Tutorato 9 - MA/FM210 - 19/5/2017

ESERCIZIO 1. Per q>0 si consideri la lagrangiana

$$\mathcal{L}(q, \dot{q}) = \frac{\dot{q}^2}{2q^2} - \log q$$

- 1. Determinare l'Hamiltoniana.
- 2. Determinare le equazioni di Hamilton.
- 3. Determinare la trasformazione canonica generata dalla funzione generatrice di seconda specie $F(q, P) = P \log q$.
- 4. Usare la trasformazione canonica trovata al punto precedente per integrare le equazioni del moto con dati iniziali q(0) = 1, p(0) = 0.

Esercizio 2. Si consideri l'Hamiltoniana

$$H = \frac{p^2}{2}e^{-2q}$$

- 1. Determinare le equazioni del moto.
- 2. Determinare la Lagrangiana associata.
- 3. Determinare la trasformazione canonica generata dalla funzione generatrice di prima specie $F(q,Q) = Q^2 e^q$ e determinare la nuova Hamiltoniana.
- 4. Usare la trasformazione canonica trovata al punto precedente per risolvere le equazioni con dati iniziali q(0) = 0, p(0) = 1.

ESERCIZIO 3. Si consideri la Lagrangiana $\mathcal{L}(q,\dot{q}) = q\dot{q}^2$

- 1. Per quali valori di q la Lagrangiana \mathcal{L} è regolare?
- 2. Determinare l'Hamiltoniana associata e le corrispondenti equazioni di Hamilton.
- 3. Si dimostri che la trasformazione di coordinate

$$\begin{cases} Q = \frac{p^2}{4q} \\ P = -\frac{4q^2}{3p} \end{cases}$$

è canonica, mostrando che è la trasformazione associata alla funzione generatrice di seconda specie $F(q,P)=-\frac{4}{9}\frac{q^3}{P}$. Su quale dominio è definita la trasformazione?. Determinare l'Hamiltoniana nelle nuove coordinate.

4. Usare la trasformazione canonica del punto precedente per risolvere le equazioni del moto con dato iniziale q(0) = 1, $\dot{q}(0) = 2/3$.

1

Esercizio 4.

1. Data l'Hamiltoniana

$$H = \frac{\mathbf{p}^2}{2m} + U(\mathbf{q})$$

con $(\mathbf{q}, \mathbf{p}) \in \mathbb{R}^6$, si verifichi che, se $U(\mathbf{q})$ è invariante rispetto a rotazioni attorno all'asse \hat{e}_3 (i.e., $U(\mathbf{q}) = V(\sqrt{q_1^2 + q_2^2}, q_3)$, per un'opportuna funzione V), allora la parentesi di Poisson di H con la terza componente del momento angolare $l_3 = (\mathbf{q} \wedge \mathbf{p})_3 = q_1p_2 - q_2p_1$ è uguale a zero.

2. Si verifichi che $\{l_1, l_2\} = l_3$, $\{l_2, l_3\} = l_1$, $\{l_3, l_1\} = l_2$. Si dimostri quindi che se il potenziale U dell'Hamiltoniana al punto precedente è invariate per rotazioni sia attorno all'asse \hat{e}_3 , che attorno all'asse \hat{e}_1 , allora tutte e tre le componenti di $\mathbf{l} = \mathbf{q} \wedge \mathbf{p}$ sono integrali primi del moto.

ESERCIZIO 5. Per q > 0 si consideri la Lagrangiana

$$\mathcal{L}(q, \dot{q}) = \frac{1}{2q^2} \left[1 + \left(\frac{\dot{q}}{q^2} \right)^2 \right]$$

- 1. Determinare l'Hamiltoniana.
- 2. Determinare le equazioni di Hamilton.
- 3. Si determini la trasformazione canonica associata alla funzione generatrice di seconda specie $S(q, P) = \frac{P}{2q^2}$ e si calcoli l'Hamiltoniana nelle nuove variabili (Q, P), nonchè le nuove equazioni di Hamilton.
- 4. Si usino le nuove variabili per risolvere il moto corrispondente ai dati iniziali q(0) = 1, p(0) = 0.
- 5. Si verifichi esplicitamente che tale soluzione risolve le equazioni di Eulero-Lagrange per la Lagrangiana originale.

Esercizio 6. Si consideri la Lagrangiana

$$\mathcal{L}(q, \dot{q}) = \frac{\dot{q}^2 q^4}{2} - \frac{q^3}{3}$$

- 1. Determinare l'Hamiltoniana.
- 2. Determinare le equazioni di Hamilton.
- 3. Si determini la trasformazione canonica associata alla funzione generatrice di seconda specie $S(q,P)=\frac{Pq^3}{3}$ e si calcoli l'Hamiltoniana nelle nuove variabili (Q,P), nonchè le nuove equazioni di Hamilton.
- 4. Si usino le nuove variabili per risolvere il moto corrispondente ai dati iniziali q(0) = 1, p(0) = 0.
- 5. Si verifichi esplicitamente che tale soluzione risolve le equazioni di Eulero-Lagrange per la Lagrangiana originale.

 2