied in mathematics (KAM methods, ten martini).
Dinaburg-Sinai (1975); Sinai (1987), Froehlich, Spencer, Wittwer
(1990); Jitomirskaya (1999); Avila, Jitomirskaya (2006)....

For almost every ω, θ the almost Mathieu operator has
a)for ε/u < 1

2 only pps with exponentially decaying eigenfunctions
(Anderson localization);
b)for ε/u > 1

2 purely absolutely continuous spectrum (extended
quasi-Bloch waves)
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Molecular limit

ε = U = 0 molecular limit H =
∑

x(cos 2π(ωx)− µ)a+
x a
−
x

< Ta−x a
+
y > |0 = δx,y ḡ(x, x0 − y0)

ḡ(x, x0 − y0) =
1

β

∑
k0

e−ik0(x0−y0)

−ik0 + cos 2π(ωx)− cos 2π(ωx̄)

GS occupation number χ(cos 2π(ωx) ≤ µ).

Let us introduce x± = ±x̄, x± Fermi coordinates.
If we set x = x′ + x̄ρ, ρ = ±, for small (ωx′)mod.1

ĝ(x′ + x̄ρ, k0) ∼ 1

−ik0 ± v0(ωx′)mod.1

We assume Diophantine conditions; KAM (Kolmogorv Arnol Moser)
methods.

||ωx|| ≥ C0|x|−τ (∗)
||ωx± 2ωx̄|| ≥ C0|x|−τ ∀x ∈ Z/{0} (∗∗)
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Molecular limit
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Localized regime

Theorem 1.

In the spinless interacting Aubry-Andre’ model, assuming (*) and x̄
verifying (**) if u = 1, µ = cos 2π(ωx̄) + ν for small ε, U and suitable ν,
for any N , L = 1/T =∞

| < Ta−x a
+
y > | ≤ Ce−ξ|x−y| log(1+min(|x||y|))τ 1

1 + (∆|x0 − y0)|)N (∗∗∗)

with ∆ = (1 + min(|x|, |y|))−τ , ξ = | log(max(|ε|, |U |))|.
Assuming (*) and x̄ half integer the same holds with ∆ replaced by
σ = O(ε2x̄)

Exponential decay in coordinates signala persistence of localization in
presence of interactions.
Mastropietro Phys. Rev. Lett. 115, 180401 (2015); Comm. Math. Phys.
342, 1, 217-250 (2016); Comm. Math. Phys. (2017)
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Some idea of the proof

We integrate higher scales getting a sequence of effective potentials.
According to power counting, the theory is non renormalizable ; all
effective interactions have positive dimension, D = 1.

One has to distinguish among the monomials
∏
i ψ

εi

x′i,x0,i,ρi
in the

effective potential between resonant and non resonant terms.
Resonant terms; x′i = x′. Non Resonant terms x′i 6= x′j for some i, j.
(In the non interacting case only two external lines are present). Non
resonant terms almost connect the Fermi cooridnates.

Methods coming from direct proof of convergence of Lindstedt series
for tori of quasi integrale systems

The relevance of all terms suggest that localization (the umpertured
case) is broken.
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Some idea of the proof

The non resonant terms are irrelevant. The idea is that if two
propagators have similar (not equal) small size (non resonant
subgraphs) , then the difference of their coordinates is large and this
produces a ”gain” as passing from x to x+ n one needs n vertices.
That is if (ωx′1)mod1 ∼ (ωx′2)mod1 ∼ Λ−1 then by the Diophantine
condition

2Λ−1 ≥ ||ω(x′1 − x′2)|| ≥ C0|x′1 − x′2|−τ

that is |x′1 − x′2| ≥ C̄Λτ
−1

. This implies that such subgraphs have
assocuared an high power of t, U which change the dimensions.

The resonant terms are vanishing by Pauli principle

Therefore perturbation theory is convergent for small t. In contarst
delocalized behavior is found for large ε.
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Conclusions

The predictions on transport found using emerging QFT descriptions
neglects non-linear bands and breaking of Lorentz invariance due to lattice.
Even if RG irrelevant, they could produce major effects.

Universality persists in the chiral anomaly at T = 0 in Weyl semimetals for
short range interactions; weak respect to hopping but not respect to the
Fermi velocity. Use of rigorous non-perturbative bounds and exact RG
methods. Surely important to extend to long or strong interaction.

No difference between integrable and non integrable chains even in regimes
where the irrelevant terms dominate (close to criticality) for T = 0. Of
course T 6= 0 is a major problem.

In presence of quasi-random disorder, again the localizationn at T = 0
persists due to irrelevance of terms almost connecting Fermi points; number
theoretical (Diophantine) properties ensure such irrelevance. Again major
problem understand the role of such irrelevant terms at T 6= 0.
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