
MS410 - Esercizi proposti (17-6-2025)

1. [Existence of non-translationally invariant Gibbs states in the
3D Ising model] Consider the 3D nearest neighbor ferromagnetic
Ising model with coupling J > 0 and zero external magnetic field in
a cubic box Λ = Λ2L+1 := {(x1, x2, x3) ∈ Z3 : −L ≤ xi ≤ L, i =
1, 2, 3} of side 2L + 1 centered at the origin, and denote by µDob

β,0,Λ the
corresponding finite volume Gibbs measure with Dobrushin boundary
conditions τ = τDob, where

(τDob)x =

{
+1 if x3 ≥ 0,

−1 if x3 < 0.

• Prove that
⟨σ0⟩Dob

β,0,Λ ≥ ⟨σ0⟩+β,0,Λ0
(1)

where the average in the left side is with respect to (w.r.t.) µDob
β,0,Λ

and the one in the right side is w.r.t. the finite volume Gibbs mea-
sure µ+

β,0,Λ0
of the two-dimensional nearest neighbor Ising model

with coupling J > 0 and zero external magnetic field in the squa-
re box Λ0 := {(x1, x2) ∈ Z2 : −L ≤ xi ≤ L, i = 1, 2}. [Hint:
Denoting by σ ∈ {±1}Λ an Ising spin random field distributed w.r.t.
µDob
β,0,Λ and by ω ∈ {±1}Λ0 another Ising spin random field distributed

w.r.t. µ+
β,0,Λ0

, let

sx =

{
1
2(σx + σrx) if x ∈ Λ>

1
2(σx + ωx) if x ∈ Λ0

tx =

{
1
2(σx − σrx) if x ∈ Λ>

1
2(σx − ωx) if x ∈ Λ0

where we denoted Λ> := {x = (x1, x2, x3) ∈ Λ : x3 > 0} and, for

any x = (x1, x2, x3) ∈ Z3, rx := (x1, x2,−x3). Note that, for any

x ∈ Λ0∪Λ>, sx, tx ∈ {−1, 0, 1} and sx = 0 ⇔ tx ̸= 0. Observe that (1)

is equivalent to ⟨⟨t0⟩⟩β ≥ 0, where ⟨⟨·⟩⟩β is the average w.r.t. the product

measure µDob
β,0,Λ⊗µ+

β,0,Λ0
. In order to prove that ⟨⟨t0⟩⟩β ≥ 0, expand the

numerator in the definition of ⟨⟨t0⟩⟩β according to the realization of

A = {x ∈ Λ0 ∪ Λ> : sx = 0} and observe that, once A is fixed,

there remains exactly one nontrivial Ising random variable (with values

±1) at each vertex; verify that you can then apply the usual GKS

inequalities to show that each term of the sum is non-negative.]

• As a corollary of the previous item, show that for β > βc(2), where
βc(2) = J−1arctanh(

√
2− 1) is the inverse critical temperature of

the 2D nearest neighbor Ising model, ⟨σ0⟩Dob
β,0 > 0 > ⟨σ(0,0,−1)⟩Dob

β,0 ,

where ⟨·⟩Dob
β,0 = limn→∞⟨·⟩Dob

β,0,B2Ln+1
is an infinite volume Gibbs
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state obtained along an appropriate increasing sequence of boxes
{B2Ln+1}n∈N, with

B2L+1 := {(x1, x2, x3) ∈ Z3 : −L ≤ x1, x2 ≤ L, −L ≤ x3 ≤ L−1}.

In particular, ⟨·⟩Dob
β,0 is not translationally invariant. [Hint: By

symmetry, ⟨σ0⟩Dob
β,0,B2L+1

= −⟨σ(0,0,−1)⟩Dob
β,0,B2L+1

. Moreover, by FKG,

⟨σ0⟩Dob
β,0,B2L+1

≥ ⟨σ0⟩Dob
β,0,Λ2L+1

.

Combining this with the result of the previous item and sending L =

Ln → ∞ implies the desired claim.]

2. [Logarithmic divergence of the specific heat of the 2D Ising
model] Recall that the free energy of the nearest neighbor 2D Ising
model with coupling J > 0, inverse temperature β > 0 and no external
magnetic field, h = 0, is given by Onsager’s formula:

ψ(β, 0) = log(2 cosh2(βJ))− 1

2

∫ π

−π

dk1
2π

∫ π

−π

dk2
2π

logφ(k1, k2)

where, letting t := tanh(βJ), we denoted φ(k1, k2) := (t2 + 2t − 1)2 +
2t(1 − t2)(2 − cos k1 − cos k2). Prove that ψ(β, 0) is real-analytic in
β for β ̸= βc := J−1arctanh(

√
2 − 1); moreover, prove that ψ(β, 0) is

continuously differentiable at βc, while it is not twice differentiable at
that point; in particular, show that the second derivative of ψ(β, 0)
with respect to β diverges logarithmically as β → βc.

3. [Grassmann representation of the energy correlations of the
2D Ising model] Consider the 2D ferromagnetic nearest neighbor
Ising model in a square box Λ = ΛL ⊂ Z2 of side L, with h = 0
and periodic boundary conditions. Let Eper

Λ be the set of its nearest
neighbor edges, and, for any b ≡ {x, y} ∈ Eper

Λ , let σ̃b = σxσy be the
‘bond spin’ or ‘energy observable’. Derive a Grassmann representation
for its multipoint ‘energy correlations’

⟨σ̃b1 · · · σ̃bn⟩
per
β,0,Λ,

where b1, . . . , bn are n distinct elements of Eper
Λ , via the following steps:

(a) Note that the partition function of the model with bond-dependent
couplings,

Zper
β,0,Λ(ϵ) :=

∑
σ∈ΩΛ

exp
{ ∑

b∈Eper
Λ

(βJ + ϵb)σ̃b

}
,
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with ΩΛ = {±1}Λ, admits a Grassmann representation analogous
to the one for ϵ = 0, namely:

Zper
β,0,Λ(ϵ) = (−2)L

2
( ∏

b∈Eper
Λ

cosh(βJ + ϵb)
) ∑

θ∈{±}2
cθZ

θ(ϵ), (2)

with c+,− = c−,+ = c−,− = −c+,+ = 1/2 and, letting Φ =
{H̄x, Hx, V̄x, Vx}x∈Λ be a collection of 4L2 Grassmann variables,

Zθ(ϵ) =

∫
DΦ eS

θ
ϵ (Φ),

where, letting t(ϵb) ≡ tanh(βJ + ϵb), H(L+1,x2) ≡ θ1H(1,x2), and
V(x1,L+1) ≡ θ2V(x1,1),

Sθ
ϵ (Φ) =

∑
x∈Λ

[
t(ϵ{x,x+ê1})H̄xHx+ê1 + t(ϵ{x,x+ê2})V̄xVx+ê2

+ H̄xHx + V̄xVx + iV̄xH̄x + iHxVx +HxV̄x + VxH̄x

]
.

(3)

(b) Use the fact that

⟨σ̃b1 · · · σ̃bn⟩
per
β,0,Λ =

1

Zper
β,0,Λ

∂n

∂ϵb1 · · · ∂ϵbn
Zper

β,0,Λ(ϵ)
∣∣∣
ϵ=0

to conclude, via (2), that, for any collection of distinct bonds
b1, . . . , bn,

⟨
n∏

i=1

σ̃bi⟩
per
β,0,Λ =

∑
θ∈{±}2 cθ

∫
DΦ eS

θ
0 (Φ)

∏n
i=1(t+ (1− t2)Ebi)∑

θ∈{±}2 cθZ
θ
β,0,Λ(0)

,

(4)
where t = tanh βJ and, for b = {x, x+ ê1}, Eb = H̄xHx+ê1 , while,
for b = {x, x+ ê2}, Eb = V̄xVx+ê2 .

4. [Asymptotic behavior of the energy-energy correlation of the
2D Ising model at βc] In the context of the previous problem, use
the Grassmann representation of the energy correlations to compute the
asymptotics of the truncated energy-energy correlation at the critical
point. Namely, consider, e.g., two horizontal bonds, b1 = {x, x + ê1}
and b2 = {y, y + ê1}, with x ̸= y, let

⟨σ̃b1 ; σ̃b2⟩
per
β,0,Λ := ⟨σ̃b1σ̃b2⟩

per
β,0,Λ − ⟨σ̃b1⟩

per
β,0,Λ⟨σ̃b2⟩

per
β,0,Λ

be the truncated energy-energy correlation, and let

⟨σ̃b1 ; σ̃b2⟩
per
β,0 = lim

L→∞
⟨σ̃b1 ; σ̃b2⟩

per
β,0,Λ

be its thermodynamic limit.
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(a) Starting from the Grassmann representation derived in item (b)
of the previous problem, prove that, for all β > 0, the thermo-
dynamic limit of the truncated energy-energy correlation can be
written as

⟨σ̃b1 ; σ̃b2⟩
per
β,0 = (1− t2)2

[
⟨H̄xHy+ê1⟩ ⟨Hx+ê1H̄y⟩ − ⟨H̄xH̄y⟩ ⟨HxHy⟩

]
,

(5)
where, denoting Φ1,x ≡ H̄x and Φ2,x ≡ Hx,

⟨Φa,xΦb,y⟩ := −
∫∫

[−π,π)2

d2k

(2π)2
(M−1

k )a,be
−ik·(x−y),

for any a, b ∈ {1, 2}, where

Mk =


0 1 + te−ik1 −i −1

−(1 + teik1) 0 1 i
i −1 0 1 + te−ik2

1 −i −(1 + teik2) 0


[Hint: Recall that, as discussed in class, Zθ

β,0,Λ(0) > 0 for all θ ∈
{(+,−), (−,+), (−,−)}, and Z

(+,+)
β,0,Λ ̸= 0 for all β ̸= βc. Therefore, for

any β ̸= βc, we can divide and multiply by Zθ
β,0,Λ(0) the term with

label θ appearing in the numerator in the right hand side of (4) (for
n = 1, 2), thus finding:

⟨σ̃b1 ; σ̃b2⟩
per
β,0,Λ = (1− t2)2

∑
θ∈{±}2

cθZ
θ
β,0,Λ(0)⟨Eb1 ;Eb2⟩θ,

where ⟨Eb1 ;Eb2⟩θ = ⟨Eb1Eb2⟩θ − ⟨Eb1⟩θ⟨Eb2⟩θ and

⟨A⟩θ :=
1

Zθ
β,0,Λ(0)

∫
DΦeS

θ
0 (Φ)A(Φ).

Now, for any β ̸= βc and any θ, the following ‘fermionic Wick rule’ for
the expectations of monomials of order 4 holds, namely:

⟨H̄xHx+ê1H̄yHy+ê1⟩θ = ⟨H̄xHx+ê1⟩θ⟨H̄yHy+ê1⟩θ
− ⟨H̄xH̄y⟩θ⟨Hx+ê1Hy+ê1⟩θ + ⟨H̄xHy+ê1⟩θ⟨Hx+ê1H̄y⟩θ

Moreover, for any pair of Grassmann variables Φa,x,Φb,y with a, b ∈
{1, 2}, the expectation ⟨Φa,xΦb,y⟩θ converges to ⟨Φa,xΦb,y⟩ as L → ∞,

uniformly in θ. Therefore, eq.(5) holds for all β ̸= βc. Finally, from

the fact that: (1) ⟨σ̃b1 σ̃b2⟩
per,T
β,0 and ⟨σ̃bi⟩

per,T
β,0 are monotone increasing

in β (by GKS), and (2) ⟨Φa,xΦb,y⟩, is continuous in t = tanh(βJ), a

posteriori eq.(5) holds for β = βc as well (as one can prove by letting

β → β−
c first and then β → β+

c ).]
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(b) Using the explicit formula derived in the previous item, prove that,
at β = βc ⇔ t =

√
2− 1,

⟨σ̃b1 ; σ̃b2⟩
per
βc,0

∼ 1

π2

1

|x− y|2
,

asymptotically as |x− y| → ∞. [Hint: An explicit computation of
the right hand side of (5) shows that, at β = βc,

⟨σ̃b1 ; σ̃b2⟩
per
βc,0

= −

( ∫
[−π,π)2

d2k

(2π)2
e−ik·(x−y)

2− cos k1 − cos k2
sin k2

)2

−

( ∫
[−π,π)2

d2k

(2π)2
e−ik·(x−y)

2− cos k1 − cos k2

[
1− eik1 − (

√
2− 1)(1− cos k2)

])
·

·

( ∫
[−π,π)2

d2k

(2π)2
e−ik·(x−y)

2− cos k1 − cos k2

[
1− e−ik1 − (

√
2− 1)(1− cos k2)

])
.

Now, letting sin k2
2−cos k1−cos k2

≡ f1(k) and
1−eik1−(

√
2−1)(1−cos k2)

2−cos k1−cos k2
≡ f2(k),

we rewrite∫
[−π,π)2

d2k

(2π)2
e−ik·xfi(k) =

∫
[−π,π)2

d2k

(2π)2
e−ik·xfi(k)

[
χϵ(k) + (1− χϵ(k))

]
,

where χϵ(k) is a C∞ compactly supported function, supported in the
ball of radius ϵ centered at the origin, and identically equal to 1 on the
ball of radius ϵ/2 centered at the origin, with ϵ > 0 sufficiently small.
Now, since the Fourier transform of a C∞ function decays faster than
any power at large distances, we have that, for |x| ≥ 1,∣∣∣ ∫

[−π,π)2

d2k

(2π)2
e−ik·xfi(k)(1− χϵ(k))

∣∣∣ ≤ CN

|x|N

for all N ≥ 1 and some CN > 0. Next, in the term whose integrand
is proportional to χϵ(k), we Taylor expand the numerator and deno-
minator in the definition of fi(k) around the origin, and rewrite it
as: ∫

R2

d2k

(2π)2
e−ik·x

|k|2
(li(k) + ri(k))χϵ(k),

where l1(k) = 2k2, l2(k) = −2ik1 and ri(k) = O(|k|2). The term whose
integrand is proportional to ri(k) can be bounded as∣∣ ∫

R2

d2k

(2π)2
e−ik·x

|k|2
ri(k)χϵ(k)

∣∣ ≤ C
log |x|
|x|2
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for all |x| ≥ ϵ−1 and a suitable C > 0 [To prove it, write χϵ(k) =
χ|x|−1(k) + (χϵ(k) − χ|x|−1(k)): the term whose integrand is propor-
tional to χ|x|−1(k) is bounded by (const.)|x|−2, while the other by

(const.) log |x||x|2 , as one can realize by rewriting

|x|2
∫
R2

d2k

(2π)2
e−ik·x

|k|2
ri(k)(χϵ(k)− χ|x|−1(k)) =

=

∫
R2

d2k

(2π)2
(∂2

k1 + ∂2
k2)

e−ik·x

|k|2
ri(k)(χϵ(k)− χ|x|−1(k))

and then integrating twice by parts with respect to k1 and k2.] We are
finally left with∫

R2

d2k

(2π)2
e−ik·x

|k|2
li(k)χϵ(k) =

∫
R2

d2zLi(x− z)Ξϵ(z) ≡ Li ∗ Ξϵ(x),

where Ξϵ(z) :=
∫
R2

d2k
(2π)2

e−ik·zχϵ(k) is a function decaying to zero at

infinity faster than any power (i.e., for |z| ≥ 1, |Ξϵ(z)| ≤ CN |x|−N for
allN ≥ 1) and of total integral 1:

∫
R2 d

2z Ξϵ(z) = 1; moreover, Li(z) :=∫
R2

d2k
(2π)2

e−ik·x

|k|2 li(k) with l1(k) = 2k2 and l2(k) = −2ik1, which must be

interpreted as a tempered distribution, as any Fourier transform of L1
loc

functions. The explicit expression of Li(x) can be expressed using the
residues theorem and gives:

L1(x) =
−i

π

x2
|x|2

and L2(x) = − 1

π

x1
|x|2

.

Finally, using the properties of Ξϵ(z) we find that Li ∗Ξϵ(x) = Li(x)+
Ri(x), with |Ri(x)| ≤ C/|x|2 for |x| ≥ 1 and some C > 0. In conclusion,

⟨σ̃b1 ; σ̃b2⟩
per
βc,0

= −
( ∫

[−π,π)2

d2k

(2π)2
e−ik·(x−y)f1(k)

)2
−
( ∫

[−π,π)2

d2k

(2π)2
e−ik·(x−y)f2(k)

)( ∫
[−π,π)2

d2k

(2π)2
e−ik·(x−y)f2(−k)

)
= −(L1(x− y))2 − L2(x− y) · L2(y − x) +R(x− y),

where |R(x)| ≤ C log |x|
|x|3 for |x| ≥ 1. Using the explicit expressions of

L1(x), L2(x), we get the desired result.]
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