FM430 - Esercizi proposti (21-4-2021)

1. Consider the 1D Ising model with nearest neighbour interactions in a box of side L with periodic boundary conditions, $H_{h,L}^{per}(\sigma)$. Compute

$$f_{\beta,h}(x-y) := \lim_{L \to \infty} \langle \sigma_x \sigma_y \rangle_{\beta,h,L}^{per},$$

where $\langle \cdot \rangle_{\beta,h,L}^{per}$ is the grand-canonical average with respect to $H_{h,L}^{per}(\sigma)$. Show that $f_{\beta,h}(x)$ converges exponentially to $[m(\beta,h)]^2$ as $|x| \to \infty$ (here $m(\beta,h) = \beta^{-1}\partial_h\psi(\beta,h)$ is the average magnetization), namely that

$$f_{\beta,h}(x) - [m(\beta,h)]^2 \sim Ce^{-\kappa|x|}$$

for suitable $C, \kappa > 0$. In particular, compute the rate $\kappa = \kappa(\beta, h)$.

2. [The solution of the Curie-Weiss model via the Hubbard-Stratonovich transformation] Using the Gaussian identity

$$e^{\frac{\alpha}{2}x^2} = \frac{1}{\sqrt{2\pi\alpha}} \int_{-\infty}^{+\infty} e^{-\frac{m^2}{2\alpha} + mx} \, dm,$$

valid for all $\alpha > 0$, prove that the grandcanonical partition function of the Curie-Weiss model with J > 0 can be rewritten as:

$$Z_{\beta,h,N}^{CW} = \sqrt{\frac{N\beta J}{2\pi}} \sum_{\sigma_1,\dots,\sigma_N=\pm} \int_{-\infty}^{+\infty} e^{-N\beta Jm^2/2 + \beta(Jm+h)\sum_{i=1}^N \sigma_i} dm$$
$$= \sqrt{\frac{N\beta J}{2\pi}} \int_{-\infty}^{+\infty} e^{-N\beta Jm^2/2} (2\cosh(\beta(Jm+h)))^N dm$$

from which it follows that

$$\lim_{N \to \infty} \frac{1}{N} \log Z_{\beta,h,N}^{CW} = \max_{m \in \mathbb{R}} \left[-\beta J m^2 / 2 + \log \cosh[\beta (Jm+h)] + \log 2 \right].$$

Verify explicitly that this expression is the same as the expression $\psi^{CW}(\beta, h) = \max_{-1 \le m \le 1} \{\beta hm - \beta f^{CW}(\beta, m)\}$ computed in class.

3. Let $\psi(\beta, h)$ be the pressure of the *d*-dimensional Ising model with ferromagnetic interaction J(x - y), and $\psi^{CW}(\beta, h)$ the pressure of the Curie-Weiss model with coupling $J = \hat{J}_0 := \sum_{x \neq 0} J(x)$. Prove that, if $h \geq 0$, then $\psi(\beta, h) \geq \psi^{CW}(\beta, h)$, via the following steps. (a) Prove that, for any $m \in \mathbb{R}$, $H_{h,\Lambda}^{per}(\sigma)$ can be re-written as $H_{h,\Lambda}^{per}(\sigma) = H_{h,\Lambda}^{per,0}(\sigma) + H_{h,\Lambda}^{per,1}(\sigma)$, where

$$H_{h,\Lambda}^{per,0}(\sigma) = \frac{J}{2}m^2|\Lambda| - (Jm+h)\sum_{x\in\Lambda}\sigma_x,$$
$$H_{h,\Lambda}^{per,1}(\sigma) = -\frac{1}{2}\sum_{\substack{x,y\in\Lambda:\\x\neq y}}J(x-y)(\sigma_x-m)(\sigma_y-m)$$

(b) Using the previous rewriting, recognize that the grand-canonical partition function of $H_{h,\Lambda}^{per}(\sigma)$ can be rewritten as

$$Z_{\beta,h,\Lambda}^{per} = Z_{\beta,h,\Lambda}^{per,0} \langle e^{-\beta H_{h,\Lambda}^{per,1}} \rangle_{\beta,h,\Lambda}^{per,0},$$

where $Z_{\beta,h,\Lambda}^{per,0}$ is the grand-canonical partition function of $H_{h,\Lambda}^{per,0}(\sigma)$ and $\langle (\cdot) \rangle_{\beta,h,\Lambda}^{per,0}$ is the average with respect to the grand-canonical distribution associated with $H_{h,\Lambda}^{per,0}(\sigma)$ at inverse temperature β .

(c) Use Jensen's inequality (stating that $\int \mu(dx)f(x) \ge f(\int \mu(dx)x)$ for any probability measure μ and any **convex** function f), to conclude that

$$Z_{\beta,h,\Lambda}^{per} \ge Z_{\beta,h,\Lambda}^{per,0} e^{-\beta \langle H_{h,\Lambda}^{per,1} \rangle_{\beta,h,\Lambda}^{per,0}}.$$

Compute the right side explicitly as a function of m. Show that, by fixing m to be the largest solution of $m = \tanh[\beta(Jm + h)]$, one obtains, after having taken the thermodynamic limit,

$$\psi(\beta, h) \ge \psi^{CW}(\beta, h), \quad \forall h \ge 0,$$

as desired.

- 4. Consider the Curie-Weiss model $H_{h,N}^{CW}(\sigma)$ with $h \ge 0$. Let $m^*(\beta, h)$ be the largest solution of $m = \tanh \beta (Jm + h)$.
 - (a) Prove that, if h > 0, or if h = 0 and $\beta < \beta_c$, then, for all $\epsilon > 0$,

$$\lim_{N \to \infty} \mathbb{P}_{\beta,h,N}(|m - m^*(\beta,h)| > N^{-1/2+\epsilon}) = 0,$$

where $\mathbb{P}_{\beta,h,N}$ is the probability with respect to the grand-canonical distribution associated with $H_{h,N}^{CW}(\sigma)$ at inverse temperature β .

(b) Similarly, prove that, if h = 0 and $\beta > \beta_c$, then, for all $\epsilon > 0$,

$$\lim_{N \to \infty} \mathbb{P}_{\beta, 0, N}(||m| - m^*(\beta, 0)|) > N^{-1/2 + \epsilon}) = 0.$$

(c) Finally, prove that, if h = 0 and $\beta = \beta_c$, then, for all $\epsilon > 0$,

$$\lim_{N \to \infty} \mathbb{P}_{\beta_c, 0, N}(|m| > N^{-1/4 + \epsilon}) = 0.$$