FM210 - FISICA MATEMATICA I

PRIMA PROVA SCRITTA [21-1-2013]

SOLUZIONI

Esercizio 1

(a) Il sistema è della forma $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{b}$, con

$$A = \begin{pmatrix} \beta & 8 \\ -2 & -\beta \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Se la matrice A è invertibile, allora la posizione di equilibrio del sistema è data da $\mathbf{x}_e = -A^{-1}\mathbf{b}$. Osserviamo che

$$\det(A) = -\beta^2 + 16,$$

per cui esiste una posizione di equilibrio per ogni $\beta \in \mathbb{R}, \beta \neq \pm 4$. In questo caso abbiamo

$$\mathbf{x}_e = -A^{-1}\mathbf{b} = \frac{1}{\beta^2 - 16} \begin{pmatrix} -\beta & -8 \\ 2 & \beta \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \frac{1}{\beta^2 - 16} \begin{pmatrix} -\beta - 16 \\ 2(1+\beta) \end{pmatrix}.$$

Se invece $\beta=\pm 4$ è facile verificare che il sistema $\dot{x}=0,\dot{y}=0$ non ammette soluzioni e quindi non ci sono posizioni di equilibrio.

Per studiare la stabilità cerchiamo gli autovalori della matrice A: l'equazione secolare è $\lambda^2 - \beta^2 + 16 = 0$, che ha come soluzioni $\lambda_{\pm} = \pm \sqrt{\beta^2 - 16}$. Se $|\beta| > 4$ esiste un autovalore $\lambda_{+} = \sqrt{\beta^2 - 16}$ positivo e quindi il punto di equilibrio è instabile. Invece se $|\beta| < 4$ i due autovalori sono immaginari puri. Il punto di equilibrio è in questo caso un centro e quindi stabile (ma non asintoticamente stabile).

(b) Nel caso $\beta=4$ la matrice ha due autovalori coincidenti uguali a 0. Cerchiamo gli autovettori associati: l'equazione

$$\begin{pmatrix} 4 & 8 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0,$$

ha come soluzione il solo autovettore $\mathbf{v}_1 = (-2,1)$. Cerchiamo allora l'autovettore generalizzato che rende la matrice in forma canonica di Jordan: l'equazione $A\mathbf{v}_2 = \mathbf{v}_1$ ha come soluzione per esempio $\mathbf{v}_2 = (-1/2,0)$. Un generico vettore \mathbf{x} si può esprimere come combinazione lineare $\mathbf{x}(t) = \alpha_1(t)\mathbf{v}_1 + \alpha_2(t)\mathbf{v}_2$. I dati iniziali implicano

$$\begin{cases}
-2\alpha_1(0) - \frac{1}{2}\alpha_2(0) = 0, \\
\alpha_1(0) = 0,
\end{cases}$$

che implica $\alpha_1(0) = \alpha_2(0) = 0$. Inoltre in termini di $\alpha_1(t)$ e $\alpha_2(t)$, il sistema si scrive (ricordiamo che nella base $\mathbf{v}_1, \mathbf{v}_2$ la matrice è in forma canonica di Jordan con un unico blocco di Jordan di dimensione 2 e autovalore 0)

$$\begin{cases} \dot{\alpha}_1(t) = \alpha_2(t) + 2, \\ \dot{\alpha}_2(t) = -10, \end{cases}$$

dove abbiamo usato che $\mathbf{b} = 2\mathbf{v}_1 - 10\mathbf{v}_2$. Otteniamo pertanto

$$\begin{cases} \alpha_1(t) = 2t - 5t^2, \\ \alpha_2(t) = -10t, \end{cases}$$

che corrisponde a $\mathbf{x}(t) = (2t - 5t^2)\mathbf{v}_1 - 10t\mathbf{v}_2$ o, equivalentemente

$$\begin{cases} x = (2t - 5t^2)(-2) - 10t(-1/2) = t + 10t^2, \\ y = 2t - 5t^2. \end{cases}$$

(c) Cerchiamo un'Hamiltoniana H(x,y) del sistema: dovrà essere

$$\begin{cases} \partial_y H = \beta x + 8y + 1, \\ \partial_x H = 2x + \beta y - 2. \end{cases}$$

Dalla prima ricaviamo $H(x,y) = 4y^2 + \beta xy + y + C(x)$ e dalla seconda C'(x) = 2x - 2 e quindi (per esempio)

$$H(x,y) = x^2 + \beta xy + 4y^2 - 2x + y.$$

Dato che H è una costante del moto la traiettoria è sempre una conica di equazione

$$x^2 + \beta xy + 4y^2 - 2x + y - E = 0,$$

il cui tipo dipende dal parametro $\Delta := \beta^2 - 16$. Se $\Delta > 0$ la curva è un'iperbole, se $\Delta = 0$ una parabola e se $\Delta < 0$ un'ellisse. Nel caso particolare $\beta = 4$ e $\mathbf{x}(0) = \mathbf{0}$, quindi, la traiettoria corrispondente alla soluzione trovata al punto precedente è una parabola.

Esercizio 2

(a) La posizione e la velocità del centro di massa $\mathbf{X}_{cm}(t) = \frac{1}{2} (\mathbf{x}_1(t) + \mathbf{x}_2(t))$ al tempo t = 0 si ricavano dai dati iniziali:

$$\mathbf{X}_{cm}(0) = (0, \frac{1}{2}d, h), \qquad \dot{\mathbf{X}}_{cm}(0) = (0, 0, 0).$$

La legge di Newton per il moto del centro di massa è

$$2m\ddot{\mathbf{X}}_{\mathrm{cm}}(t) = 2m\mathbf{g} = -2mg\mathbf{e}_z,$$

la cui soluzione è $\mathbf{X}_{cm}(t) = (0, \frac{1}{2}d, h - \frac{1}{2}gt^2).$

(b) Gli integrali primi del moto nella coordinata relativa **r** sono l'energia E e il momento angolare **L** (la massa ridotta è $\mu = \frac{1}{2}m$):

$$E = \frac{1}{4}m|\dot{\mathbf{r}}|^2 + \frac{1}{2}k|\mathbf{r}|^2 = \frac{1}{4}m\dot{\rho}^2 + V_{\text{eff}}(\rho), \qquad V_{\text{eff}}(\rho) = \frac{1}{2}k\rho^2 + \frac{L^2}{m\rho^2},$$
$$\mathbf{L} = \frac{1}{5}m\mathbf{r} \wedge \dot{\mathbf{r}}.$$

Al tempo t = 0 abbiamo

$$\mathbf{r}(0) = (0, -d, 0), \qquad \dot{\mathbf{r}}(0) = (0, 0, 2v_0),$$

e quindi

$$E = mv_0^2 + \frac{1}{2}kd^2$$
, $\mathbf{L} = -m(dv_0, 0, 0) = -mdv_0\mathbf{e}_x$,

il che implica che il moto si svolge sul piano $\hat{y}\hat{z}$.

(c) Affinché il moto in ${\bf r}$ sia circolare uniforme la coordinata radiale deve trovarsi nella posizione di equilibrio del potenziale efficace $V_{\rm eff}(\rho)$: calcolando la derivata e uguagliandola a 0, si ha $k\rho - \frac{2L^2}{m\rho^3} = 0$, la cui soluzione è

$$\rho_m = \left(\frac{2L^2}{mk}\right)^{1/4} = \left(\frac{2md^2v_0^2}{k}\right)^{1/4}.$$

La condizione sulla coordinata radiale sarà dunque $|\mathbf{r}(0)| = d = \rho_m$ con $\dot{\rho}(0) = 0$. La seconda è ovviamente soddisfatta poichè

$$\dot{\rho}(0) = \mathbf{e}_o \cdot \dot{\mathbf{r}}(0) = (0, -1, 0) \cdot (0, 0, 2v_0) = 0.$$

D'altra parte l'altra condizione dà l'equazione

$$d = \left(\frac{2md^2v_0^2}{k}\right)^{1/4},$$

che ha come soluzione

$$d = \sqrt{\frac{2m}{k}} v_0 \simeq 22 \, cm.$$

Si noti che le condizioni che abbiamo imposto implicano automaticamente che $E = V_{\text{eff}}(\rho_m)$ cioè l'energia è proprio quella associata al punto di equilibrio stabile.

Il calcolo del periodo si fa osservando che la conservazione del momento angolare implica che la velocità angolare è

$$\dot{\vartheta}(t) = \dot{\vartheta}(0) = \frac{2L}{md^2} = \frac{2v_0}{d} \simeq 8.9 \,\text{rad/s},$$

e quindi il periodo $T=2\pi/\dot{\vartheta}\simeq 0.7\,\mathrm{s}.$

Esercizio 3

Il sistema meccanico ammette un integrale primo del moto, ovvero l'energia meccanica

$$E = \frac{1}{2}\dot{x}^2 + V(x) = \frac{1}{2}\dot{x}^2 - (x-1)^2.$$

Notiamo al fine di determinare l'esistenza globale o meno della soluzione che il potenziale V è illimitato dal basso e quindi l'esistenza globale non segue dal teorema discusso a lezione. Tuttavia il potenziale è C^{∞} su ogni compatto quindi resta solo da verificare se il corpo raggiunge l'infinito in tempi finiti. L'energia per i dati iniziali assegnati è $E=-\delta^2$ e il tempo che impiega la particella a raggiungere l'infinito è

$$\lim_{X \to \infty} \int_{1+\delta}^{X} \mathrm{d}x \, \frac{1}{\sqrt{2 \left(-\delta^2 + (x-1)^2\right)}} = \lim_{X' \to \infty} \int_{\delta}^{X'} \mathrm{d}x' \, \frac{1}{\sqrt{2 \left(-\delta^2 + (x')^2\right)}} = +\infty,$$

pertanto il moto è globale nel futuro (e, analogamente, è globale nel passato). La soluzione esplicita si ottiene invertendo l'identità

$$t = \int_{1+\delta}^{x(t)} \frac{dx}{\sqrt{2(-\delta^2 + (x-1)^2)}} = \int_{\delta}^{x(t)-1} \frac{dx'}{\sqrt{2(-\delta^2 + (x')^2)}} = \frac{1}{\sqrt{2}} \int_{1}^{(x(t)-1)/\delta} \frac{dx''}{\sqrt{(x'')^2 - 1}} = \frac{1}{\sqrt{2}} \operatorname{arccosh}(x'') \Big|_{1}^{(x(t)-1)/\delta} = \frac{1}{\sqrt{2}} \operatorname{arccosh}(\frac{x(t)-1}{\delta}),$$

da cui otteniamo

$$x(t) = 1 + \delta \cosh(\sqrt{2}t). \tag{1}$$

Il punto di equilibrio (1,0) è instabile, come segue (tra le altre cose) dalla soluzione esplicita appena trovata: infatti, per quanto δ sia piccolo (e, quindi, per quanto il dato iniziale sia vicino a (1,0)) la soluzione $(x(t), \dot{x}(t))$ si allontana indefinitamente da (1,0), come evidente dalla (1).

Esercizio 4

Scegliamo il sistema di riferimento fisso con origine O nel centro della giostra, asse \hat{z} ortogonale al disco della giostra e assi \hat{x} e \hat{y} scelti in modo che il sedile abbia coordinate (R,0,0) al tempo t=0. Prendiamo il sistema K in movimento con l'origine O' nel punto in cui si trova il sedile, asse $\hat{\eta}_3$ parallelo a \hat{z} e asse $\hat{\eta}_1$ parallelo a \hat{x} al tempo t=0.

(a) L'angolo formato da $\hat{\eta}_1$ con \hat{x} è $\vartheta(t)=\int_0^t \omega(t')dt',$ dove

$$\omega(t) = \begin{cases} \omega_0, & \text{per } 0 \le t \le t_1, \\ \omega_0 - \alpha(t - t_1) & \text{per } t_1 \le t \le t_2, \\ 0 & \text{per } t \ge t_2, \end{cases}$$

quindi

$$\vartheta(t) = \begin{cases} \omega_0 t, & \text{per } 0 \le t \le t_1, \\ \omega_0 t_1 - \frac{1}{2} \alpha (t - t_1)^2 & \text{per } t_1 \le t \le t_2, \\ \omega_0 t_1 - \frac{1}{2} \frac{\omega_0^2}{\alpha} & \text{per } t \ge t_2, \end{cases}$$

e $t_2 = t_1 + \omega_0/\alpha$. Ora, detta B_t la matrice

$$B_t = \begin{pmatrix} \cos \vartheta(t) & -\sin \vartheta(t) & 0\\ \sin \vartheta(t) & \cos \vartheta(t) & 0\\ 0 & 0 & 1 \end{pmatrix},$$

la posizione $\mathbf{r}(t)$ di O' in κ è data da

$$\mathbf{r}(t) = B_t \begin{pmatrix} R \\ 0 \\ 0 \end{pmatrix} =: B_t \mathbf{R} = R \begin{pmatrix} \cos \vartheta(t) \\ \sin \vartheta(t) \\ 0 \end{pmatrix}.$$

Le leggi di trasformazione delle coordinate e delle velocità sono quindi (chiamando \mathbf{q} e \mathbf{Q} le coordinate rispettivamente in κ e K)

$$\mathbf{q}(t) = B_t \mathbf{Q}(t) + \mathbf{r}(t) = B_t [\mathbf{Q}(t) + \mathbf{R}],$$

$$\dot{\mathbf{q}}(t) = B_t \left[\dot{\mathbf{Q}}(t) + \mathbf{\Omega}(t) \wedge \mathbf{Q}(t) \right] + \dot{\mathbf{r}}(t),$$

dove $\Omega(t) = \omega(t)\hat{\eta}_3$ e

$$\dot{\mathbf{r}}(t) = B_t \big[\mathbf{\Omega}(t) \wedge \mathbf{R} \big] = R\omega(t) \begin{pmatrix} -\sin \vartheta(t) \\ \cos \vartheta(t) \\ 0 \end{pmatrix}.$$

(b) La legge di Newton per la sferetta tenendo conto delle forze fittizie si scrive (definendo $\mathbf{G} = -g\hat{\eta}_3$)

$$m\ddot{\mathbf{Q}}(t) = m\mathbf{G} - mB_t^{-1}\ddot{\mathbf{r}}(t) - m\mathbf{\Omega}(t) \wedge (\mathbf{\Omega}(t) \wedge \mathbf{Q}(t)) - 2m\mathbf{\Omega}(t) \wedge \dot{\mathbf{Q}}(t) - m\dot{\mathbf{\Omega}}(t) \wedge \mathbf{Q}(t),$$

dove
$$B_t^{-1}\ddot{\mathbf{r}}(t) = \mathbf{\Omega}(t) \wedge (\mathbf{\Omega}(t) \wedge \mathbf{R}) \in \dot{\mathbf{\Omega}}(t) = \dot{\omega}(t)\hat{\eta}_3$$
 con

$$\dot{\omega}(t) = \begin{cases} 0, & \text{per } 0 \le t \le t_1, \\ -\alpha & \text{per } t_1 \le t \le t_2, \\ 0 & \text{per } t > t_2. \end{cases}$$

In componenti $\mathbf{Q} = (Q_1, Q_2, Q_3)$ la legge di Newton diventa

$$\begin{cases} \ddot{Q}_1 = \omega^2(t)(Q_1 + R) + 2\omega(t)\dot{Q}_2 + \dot{\omega}(t)Q_2, \\ \ddot{Q}_2 = \omega^2(t)Q_2 - 2\omega(t)\dot{Q}_1 - \dot{\omega}(t)Q_1, \\ \ddot{Q}_3 = -g. \end{cases}$$

Esercizio 5

Scegliamo anzitutto un sistema di coordinate con origine in O, asse \hat{x} lungo OA e asse \hat{y} lungo OB. L'asse \hat{z} sarà perciò ortogonale al piano del triangolo. Si noti che la regione T occupata dal triangolo è, in formule, $T = \{(x, y, 0) : x, y \ge 0, y \le b(1 - \frac{x}{a})\}$; la sua area è $A_T = \frac{1}{2}ab$.

(a) Dato che la lamina giace sul piano z=0, si avrà necessariamente $z_{\rm cm}=0$. Calcoliamo invece le altre due coordinate:

$$x_{\rm cm} = \frac{1}{A_T} \int_T dx \, dy \, x = \frac{2}{ab} \int_0^a \mathrm{d}x \int_0^{b(1-\frac{x}{a})} \mathrm{d}y \, x = 2a \int_0^1 dx \, x (1-x) = \frac{a}{3} = 1 \, \mathrm{cm},$$

$$y_{\rm cm} = \frac{1}{A_T} \int_T dx \, dy \, y = \frac{2}{ab} \int_0^a dx \int_0^{b(1-\frac{x}{a})} dy \, y = b \int_0^1 dx \, (1-x)^2 = \frac{b}{3} = \frac{4}{3} \, \text{cm}.$$

(b) La matrice d'inerzia è a blocchi rispetto all'asse \hat{z} : dato che tutti i punti del corpo giacciono sul piano z=0 si avrà

$$I_{13} = I_{31} = I_{23} = I_{32} = 0,$$

il che in particolare implica che \hat{z} è un asse principale di inerzia. Calcoliamo i restanti elementi della matrice:

$$I_{11} = \frac{2M}{ab} \int_{T} dx dy \, y^{2} = \frac{2M}{ab} \int_{0}^{a} dx \int_{0}^{b(1-\frac{x}{a})} dy \, y^{2} = \frac{2}{3} Mb^{2} \int_{0}^{1} dx (1-x)^{3} = \frac{Mb^{2}}{6} = \frac{800}{3} \, \text{gr} \cdot \text{m}^{2},$$

$$I_{22} = \frac{2M}{ab} \int_{T} dx dy \, x^{2} = \frac{2M}{ab} \int_{0}^{a} dx \int_{0}^{b(1-\frac{x}{a})} dy \, x^{2} = 2Ma^{2} \int_{0}^{1} dx \, x^{2} (1-x) = \frac{Ma^{2}}{6} = 150 \, \text{gr} \cdot \text{m}^{2},$$

$$I_{12} = I_{21} = -\frac{2M}{ab} \int_{T} dx dy \, xy = -\frac{2M}{ab} \int_{0}^{a} dx \int_{0}^{b(1-\frac{x}{a})} dy \, xy = -Mab \int_{0}^{1} dx \, x (1-x)^{2} = -\frac{Mab}{12} = -100 \, \text{gr} \cdot \text{m}^{2},$$

$$I_{33} = I_{11} + I_{22} = \frac{1250}{3} \, \text{gr} \cdot \text{m}^{2}.$$

(c) Per trovare i momenti principali di inerzia dobbiamo diagonalizzare la matrice I_{lm} : anzitutto abbiamo $I_3 = I_{33}$, mentre l'equazione secolare per gli altri due autovalori è

$$(800 - 3\lambda)(150 - \lambda) - 30000 = 0$$

che ha come soluzioni

$$I_{1,2} = \frac{25}{3} \left(25 \mp \sqrt{193} \right) \text{ gr} \cdot \text{m}^2.$$

Gli assi principali di inerzia sono l'asse \hat{z} e gli autovettori relativi a $I_{1,2}$ ovvero i vettori della forma (x, y, 0) con x, y soluzioni di

$$\begin{pmatrix} \frac{175}{3} \pm \frac{25}{3}\sqrt{193} & -100\\ -100 & -\frac{175}{3} \pm \frac{25}{3}\sqrt{193} \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = 0,$$

come per esempio

$$\mathbf{v}_{1,2} = \left(100, \frac{175}{3} \pm \frac{25}{3} \sqrt{193}, 0\right).$$

(d) Il momento ${\bf n}$ delle forze esterne rispetto a O è

$$\mathbf{n} = \mathbf{r}_{cm} \wedge M\mathbf{g} = -Mg\left(x'_{cm}, y'_{cm}, z'_{cm}\right) \wedge \mathbf{e}_{z'},$$

dove abbiamo scelto il sistema di coordinate con ${\bf g}$ lungo l'asse \hat{z}' con il verso negativo. Si ottiene quindi

$$\mathbf{n} = Mg\left(y_{\rm cm}', -x_{\rm cm}', 0\right),\,$$

che si annulla solo quando $y'_{\rm cm}, x'_{\rm cm}$ sono entrambe nulle cioè quando $\mathbf{r}_{\rm cm}$ è allineato con \mathbf{g} . Ci sono pertanto ∞^2 posizioni di equilibrio date dalla condizione $\mathbf{r}_{\rm cm} = \pm |\mathbf{r}_{\rm cm}|\mathbf{e}_{z'}$ con il piano su cui giace il corpo passante per l'asse \hat{z}' .