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Summary

Effects on disorder on transport in quantum systems
Localization: suppression of transport
Nature of the delocalised phase: modes of slow transport

Implications for the MBL-ETH phase transition?



Effect of disorder

In a perfect crystal transport is ballistic: momentum
IS a good quantum number

A perfect crystal is an abstraction: disorder is everywhere

ballistic ——diffusive



Effect of disorder

For conduction electrons disorder can be included (in a
semiclassical approximation) in the Boltzmann equation for f(z,p)

(?9_{ + oV, f+ FV,f = /dp’w(p,p’) (f(z,p") = f(z,p))

where a Born approximation gives

(p, ) = QW’VP p‘Q

This eventually gives diffusive transport



Effect of disorder

conductivity 0 = J/E

Einstein’s relation ox D

Semiclassical result: always diffusive, slower as
disorder increases
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Effect of disorder

Anderson argued that for sufficiently strong disorder, diffusive
transport must be completely suppressed

From experiments on electrons in the impurity band
In a semiconductor

€; € (—W, W)

Changing the ratio t/WW we get to a phas:
P.W. Anderson, 1958 transition



Effect of disorder

Due to quantum effects the diffusion constant must disappear
altogether
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Localization

Direct observation in

Observation in doped optical lattices
semiconductors
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Huge body of theoretical/mathematical work



Localization

What happens when we introduce interactions?

—tZCTCZ—I—hC +Zemz+z i — j)nin;

Question asked already in Anderson 1958 but recently finally we
think we have the answer:

In 2006 Basko, Aleiner and Altshuler presented a perturbation
theory calculation supporting the idea that, for sufficiently small
(and short-range interactions), localization survives



Many-body Localization

For sufficiently small interactions
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Many-body Localization

Perturbation theory
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Many-body Localization

Look at the absence of resonant processes

Ve > (0 check P(|AL‘>C)—>O as L — oo

more precisely one can show (in perturbation theory):

3¢ >0,20: VYr>azo: P(lAz] <e %) =1 as L— oo
In this way transport is inhibited

Basko, Aleiner, Altshuler (2006), Ros, Mueller, AS (2015), J.Imbrie proved this for a different model (2015)



Many-body Localization

Absence of transport

 Emergence of local integrals of motion

* Violation of ETH

* Area law entanglement at high T

e Memory of initial state in local observables
e Poisson distribution of gaps in the spectrum

e Slow growth of entanglement



Many-body Localization

Interacting spinless fermions F.Alet et al. (2015)
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Many-body Localization

ETH
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e(x,t) = (P(t)| He|h(1))




Many-body Localization

Localized

e(x,t) = ()| Halyp(t))




Many-body Localization

Problems with the phase transition:

Critical exponents are too small

r(W,L) = f(L/L:(W))

LC(W) ™~ ‘Wc — W‘_V
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Chandran, Laumann,
Oganesyan (2016)
vV Z 2/d = 2 based on Chayes,
Chayes, Fisher,
Spencer (1989)



Many-body Localization
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Many-body Localization
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Analogy with Anderson model on
RRG/Bethe lattice



Delocalized region

o=J/FE J=0cF =0 AV/L

When conductivity is zero, is
it localized?

Not necessarily!
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Conductive Localized
non-ohmic or subdiffusive dynamics
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This is not observed in Anderson model



Delocalized region

The delocalized region of the interacting model
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Delocalized region

Ho==3 5 i1+ hisi the dynamical phase diagram is

W/ J z 4 localized at infinite temperature
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open system transport: Znidaric, Varma, AS (2016), eigenstates: Alet, Luitz, and others (2014)

eigenstates: Luitz, Bar Lev (2015)



Delocalized region

Transport using KGS/Lindblad
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Delocalized region




Delocalized region

Where in BAA diagram is this region?
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Delocalized region

Subdiffusion has been observed before

PRL 114, 160401 (2015) PHYSICAL REVIEW LETTERS 24 PRI 3055

Anomalous Diffusion and Griffiths Effects Near the Many-Body Localization Transition

Kartiek Agarwal.l'* Sarang Gonala.lﬂ'ishnan.1 Michael Kmm.l'2 Markus Ml'iller.s'4 and Eugene Demler! _ + m Ore recent Works by
w—RETTT, 70404 (3016) PHYSTCAT REVIEW™FETTERS 21 OCTOBER S016 V.Khemani et al

Anomalous Thermalization in Ergodic Systems

David J. Luitz"" and Yevgeny Bar Lev?

(a) R‘i-? R"z'.—l Rz Ri+1 R-H_Q
- A% A% A% A% A% --

O O C C

e,

The proposed explanation relais on the presence of rare regions
of unusually large resistance



Delocalized region

sum of iid random variables
P(R) ~ R™“ 1 <a<?

central limit does not work
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So this explanation relies on long tails

We tested this hypothesis in 1909.09507




Delocalized region
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Exponential decay!

No long tails!
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Another example of
subdiffusion

Anderson model on the Bethe lattice

H = — Z c;-rcj + h.c. + Z eic;-rcz-
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G.De Tomasi, S. Bera, AS, |.M. Khaymovich 1908.11388



Conclusion

Quantum dynamics generally slower than classical
dynamics in disordered systems

“Slow” in guantum dynamics comes in different flavors
The “subdiffusion” flavor is mysterious

It has important bearings on the critical point of MBL-ETH

/

KT scaling/SDRG motivated works



