
FM430 - Esercizi proposti (11-6-2019)

1. Consider the 2D Ising model with nearest neighbour interactions in a
box Λ of side L with + boundary conditions and zero external magnetic
field and the corresponding truncated two point function,

f+
β,Λ(x, y) := 〈σxσy〉+β,0,Λ − 〈σx〉

+
β,0,Λ〈σy〉

+
0,Λ.

Let also f+
β (x, y) = limΛ↗Z2 f+

β,Λ(x, y).

(a) Write the low-temperature expansion for f+
β,Λ(x, y). By procee-

ding as in the Peierls’ argument, prove that, for β sufficiently
large, its thermodynamic limit decays exponentially to zero at
large distances, i.e., prove that f+

β (x, y) ≤ Cβe
−κβ |x−y| for some

Cβ, κβ > 0.

(b) Write the high-temperature expansion for f+
β,Λ(x, y). By procee-

ding as in the proof that the spontaneous magnetization vanishes
at high temperatures, prove that, for β sufficiently small, its ther-
modynamic limit decays exponentially to zero at large distances,
i.e., prove that f+

β (x, y) ≤ C ′βe
−κ′β |x−y| for some C ′β, κ

′
β > 0.

2. Recall that, in the Gaussian approximation for the O(2) spin model in
dimension d = 1, 2, 3, the two point function

fGaussβ (x, y) := lim
Λ↗Zd

〈ei(θx−θy)〉Gaussβ,Λ

admits the following explicit expression:

fGaussβ (x, y) = exp
{
− 1

βJ
Id(x− y)

}
,

where

Id(x) =

∫
[−π,π]d

dk

(2π)d
1− cos(k · x)

2
∑d

j=1(1− cos kj)
.

Prove that, asymptotically as |x| → ∞,

I3(x) = C3 −
1

4π|x|
+O(|x|−2),

I2(x) =
1

2π
log |x|+O(1),

I1(x) =
|x|
2

+O(1),
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where, in the first line, C3 =
∫

[−π,π]3
dk

(2π)3
1

2
∑d
j=1(1−cos kj)

. [Hint: For d = 3,

rewrite

C3 − I3(x) =

∫ ∫
[−π,π]d

dk

(2π)d
cos(k · x)

2
∑d
j=1(1− cos kj)

[χ(k) + (1− χ(k))],

where χ(k) is a smooth version of the characteristic function of Bε(0), i.e., it is a positive C∞

radial function, equal to 1 for |k| ≤ ε and equal to 0 for |k| ≥ 2ε, for some sufficiently small ε > 0.

The contribution to C3− I3(x) from the term with 1−χ(k) decays to zero as |x| → ∞ faster than

any power, because it is the Fourier transform of a C∞ function. In the term with χ(k), we expand

in Taylor series the denominator, 2
∑d
j=1(1 − cos kj) = |k|2(1 + r(k)), where r(k) is of order k2.

Correspondingly we rewrite C3 − I3(x) =
∫
|k|≤2ε

dk
(2π)d

cos(k·x)

k2
plus a remainder, the remainder

going to zero as |x|−2 for |x| large. Finally, the term we are left with can be computed by passing

to spherical coordinates, and shown to be equal to 1
4π|x| + O(|x|−2). A similar decomposition of

the Fourier integral defining I1(x) and I2(x) can be used in d = 1, 2: rewrite the Fourier integral

as the sum of two terms, one proportional to χ(k) and one proportional to 1−χ(k). The term with

1 − χ(k) is uniformly bounded as |x| → ∞. The term with χ(k) can be further decomposed, by

expanding the denominator in Taylor series, the contribution from the remainder being uniformly

bounded as |x| → ∞. We are left with
∫
|k|≤2ε(1 − cos(k · x))χ(k)/k2, which can be computed

explicitly (in d = 1, it is equal to
∫
R
dk
2π

(1 − cos(k · x))χ(k)/k2 + O(1), and the first term can

be computed using the residues’ theorem; in d = 2, pass to radial coordinates and perform the

integral over the angles explicitly, ...)]

3. Consider the spin-spin two point function for the O(N) model in d = 2

with periodic boundary conditions, 〈~Sx · ~Sy〉perβ,Λ, with ~Sx ∈ RN and

|~Sx| = 1. In class, we discussed the McBryan-Spencer argument, lea-
ding to a polynomially-decaying upper bound for the N = 2 case (ro-
tator, or XY, model). Extend the argument to cover the N = 3 case
(Heisenberg model); more precisely, prove that there exists C > 0 such
that, for N = 3, any ε > 0 and β sufficiently large,∣∣〈~Sx · ~Sy〉β∣∣ ≤ C

|x− y|(1−ε)/(2πβJ)
,

where 〈·〉β indicates any infinite volume Gibbs measure obtained as a
limit of 〈·〉perβ,Λn for Λn ↗ Z2. [Hint. By symmetry, 〈~Sx · ~Sy〉perβ,Λ = 3

2

∑2
i=1〈Six Siy〉

per
β,Λ.

Using spherical coordinates,

(S1
x, S

2
x, S

3
x) = (sin θx cosφx, sin θx sinφx, cos θx), θx ∈ [0, π], φx ∈ [0, 2π),

this can be rewritten as 3
2
〈sin θx sin θyei(φx−φy)〉perβ,Λ. After having represented the Hamiltonian

in terms of the angles θx, φx, perform the complex deformation φx → φx + iαx at θx fixed, with

αx the same that was used for N = 2 and check that the upper bound on the spin-spin two point

function obtained in this way is the same as for N = 2, up to an overall factor 3/2.]

4. Use reflection positivity to prove that the ferromagnetic 1D Ising model
with J(x− y) = J |x− y|−α and α ∈ (1, 2), has a phase transition, i.e.,
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for β large enough and h = 0, it admits at least two distinct infinite
volume Gibbs states. For this purpose, consider the model in a box Λ of
side 2L, Λ = {−L+ 1, . . . , 0, 1, . . . , L}, zero external field and periodic
boundary conditions; let Hper

0,Λ(σ) be the corresponding Hamiltonian,

Hper
0,Λ(σ) =

1

4

∑
x,y∈Λ

(σx − σy)2Jper(x− y),

with Jper(x) = J
∑

n∈Z |x + 2nL|−α. Consider the two point function
〈σxσy〉β, where 〈·〉β indicates any infinite volume Gibbs measure obtai-
ned as a limit of 〈·〉perβ,Λn for Λn ↗ Z, and prove that there exists C > 0
such that 〈σxσy〉β ≥ 1− C/β, uniformly in x, y, which implies the exi-
stence of a phase transition for β > C. For this purpose, proceed as
follows.

(a) Show that the Hamiltonian is reflection positive with respect to
the reflection rσx = σ1−x; i.e., it can be written as Hper

0,Λ(σ) =

AL(σ)+AR(σ)−
∫∞

0
dµ Cµ(σ) rCµ(σ), where: AL(σ) only depends

on the spins in ΛL = {−L+ 1, . . . , 0}, AR(σ) only depends on the
spins in ΛR = {1, . . . , L}, AL(σ) = rAR(σ), Cµ(σ) only depends on
the spins in ΛR and admits the following explicit representation:

Cµ(σ) =

√
J

Γ(α)

L∑
x=1

σx
[
e−µ(x− 1

2
) + 2

∑
n≥1

e−µ2nL cosh
(
µ(x− 1

2
)
)]
,

where Γ(α) is Euler’s gamma function. [Hint. In order to obtain the
representation above, including the formula for Cµ(σ), consider the expression for the left-
right interaction, −J

∑
y∈ΛL

∑
x∈ΛR

∑
n∈Z σxσy |y − x + 2nL|−α, and rewrite |y − x +

2nL|−α by using

|z|−α = (1/Γ(α))

∫ ∞
0

dµµα−1e−µ|z|.

Then, perform the summations over x, y, n explicitly.]

(b) Using reflection positivity, derive the Gaussian domination bound,
Zβ,Λ(h) ≤ Zβ,Λ(0), where h ∈ R2L and

Zβ,Λ(h) =
∑
σ∈ΩΛ

exp
{
− 1

4

∑
x,y∈Λ

(σx − σy + hx − hy)2Jper(x− y)
}
.

From this derive the infrared bound, i.e., letting

σ̂k = |Λ|−1/2
∑
x∈Λ

σxe
−ikx
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for k ∈ π
L
Z mod 2π, then, for any k 6= 0 mod 2π,

〈|σ̂k|2〉perβ,Λ ≤
1

2βJ Ek
,

where Ek =
∑

n≥1
1−cos(kn)

nα
.

(c) Show that, for α ∈ (1, 2),
∫ π

0
dk(1/Ek) < +∞. From this, conclu-

de that 〈σxσy〉β ≥ 1−C/β, as desired. [Hint. In order to prove the integrabi-

lity of 1/Ek, note that 1− cos(kn) ≥ 2
π2 (kn)2, for |kn| ≤ π, so that Ek ≥ 2k2

π2

∑Pk
n=1 n

2−α,

where Pk = [π/|k|]. This can be further bounded from below by (const.)|k|α−1, from which∫ π
0 dk(1/Ek) ≤ (const.)

∫ π
0 k1−αdk < +∞.]
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