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issues

• novel - magnetic - mode of heat transport
• fractal Drude weight
• magnetothermal transport
• DTN - a route to XXZ
• TBA vs. low energy effective theories
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motivation

• thermal transport in 1D quantum magnets
spin Seebeck effect

• dynamic heat transport
• transient grating spectroscopy
• spinon THz spectroscopy
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A novel mode of thermal transport 1
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magnetic thermal transport
• highly directional
• electrically insulating
• ”metallic” J ∼ εF
• ”mechanical” - switching
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flash method3

3
P. van Loosdrecht
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integrable transport and Drude weights - a conjecture 4
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Mazur inequality5

[Qn,H] = 0, 〈QmQn〉 = δmn

〈j(t)j〉t→∞ ∼ Cjj ≥
∑

n

〈jQn〉2
〈Q2

n〉

5
P. Mazur 1969
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S = 1/2 Heisenberg model

H = J
∑L

l=1 Sx
l Sx

l+1 + Sy
l Sy

l+1 + ∆Sz
l Sz

l+1 − hSz
l

• J > 0 antiferromagnet

• ∆ < 1 easy-plane

• ∆ > 1 easy-axis

• ∆ = cos(π/ν)

• [Sz ,H] = 0

• jS = J
∑

l (S
x
l Sy

l+1−Sy
l Sx

l+1)

Bethe ansatz integrable model
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conservation laws 6

Q3 = jE

6
X.Z., F. Naef, P. Prelovšek 1997
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Sr2CuO3 from 2N to 4N
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conservation laws 7

Q3 = jE
• κ(ω) = Dthδ(ω)

• Dth = β2 < j2E >

• κdc = Dthτ

spin Drude weight - Ds

• Ds(T ) ≥ β
2L
〈jSQ3〉2
〈Q2

3〉
• β → 0

• Ds(T ) ≥ β
2

8∆2m2(1/4−m2)
1+8∆2(1/4+m2)

• m = 〈Sz〉

7
X.Z., F. Naef, P. Prelovšek 1997
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0 < ∆ < 1, m = 0, TBA 8
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2π/ν

0 < ∆ < 1
Ds(T ) = D0 − cT 2/(ν−1)

8
S. Fujimoto, N. Kawakami 1998, XZ 1999
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m=0

• alternative BA - no strings9

• quasi-local conservation laws10

• numerical simulations - ED, DMRG, ”typicality” 11

• Generalized Hydrodynamics (GHD) 12

• Drude weights from GHD 13

9
A. Klümper

10
T. Prosen, R. Pereira, J. Sirker, I. Affleck...

11
F. Heidrich - Meisner, R. Steinigeweg...

12
B. Doyon, M. Fagotti...

13
J. Moore, C. Karrasch, E. Ilievski, J. De Nardis...
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β → 0 fractal Drude weight

• ∆ = cos(πl
ν )

Dql =
sin2(πl

ν
)

sin2(π
ν

)
(1− ν

2π sin(2π
ν ))

4
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FIG. 1. (Color online) Optimized Mazur bound DK (20)
(black) versus the bound DZ of Ref. [16] (red) which is based
on a single quasi-local almost-conserved operator Zn(⇡/2).

where f(') is the solution of the complex-plane Fredholm
integral equation of the first kind

Z

Dm

d2'0K(', '0)f('0) = 1, ' 2 Dm. (19)

The kernel K(', '0) defines a positive definite operator,
substituting for the matrix 1

nUk,l in [17], which we essen-
tially have to invert. Fortunately, the form of solution can
be guessed in our case (16), namely f(') = c/| sin'|4
where c is a constant which can be determined by el-
ementary integration, yielding an explicit, closed form
expression for the Drude weight bound (see also Fig. 1)

DK =
sin2(⇡l/m)

sin2(⇡/m)

✓
1 � m

2⇡
sin

✓
2⇡

m

◆◆
. (20)

This is a non-trivial improvement over the previous lower
bound DZ = m

2(m�1) sin2
�
⇡l
m

�
= m

2(m�1) (1 � �2) [16]

based on a single QLAC Zn(⇡/2), DK > DZ , but again
is a nowhere di↵erentiable function of � and, remarkably,
agrees with one of the debatable Bethe ansatz results [28]
at � = ⇡/m. It seems we have now fully explored the
known Yang-Baxter structure of the problem hence we
dare to conjecture that our bound (20) should in fact be
saturated. One might suggest that higher s-derivatives
(d/ds)kW (', s)|s=0 could also be candidates for further
independent QLACs, however a brief inspection shows
that already the second derivative k = 2 at ' = ⇡/2 is a
non-local operator.

Discussion.- We have outlined a procedure for deriva-
tion of families of quasi-local conservation laws of XXZ
chain which are orthogonal to previously known [14]
strictly local conserved quantities. The latter are given,
for periodic boundary conditions, in terms of logarithmic
'-derivatives of trace of monodromy matrix in fundamen-

tal representation F
(k)
n = (d/d')k log trL(', 1

2 )⌦n|'=�/2

and are irrelevant for the spin transport in the absence

of external magnetic fields since (Jn, F
(k)
n ) = 0. The

former, however, can be derived using related though

more involved integrability concepts, namely in terms of
derivation of a highest-weight (vacuum) diagonal element
of quantum monodromy matrix with respect to complex
spin representation parameter at s = 0. Interestingly
enough, our concept can be mapped to a logarithmic s-
derivative at arbitrary value of s 2 C by a suitable sym-
metrized shift of the spectral parameter, namely

@s log W̃n(', s) = @p
W̃n('+ s�, p) + W̃n('� s�, p)

2
|p=0,

(21)
where W̃n(', s) := Wn(', s)/ sinn(' + s�) is a normal-
ized highest weight transfer operator satisfying another
interesting property

W̃n(',�s)W̃n(', s) = . (22)

While (22) is easy to prove straightforwardly by writing
the product on LHS in V�s⌦Vs, the relation (21) remains
a conjecture based on extensive empirical evidence for
finite chains.

We thank I. A✏eck for pointing out how to construct
defective eigenvectors of matrices of type (14) and ac-
knowledge support by Slovenian ARRS grant P1-0044.
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100601 (2008).

[5] X. Zotos, F. Naef and P. Prelovšek, Phys. Rev. B 55,
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ω < 1/L contribution ?
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Ds scenario
transient gradient spectroscopy ?

-

6

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

∆+10−1

m

0

ballistic

diffusive ?

Rome 2019



magnetothermal transport 14

jQ = jE − hjS

κth = CQQ − βC2
QS/CSS

Cij = Dijτij

κth = (DQQ − βD2
QS/DSS)τ

MTC = βD2
QS/DSS

DQQ = DEE − 2βhDES + βh2DSS

• DEE = β2 < jE 2 >,DES = β < jE jS >
(QTM - Sakai, A. Klümper)

• DSS
14

K. Sakai - A. Klümper 2005, C. Psaroudaki, XZ 2015
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DQQ −MTC
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κth
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κexp
15

Chapter 4. Thermal Transport 101

was investigated in order to subtract the the phononic contribution. It was argued that

since the phononic part ph does not significantly changes with H, the di↵erence between

the total measured k(H) and its zero field value k(0) will yield the field dependence

of the magnetic heat conductivity mag(H) � mag(0).

Fig. 4.3.13 summarizes experimental results of the thermal conductivity measured

parallel to the chains of Cu(C4H4N2)(NO3)2 as a function of magnetic field at several

fixed temperatures. The analysis of the experimental data suggests that the observed

field dependence arises dominantly from thermal transport in the spin system s and

that the s�ph and �ph terms are not important. Moreover, within the framework of

kinetic transport theory, experimental results imply a mean free path that is momentum

and magnetic free independent.

Figure 4.3.13: Thermal conductivity measured parallel to the chains of
Cu(C4H4N2)(NO3)2 as a function of magnetic field at several fixed temperatures. Fig-
ure taken from [196].

In Fig. 4.3.14 we plot DQQ(H)�DQQ(0) and Kth(H)�Kth(0) for � = cos(⇡/8) and

several fixed temperatures ragning from 0.64 K up to 5.15 K. A comparison with the

experimental data presented in Fig. 4.3.13 will provide information on the behaviour of

the relaxation time ⌧ as a function of both T and H. Particular attention should be paid

to the fact that the copper pyrazine dinitrate compound used for the experiment is well

described by the Heisenberg S = 1/2 Hamiltonian at the isotropic point � = 1, while

the theoretical calculation was performed for � = cos(⇡/8) = 0.92. The Bethe ansatz

technique relies on a numerical calculation of coupled integral equations, whose number

increases as � ! 1, making the calculation of correlation functions infeasible for the

isotropic point. Nevertheless, Figs. 4.3.6–4.3.8 suggest that as � ! 1, both DQQ(H)

and Kth(H) approach a limiting behaviour in the field range H/J & 0.25, and seem to

be insensitive to changes in the parameter �. We therefore arrive at the conclusion that

� = cos(⇡/8) = 0.92 provides a satisfactory description of the isotropic point, while

minor deviations are expected in the low field region H/J . 0.25.

15
T. Lorenz, A. Sologubenco
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spin Seebeck coefficient- S = ∇h/∇T 16

S =
∇h
∇T

= β
DES

DSS
− βh
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Sr2CuO3 D. Hirobe et al. 2016
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Effective s=1/2 model for S=1 easy - plane
quasi-1D antiferromagnet

or how to tune ∆17

NiCl2-SC(NH2)2 (DTN) large D limit

H =
N∑

n=1

[J(Sn · Sn+1) + D(Sz
n)2 + HSz

n ]

Hc1 = D − 2J +
J2

D
+

J3

2D2 , Hc2 = D + 4J

H < Hc1 Sz = 0

H > Hc2 Sz = −N

17
S. Svyagin, C. Psaroudaki, N. Papanicolaou, G. Karadamoglou, J. Herbrych, XZ

Rome 2019



single-dimer ground state is a singlet and the lowest-energy
excitation is an S ¼ 1 triplet consisting of jSz ¼ −1i,
jSz ¼ 0i, and jSz ¼ −1i states, which have an energy J0
relative to the singlet. The presence of interdimer interactions
disperses the triplet levels into a band of excitations and the
spin gap of the coupled system is reduced relative to
the single-dimer gap J0. This is shown for TlCuCl3 in
Fig. 6. The branch of jSz ¼ 1i excitations decreases linearly
in magnetic field via the Zeeman effect, thereby creating a
degeneracy between the lowest energy jSz ¼ 1i excitation and
the singlet ground state that leads to a divergent susceptibility
at the wave vectors that minimize the triplet dispersion
relation. Long-range magnetic order occurs between Hc1
and Hc2 and the spins align with the magnetic field above
Hc2 creating a saturated paramagnet.
Zero-field gaps also exist in systems of nondimerized S ¼ 1

spins. Single-ion anisotropy terms, like DðSzÞ2, can become
important for S ≥ 1 systems. One example of a system of
S ¼ 1 spins and strong easy-plane single-ion anisotropy is
NiCl2-4SCðNH2Þ2 (DTN) (see Fig. 7). The DðSzÞ2 term
(D > 0) splits the S ¼ 1 triplet of each Ni2þ ion into an jSz ¼
0i ground state and a jSz ¼ %1i doublet separated by a gapD.
Unlike the isotropic S ¼ 1=2 dimer systems, the direction of
the magnetic field is now important because the D term
already breaks the rotational SU(2) symmetry and so H must
be applied along the direction of D to retain uniaxial
symmetry. As H angles away from ẑ, the BEC description
becomes increasingly less valid and there is a crossover from a
BEC QCP to an Ising QCP.
BEC has also been studied in systems of dimers with higher

spin. For example, Ba3Mn2O8 and F2PNNNO are S ¼ 1
dimer compounds. In Ba3Mn2O8 (see Fig. 8), antiferromag-
netic coupling of S ¼ 1Mn spins within a dimer with strength
J0 produces an jS ¼ 0i singlet ground state, an S ¼ 1 spin
triplet with a gap of J0, and finally an S ¼ 2 spin quintuplet
with a gap 3J0 above the jS ¼ 0i ground state. As shown in
Fig. 8, the energies of the Sz ¼ 1 triplet and Sz ¼ 2 quintuplet
spin levels decrease linearly in magnetic field and lead to
two domes of antiferromagnetic order, the first where the
Sz ¼ 1 triplets condense, between Hc1 ≤ H ≤ Hc2, and the
second where the Sz ¼ 2 quintuplets condense, between
Hc3 ≤ H ≤ Hc4.
Cs2CuCl4 is an example of a compound that is already

magnetically ordered in zero field (see Fig. 9), in contrast to all
others discussed in this section, that have a zero-field gap.
The BEC QCP is observed at the saturation field Hc when
the gap opens. The Cu2þS ¼ 1=2 moments form an aniso-
tropic triangular lattice with two different antiferromagnetic
couplings.
Tetramer or larger superstructures can also provide a route

to BEC. Sul-Cu2Cl4 is such an example of a four-leg spin
ladder compound. In another material, ðCuClÞLaNb2O7, it
was initially thought that antiferromagnetically coupled tet-
ramers could occur, resulting in a nonmagnetic collective
ground state with a finite gap Δ. Further studies found that an
S ¼ 1=2 dimer description is more appropriate (Tsirlin and
Rosner, 2010).
Finally, systems with infinite coupled chains can form gaps.

For example, IPA-CuCl3 is a Haldane system where effective
S ¼ 1 spins are created by dimers of ferromagnetically

coupled S ¼ 1=2 spins. The effective S ¼ 1 moments are
antiferromagnetically coupled along chains. While the inter-
chain coupling is weak enough to observe a Haldane phase
(quantum paramagnet) at zero field, it is sufficiently strong to
create 3D magnetic ordering above a critical magnetic
field Hc1.

FIG. 6 (color online). (a) Cartoon of the spin levels of TlCuCl3
showing the zero-field gap due to the interdimer interactions
Jinterdimer. The levels are dispersed, forming bands that evolve in
magnetic fields due to the Zeeman interaction. Long-range order
occurs in the region Hc1 < H < Hc2. (b) Phase diagram of
TlCuCl3 from elastic neutron diffraction (open symbols) and
magnetization measurements (solid symbols). The complete
phase diagram extends to approximately 100 T, and the anti-
ferromagnetically ordered phase occurs underneath and to the
right of the data points. Adapted from Tanaka et al., 2001.

(a)

(b)

(K
)

T c
(

FIG. 7 (color online). (a) Cartoon of the spin levels of DTN
[NiCl2-4SCðNH2Þ2] showing the Sz ¼ %1 excited doublet and
Sz ¼ 0 ground state, separated by a zero-field gap D due to
single-ion anisotropy. As with Fig. 6, the spin levels are shown as
bands due to magnetic dispersion. (b) Phase diagram from
specific heat (solid symbols) and magnetocaloric effect (open
symbols) showing a dome-shaped region of quasi-XY antiferro-
magnetic order (XYAFM), the low-field quantum paramagnet
(QPM), and the high-field spin saturated phase (SP). Adapted
from Zapf et al., 2006.

584 Vivien Zapf, Marcelo Jaime, and C. D. Batista: Bose-Einstein condensation in quantum magnets

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014
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Effective s=1/2 model

Sz
n = 0→ sz

n = +1/2

Sz
n = −1→ sz

n = −1/2

Heff =
∑

n

2J(sx
nsx

n+1 + sy
nsy

n+1 + ∆sz
nsz

n+1) + hsz
n

where
∆ = 1/2, h = −J − D + H, hc = ±2J(∆ + 1)

Rome 2019



magnetization
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specific heat
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1D Heisenberg Hamiltonian

H =
N∑

i=1

J(Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆Sz
i Sz

i+1)− hSz
i ,

• ∆ = cos θ
• θ = π/ν

• (θ = π
ν1+1/(ν2+1/ν3+...) )

• excitations, strings of order nj = j , parity λj , j = 1, ν

Rome 2019



Thermodynamic Bethe Ansatz
(TBA - C.N.Yang, C.P.Yang, 1969)
M. Takahashi and M. Suzuki, 1972

εj = ε
(0)
j + hnj + T

∑

k

λkTjk ◦ ln(1 + e−βεk ), j = 1, ..., ν

• εj thermal string energies
• x rapidity
• Tjk phase shifts
• a ◦ b =

∫
a(x− y)b(y)dy

• eβεj = ρh
j /ρj

• nk = ρk/(ρk + ρh
k ).

Rome 2019



dressed excitations 18

∂pj

∂x
=

dp(0)
j

dx
−
∑

k

λkTjk ◦ nk
∂pk

∂y

Ej = ε
(0)
j −

∑

k

λkTjk ◦ nkEk

jεj = jε
(0)

j −
∑

k

λkTjk ◦ nk jεk .

Qj = Q(0)
j −

∑

k

λkTjk ◦ nkQk , Q(0)
j = nj , Qj = ∂εj/∂h

• h = 0, Qj = 0, j = 1, ν − 2, Qν−1 = −Qν = ν/2
• physically, uniform change of the Sz component of the

magnetization by ±1, e.g. in ESR experiments
18Doyon, Fagotti and collaborators
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mean quantities

E =
∑

j

∫
dxρjε

(0)
j =

∑

j

λj

∫ dp(0)
j

2π
njEj .

JE =
∑

j

∫
dxρj jε

(0)

j =
∑

j

λj

∫ dp(0)
j

2π
nj jεj

vj =
∂εj
∂pj

JE =
∑

j

λj

∫ dp(0)
j

2π
nj(vjEj).
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thermodynamics

f = −T
∑

j

λj

∫ dp(0)
j

2π
ln(1 + e−βεj ).

c(T ) =
∂ε

∂T
= β2

∑

j

∫
dpj

2π
nj(1− nj)E2

j .

χ(T ) =
∂m
∂h
|h→0 = β

∑

j

∫
dpj

2π
nj(1− nj)Q2

j .
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T → 0

T = 0
ε1 = −v sin p1, 0 ≤ p1 < π

εj = 0, j > 1

v = J
pi
2

sin θ
theta

ε1 ' T ln 3− v sin p1, 0 ≤ p1 ≤ π
εj ' T ln(j2 − 1) + v |pj |, j = 2, ..., ν − 2

|pj | ≤ pmax
j , pmax

j =
T
v

ln
((j + 1)2 − 1

j2 − 1

)

εν−1 ' T ln(ν − 2) + v |pν−1|

|pν−1| < pmax
ν−1, pmax

ν−1 =
T
v

ln
(ν − 1
ν − 2

)

εν = −εν−1
Rome 2019
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T = 0
E1 = ε1, Ej = 0, j > 1

E1 ∼ −v | sin p1|
Ej ∼ −T | sin(

πpj

pmax
j

)|, j > 1 |pj | ≤ pmax
j

a note

f (p) = T ln g − εp
nh = 1− n =

g
g + eβεp

Rome 2019
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εspinon = v | sin p|, −π < p ≤ π

cspinon ' π

3
1
βv

, (π/3 ' 1.047)

c(1)
TBA ' β22

∫ +∞

0

dp1

2π
(vp1)2

4 cosh2 β(T ln 3−vp1)
2

' 1.234
1
βv

c(j)
TBA ∼ 1

βv
1
j3

χ =
1
πv

K , K =
1
2

1
1− 1/ν
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Drude weights - revisited19

• Dth = β2

2
∑

j λj
∫ dpj

2π nj(1− nj)(vjEj)
2

• T → 0, vj → v , Dth = v2

2 c

• Ds = β
2
∑

j λj
∫ dpj

2π nj(1− nj)(vjQj)
2

• T → 0, Ds = v2

2 χ = 1
2πvK (Shastry-Sutherland)

19Klümper, Sakai, XZ
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perspectives

• theory vs. experiment
• impurity scattering

phonon scattering - microscopic theory
• TBA vs. low energy effective theories
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