MS410 - Esercizi proposti (26-4-2022)

1. Consider the 1D Ising model with nearest neighbour interactions in a box of side L with periodic boundary conditions, $H_{h, L}^{p e r}(\sigma)$. Compute

$$
f_{\beta, h}(x-y):=\lim _{L \rightarrow \infty}\left\langle\sigma_{x} \sigma_{y}\right\rangle_{\beta, h, L}^{p e r}
$$

where $\langle\cdot\rangle_{\beta, h, L}^{p e r}$ is the grand-canonical average with respect to $H_{h, L}^{p e r}(\sigma)$. Show that $f_{\beta, h}(x)$ converges exponentially to $[m(\beta, h)]^{2}$ as $|x| \rightarrow \infty$ (here $m(\beta, h)=\beta^{-1} \partial_{h} \psi(\beta, h)$ is the average magnetization), namely that

$$
\begin{equation*}
f_{\beta, h}(x)-[m(\beta, h)]^{2} \sim C e^{-\kappa|x|}, \tag{1}
\end{equation*}
$$

for suitable $C, \kappa>0$. In particular, compute the rate $\kappa=\kappa(\beta, h)$.
2. Consider the 1D Ising model with even, finite range, interaction $J(x-y)$ of range r (i.e., $J(x)=0$ for $|x|>r$) in a box of side L with periodic boundary conditions. Prove that the grand-canonical partition function $Z_{\beta, h, L}^{p e r}$ can be written as $\operatorname{Tr} M^{L}$ for a suitable $2^{r} \times 2^{r}$ transfer matrix M, which in general is not symmetric. Note that the elements of M are non-negative and show that there exists a positive integer p such that M^{p} has positive elements: find the smallest value of p for which such property holds.
3. [Perron-Frobenius theorem] Consider a $n \times n$ real, not necessarily symmetric, matrix A with positive elements.

- Using Brouwer fixed-point theorem (Every continuous function from a convex compact subset K of a Euclidean space to K itself has a fixed point) show that A admits a right eigenvector with positive components. [Hint: apply Brouwer fixed-point theorem to the map $\mathbf{v} \rightarrow\left[\sum_{i=1}^{n}(A \mathbf{v})_{i}\right]^{-1} A \mathbf{v}$ from the space of vectors \mathbf{v} with non-negative components such that $\sum_{i=1}^{n}(\mathbf{v})_{i}=1$ to itself.] Denote by \mathbf{v}^{*} such eigenvector, normalized so that $\sum_{i}\left(\mathbf{v}^{*}\right)_{i}=1$, and by $\lambda^{*}>0$ its eigenvalue. Moreover, show that A admits a left eigenvector \mathbf{u}^{*} with positive components and the same eigenvalue λ^{*}, normalized so that $\mathbf{u}^{*} \cdot \mathbf{v}^{*}=1$. [Hint: apply again Brouwer fixed-point theorem to the map $\mathbf{u} \rightarrow\left(\lambda^{*}\right)^{-1} A^{T} \mathbf{u}$ from the space of vectors \mathbf{u} with non-negative components such that $\mathbf{u} \cdot \mathbf{v}^{*}=1$ to itself.]
- Show that the eigenvalue λ^{*} is simple and that any other eigenvalue of A is smaller than λ^{*} in absolute value at least by a factor $1-e^{-2 c}$ with $e^{-c}:=\min _{i, j, k} \frac{A_{i j}}{A_{k j}}$ the Perron-Frobenius gap. [Hint:
let $A^{*}:=A / \lambda^{*}$ and show that for any non-zero vector \mathbf{v} with nonnegative components $e^{-c} \leq \frac{\left(A^{*} v\right)_{i}}{\left(A^{*} v\right)_{j}} \leq e^{c}$ for any $1 \leq i, j \leq n$ and any $k \geq 1$; in particular $\left(\mathbf{v}^{*}\right)_{i} \geq e^{-c}\left(\mathbf{v}^{*}\right)_{j}$ for any i, j, from which $\max _{j}\left(\mathbf{v}^{*}\right)_{j} \sum_{i}\left(\mathbf{u}_{i}^{*}\right) \leq e^{c}$; using this one finds that, for any \mathbf{v} with non-negative components and any $i,\left(A^{*} \mathbf{v}\right)_{i} \geq e^{-2 c}\left(\mathbf{u}^{*} \cdot \mathbf{v}\right)\left(\mathbf{v}^{*}\right)_{i}$;, therefore, if, given \mathbf{v} a real vector, we denote by $|\mathbf{v}|$ the vector with components $|\mathbf{v}|_{i}:=\left|(\mathbf{v})_{i}\right|$, letting $\mathbf{v}_{ \pm}=(|\mathbf{v}| \pm \mathbf{v}) / 2$, we find that, for any real vector \mathbf{g} such that $\mathbf{u}^{*} \cdot \mathbf{g}=0$,

$$
A^{*} \mathbf{g}=A^{*}\left(\mathbf{g}_{+}-e^{-2 c}\left(\mathbf{u}^{*} \cdot \mathbf{g}_{+}\right) \mathbf{v}^{*}\right)-A^{*}\left(\mathbf{g}_{-}-e^{-2 c}\left(\mathbf{u}^{*} \cdot \mathbf{g}_{-}\right) \mathbf{v}^{*}\right),
$$

so that, for any $1 \leq i \leq n$,

$$
\left|A^{*} \mathbf{g}\right|_{i} \leq\left(A^{*}\left(\mathbf{g}_{+}-e^{-2 c}\left(\mathbf{u}^{*} \cdot \mathbf{g}_{+}\right) \mathbf{v}^{*}\right)+A^{*}\left(\mathbf{g}_{-}-e^{-2 c}\left(\mathbf{u}^{*} \cdot \mathbf{g}_{-}\right) \mathbf{v}^{*}\right)\right)_{i}
$$

Hence, $\mathbf{u}^{*} \cdot\left|A^{*} \mathbf{g}\right| \leq\left(1-e^{-2 c}\right)\left(\mathbf{u}^{*} \cdot|\mathbf{g}|\right)$ so that, iterating, \mathbf{u}^{*}. $\left|\left(A^{*}\right)^{k} \mathbf{g}\right| \leq\left(1-e^{-2 c}\right)^{k}\left(\mathbf{u}^{*} \cdot|\mathbf{g}|\right)$. Therefore, given any real vector \mathbf{v}, writing $\mathbf{v}=\left(\mathbf{u}^{*} \cdot \mathbf{v}\right) \mathbf{v}^{*}+\mathbf{g}$ with $\mathbf{g}=\mathbf{v}-\left(\mathbf{u}^{*} \cdot \mathbf{v}\right) \mathbf{v}^{*}$, we find $\mathbf{u}^{*} \cdot\left|\left(A^{*}\right)^{k} \mathbf{v}-\left(\mathbf{u}^{*} \cdot \mathbf{v}\right) \mathbf{v}^{*}\right| \leq 2\left(1-e^{-2 c}\right)^{k} \mathbf{u}^{*} \cdot|\mathbf{v}|$, from which the result follows.]
Consider now a matrix A with non-negative elements, such that there exists a positive integer $p \geq 1$ such that A^{p} has positive components. Note that by applying the previous results to A^{p}, one finds that also A admits a unique maximal eigenvalue (such that all other eigenvalues of A are strictly smaller in absolute value) with left and right eigenvectors whose components are all positive.
4. In the context of Problem 2, apply Perron-Frobenius theorem (in the form discussed at the end of the previous problem) to M to conclude that $\psi(\beta, h)=\log \lambda(\beta, h)$ with $\lambda(\beta, h)$ the unique maximal eigenvalue of M. Using the theorem of analytic dependence of the simple eigenvalues of analytic matrices (Let $A(\varepsilon)$ be a $n \times n$ matrix whose elements are analytic in ε in a neighborhood $U \subset \mathbb{C}$ of $\varepsilon_{0} \in \mathbb{C}$; if λ_{0} is a simple eigenvalue of $A\left(\varepsilon_{0}\right)$, then there exists a neighborhood $V \subset U$ of ε_{0} and an analytic function $\lambda: V \rightarrow \mathbb{C}$ such that $\lambda(\varepsilon)$ is a simple eigenvalue of $A(\varepsilon)$ for all $\varepsilon \in V$ and $\left.\lambda\left(\varepsilon_{0}\right)=\lambda_{0}\right)$ to conclude that $\psi(\beta, h)$ is real-analytic in β, h for all $\beta>0$ and $h \in \mathbb{R}$.
Next, define $f_{\beta, h}(x-y)$ as in Problem 1, and prove that Eq.(1) holds. Give a lower bound on κ in terms of the Perron-Frobenius gap of the transfer matrix.
5. [The solution of the Curie-Weiss model via the HubbardStratonovich transformation] Using the Gaussian identity

$$
e^{\frac{\alpha}{2} x^{2}}=\frac{1}{\sqrt{2 \pi \alpha}} \int_{-\infty}^{+\infty} e^{-\frac{m^{2}}{2 \alpha}+m x} d m
$$

valid for all $\alpha>0$, prove that the grandcanonical partition function of the Curie-Weiss model with $J>0$ can be rewritten as:

$$
\begin{aligned}
Z_{\beta, h, N}^{C W} & =\sqrt{\frac{N \beta J}{2 \pi}} \sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm} \int_{-\infty}^{+\infty} e^{-N \beta J m^{2} / 2+\beta(J m+h) \sum_{i=1}^{N} \sigma_{i}} d m \\
& =\sqrt{\frac{N \beta J}{2 \pi}} \int_{-\infty}^{+\infty} e^{-N \beta J m^{2} / 2}(2 \cosh (\beta(J m+h)))^{N} d m
\end{aligned}
$$

from which it follows that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \log Z_{\beta, h, N}^{C W}=\max _{m \in \mathbb{R}}\left[-\beta J m^{2} / 2+\log \cosh [\beta(J m+h)]+\log 2\right]
$$

Verify explicitly that this expression is the same as the expression $\psi^{C W}(\beta, h)=\max _{-1 \leq m \leq 1}\left\{\beta h m-\beta f^{C W}(\beta, m)\right\}$ computed in class.
6. Let $\psi(\beta, h)$ be the pressure of the d-dimensional Ising model with ferromagnetic interaction $J(x-y)$, and $\psi^{C W}(\beta, h)$ the pressure of the Curie-Weiss model with coupling $J=\hat{J}_{0}:=\sum_{x \neq 0} J(x)$. Prove that, if $h \geq 0$, then $\psi(\beta, h) \geq \psi^{C W}(\beta, h)$, via the following steps.
(a) Prove that, for any $m \in \mathbb{R}, H_{h, \Lambda}^{\text {per }}(\sigma)$ can be re-written as $H_{h, \Lambda}^{p e r}(\sigma)=$ $H_{h, \Lambda}^{\text {per }, 0}(\sigma)+H_{h, \Lambda}^{\text {per, } 1}(\sigma)$, where

$$
\begin{aligned}
H_{h, \Lambda}^{p e r, 0}(\sigma) & =\frac{J}{2} m^{2}|\Lambda|-(J m+h) \sum_{x \in \Lambda} \sigma_{x} \\
H_{h, \Lambda}^{p e r, 1}(\sigma) & =-\frac{1}{2} \sum_{\substack{x, y \in \Lambda: \\
x \neq y}} J(x-y)\left(\sigma_{x}-m\right)\left(\sigma_{y}-m\right) .
\end{aligned}
$$

(b) Using the previous rewriting, recognize that the grand-canonical partition function of $H_{h, \Lambda}^{p e r}(\sigma)$ can be rewritten as

$$
Z_{\beta, h, \Lambda}^{p e r}=Z_{\beta, h, \Lambda}^{p e r, 0}\left\langle e^{-\beta H_{h, \Lambda}^{p e r, 1}}\right\rangle_{\beta, h, \Lambda}^{p e r, 0},
$$

where $Z_{\beta, h, \Lambda}^{\text {per,0 }}$ is the grand-canonical partition function of $H_{h, \Lambda}^{\text {per, }}(\sigma)$ and $\langle(\cdot)\rangle_{\beta, h, \Lambda}^{p e r, 0}$ is the average with respect to the grand-canonical distribution associated with $H_{h, \Lambda}^{\text {per }, 0}(\sigma)$ at inverse temperature β.
(c) Use Jensen's inequality (stating that $\int \mu(d x) f(x) \geq f\left(\int \mu(d x) x\right)$ for any probability measure μ and any convex function f), to conclude that

$$
Z_{\beta, h, \Lambda}^{p e r} \geq Z_{\beta, h, \Lambda}^{\text {per }, 0} e^{-\beta\left\langle H_{h, \Lambda}^{p e r, 1}\right\rangle_{\beta, h, \Lambda}^{p e r, 0}} .
$$

Compute the right side explicitly as a function of m. Show that, by fixing m to be the largest solution of $m=\tanh [\beta(J m+h)]$, one obtains, after having taken the thermodynamic limit,

$$
\psi(\beta, h) \geq \psi^{C W}(\beta, h), \quad \forall h \geq 0
$$

as desired.
7. Consider the Curie-Weiss model $H_{h, N}^{C W}(\sigma)$ with $h \geq 0$. Let $m^{*}(\beta, h)$ be the largest solution of $m=\tanh \beta(J m+h)$.
(a) Prove that, if $h>0$, or if $h=0$ and $\beta<\beta_{c}$, then, for all $\epsilon>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\beta, h, N}\left(\left|m-m^{*}(\beta, h)\right|>N^{-1 / 2+\epsilon}\right)=0
$$

where $\mathbb{P}_{\beta, h, N}$ is the probability with respect to the grand-canonical distribution associated with $H_{h, N}^{C W}(\sigma)$ at inverse temperature β.
(b) Similarly, prove that, if $h=0$ and $\beta>\beta_{c}$, then, for all $\epsilon>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\beta, 0, N}\left(| | m\left|-m^{*}(\beta, 0)\right|>N^{-1 / 2+\epsilon}\right)=0 .
$$

(c) Finally, prove that, if $h=0$ and $\beta=\beta_{c}$, then, for all $\epsilon>0$,

$$
\lim _{N \rightarrow \infty} \mathbb{P}_{\beta_{c}, 0, N}\left(|m|>N^{-1 / 4+\epsilon}\right)=0
$$

