MS410 - Esercizi proposti (17-6-2025)

1. [Existence of non-translationally invariant Gibbs states in the
3D Ising model] Consider the 3D nearest neighbor ferromagnetic
Ising model with coupling J > 0 and zero external magnetic field in
a cubic box A = Agpyy = {(z1,29,23) € Z° : =L < 2; < L, i =
1,2,3} of side 2L + 1 centered at the origin, and denote by /LBD’%I?A the
corresponding finite volume Gibbs measure with Dobrushin boundary
conditions 7 = Tpep, Where

. 11 ifas >0,
TDob )z =
Dob 1 ifag <0

e Prove that
<00>6D,‘())k,)A > <UO>E,0,AO (1)

where the average in the left side is with respect to (w.r.t.) g9’

and the one in the right side is w.r.t. the finite volume Gibbs mea-
sure ,u;io, A, Of the two-dimensional nearest neighbor Ising model
with coupling J > 0 and zero external magnetic field in the squa-
re box Ay := {(z1,22) € Z* : =L < z; < L, i = 1,2}. [Hint:
Denoting by o € {il}A an Ising spin random field distributed w.r.t.
uﬂD’%?A and by w € {£1}"0 another Ising spin random field distributed

w.r.t. “E,O,Ao’ let

. %(Ux—kam) if x € As .
N %(ax—i—wm) if z € Ag N

(0p —0pz) ifx €A
(00 —wg) ifx el

N[ D=

where we denoted As = {z = (z1,22,23) € A : z3 > 0} and, for
any © = (x1,72,23) € Z3, rx := (1,29, —x3). Note that, for any
x € ANgUAs, s5,t, € {—1,0,1} and s, = 0 < ¢, # 0. Observe that (1)
is equivalent to ((to))s > 0, where ((-)) g is the average w.r.t. the product
measure M5D7%]?A ® /‘E,o, A+ 11 order to prove that ((to))s > 0, expand the
numerator in the definition of ((ty))g according to the realization of
A ={xr € ApUA> : s; = 0} and observe that, once A is fixed,
there remains exactly one nontrivial Ising random variable (with values
+1) at each vertex; verify that you can then apply the usual GKS
inequalities to show that each term of the sum is non-negative.]

e As a corollary of the previous item, show that for 5 > .(2), where
B.(2) = J'arctanh(y/2 — 1) is the inverse critical temperature of
the 2D nearest neighbor Ising model, (50)5%” > 0 > (0(0,0,-1)) 59>

where ()53 = limnoo(-)300s,, ., is an infinite volume Gibbs
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state obtained along an appropriate increasing sequence of boxes
{BQLn—&-l}nEN’ with

Bopy1 = {(21,29,73) €Z*: =L < 21,29 < L, —L < 23 < L—1}.

In particular, <)g%b is not translationally invariant. [Hint: By
symmetry, <00)6D%bB2L+1 = —(0(0,07,1))51)7%?32“1. Moreover, by FKG,

Dob Dob
<00>57%732L+1 = <00>57%7A2L+1'

Combining this with the result of the previous item and sending L =
L,, — oo implies the desired claim.]

2. [Logarithmic divergence of the specific heat of the 2D Ising
model] Recall that the free energy of the nearest neighbor 2D Ising
model with coupling J > 0, inverse temperature 5 > 0 and no external
magnetic field, h = 0, is given by Onsager’s formula:

¥(3,0) = log(2 cosh?(B.J)) ——/ dkl/ @loggp (K1, ko)

where, letting ¢ := tanh(3.J), we denoted ¢(k1, ko) := (t* +2t — 1)? +
2t(1 — t*)(2 — cosk; — cosky). Prove that (3,0) is real-analytic in
3 for B # . := J 'arctanh(v/2 — 1); moreover, prove that 1(f3,0) is
continuously differentiable at (., while it is not twice differentiable at
that point; in particular, show that the second derivative of ¥ (f,0)
with respect to § diverges logarithmically as § — f..

3. [Grassmann representation of the energy correlations of the
2D Ising model] Consider the 2D ferromagnetic nearest neighbor
Ising model in a square box A = Ay, C Z? of side L, with h = 0
and periodic boundary conditions. Let EX”" be the set of its nearest
neighbor edges, and, for any b = {x,y} € &Y, let 6, = 0,0, be the
‘bond spin’ or ‘energy observable’. Derive a Grassmann representation
for its multipoint ‘energy correlations’

(Gby -+ Fb,) 0.0

where by, ..., b, are n distinct elements of £, via the following steps:

(a) Note that the partition function of the model with bond-dependent
couplings,

Z5oale) Z exp{ Z (BJ + eb)éb},
LSUN beeRe"
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with Q4 = {£1}*, admits a Grassmann representation analogous
to the one for € = 0, namely:

Zhsale) = (=27 ( ] con(8r+a)) > w2’(e), ()
be&Re” 0c{+}2

with ¢, = = c 4 = c = = —cy; = 1/2 and, letting & =
{H,,H,,V,,V,}zea be a collection of 4L? Grassmann variables,

7%(e) = / D® 5@

where, letting t(e,) = tanh(8J + &), H(L11,2) = 01H(14,), and
‘/(CE1,L+].) = 02‘/(501,1)7

Sg((I)) = Z [t(e{x,z+é1})HxHJt+é1 + t(e{x,eréz})‘_/me-&-éz
TEA (3)
+ H,H, + V,V, + iV, H, + iH,V, + H,V, + Vmﬁx] :

(b) Use the fact that

<5_ 5 >per . 1 o per (6)
b1 """ Ybn/B,0,A — per J0,A

to conclude, via (2), that, for any collection of distinct bonds
blv T bn7

<f[ ~ >per ZGE{i}Q Co f Do eSS(@) H?:l(t + (1 - t2)Eb2)
O, = s
i1 poa > ez 025 (0)

. (4)
where ¢ = tanh 5.J and, for b = {z,x+é&1}, By = H,H,,¢,, while,
for b={z,x+ é}, By = ViViye,.

4. [Asymptotic behavior of the energy-energy correlation of the
2D Ising model at (.| In the context of the previous problem, use
the Grassmann representation of the energy correlations to compute the
asymptotics of the truncated energy-energy correlation at the critical
point. Namely, consider, e.g., two horizontal bonds, by = {z,z + é;}
and by = {y,y + é1}, with x # y, let

~ R per R ~ ~ per ~ per ~ per
(Gby; sz>5,0,/\ = <0b10b2>B,O,A - <Ub1>ﬁ,0,A<Ub2>ﬁ,0,A
be the truncated energy-energy correlation, and let
S . \Per _ i /= . = \per
<Ub17 sz)ﬁ,o - ggﬂlo((jbu 0b2>/3,0,A

be its thermodynamic limit.



(a) Starting from the Grassmann representation derived in item (b)
of the previous problem, prove that, for all 3 > 0, the thermo-
dynamic limit of the truncated energy-energy correlation can be
written as

(G103 G0 = (U= 22 [(HoHy e,y (Hey Hy) = (L) (HLH))
i 5)
where, denoting ¢, , = H, and ®,, = H,,

dzk :
<q)a,x@by — // 7b€fzk'(wfy)’

[—m,m)2

for any a,b € {1,2}, where

0 1+ te —i -1
=1+ tet) 0 1 i
M. = i -1 0 1 + te—ik2
1 —i —(1 + te'?) 0

[Hint: Recall that, as discussed in class, Z/B0 A(0) > 0 for all 8 €

{(+-),(=+),(=,—)}, and Z;BX # 0 for all 8 # .. Therefore, for

any 8 # B., we can divide and multiply by Zgo A(0) the term with
label @ appearing in the numerator in the right hand side of (4) (for
n = 1,2), thus finding:

<5b1§ 5b2>§?&/\ = (1 - t2)2 Z COZg,O,A(O)<Eb1;Eb2>0>
Oc{£}?
where (Ep,; Eb,)o = (Ep, Evy)o — (Eb,)o(Eb,)e and
1
S / DD () A(D).
0,A

ng A(0

Now, for any 8 # (. and any 6, the following ‘fermionic Wick rule’ for
the expectations of monomials of order 4 holds, namely:
(HyHpye, HyHyy o)) = (HoHypye,)o(HyHyié,)o
- <HxHy>0<Hz+é1Hy+é1>9 + <H$Hy+é1>9<Hx+é1Hy>9

(A)g =

Moreover, for any pair of Grassmann variables ®, ;, ®,, with a,b €
{1,2}, the expectation (®, Py ,)e converges to (Pq,Pp,) as L — oo,
uniformly in 6. Therefore, eq.(5) holds for all § # .. Finally, from
the fact that: (1) (dy, ab2)g€gT and (&bi%fg’T are monotone increasing
in g (by GKS), and (2) (®qPsy), is continuous in ¢ = tanh(5J), a
posteriori eq.(5) holds for 5 = (. as well (as one can prove by letting
B — B first and then 8 — 81).]

4



(b) Using the explicit formula derived in the previous item, prove that,
at B=f. ot=v2-1,

1 1

™ |z —y|*

<5-b1; 5-b2>gi7:0 ~

asymptotically as |x — y| — oo. [Hint: An explicit computation of
the right hand side of (5) shows that, at 5 = f,,

(G113 G0, 0 = — / Lk e e sin k 2
7613 b2l 0 = (2m)2 2 — cos k1 — cos ks 2

[771-»77)2

- ( / A2k e—ik~(x—y) [1 B eikl . (\/§ _ 1)(1 — oS k-Q)]> .

. (2m)2 2 — cos k1 — cos ko

( / (d2k ey [1_6—““—(\/5—1)(1—608@])-

27)2 2 — cos k1 — cos ko

[_7‘-771')2
: sin _ ik _ _ —cos B
Now, letting 1= = 106 e == 00mb) = ()
we rewrite
dzk‘ ik d2k’ b
/ 2n2© M fi(k) = / Pk Mo f (k) [xe (k) + (1 — xe(K))],
[-m,m)? [—m,m)2

where (k) is a C*° compactly supported function, supported in the
ball of radius € centered at the origin, and identically equal to 1 on the
ball of radius €/2 centered at the origin, with € > 0 sufficiently small.
Now, since the Fourier transform of a C'* function decays faster than
any power at large distances, we have that, for |z| > 1,
2
| G a0 )| <

27)?
[77"77")2

for all N > 1 and some Cy > 0. Next, in the term whose integrand
is proportional to x.(k), we Taylor expand the numerator and deno-
minator in the definition of f;(k) around the origin, and rewrite it
as:

d2k 6—7jk~az
O Lk + (). (R),
| o T )+ (e
]RQ
where 11 (k) = 2kz, l2(k) = —2ik; and r;(k) = O(]k|?). The term whose
integrand is proportional to r;(k) can be bounded as

A’k etk log |x
|/ r(k)xe(k)| < 018 1]
]RZ

@m2 [k
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for all |z] > ¢! and a suitable C > 0 [To prove it, write x.(k) =
X|z|-1 (k) + (Xe(k) — X|z/-1(Kk)): the term whose integrand is propor-
tional to x|, -1(k) is bounded by (const.)|z|~%, while the other by

log |z|
‘5E|2 9

(const.) as one can realize by rewriting

2 e—z’km
ol [ e e ) = a1 () =
R2

Pk, ek
= / (272 (O, + 31@2)Wm(k)(xe(k) — Xaf-1 (k)
R2

and then integrating twice by parts with respect to k1 and ks.] We are
finally left with

/‘ermrl.(k) (k) = [ d®2Li(x — 2)E(2) = Li % Ze()
(27‘()2 V-C|2 i\R) Xe = - i e = L * Zel),s

R2
where Z.(z) = f2 (gil)% e~ 2y (k) is a function decaying to zero at

infinity faster than any power (i.e., for |z| > 1, |Ec(z)| < Cn|z|~V for
all N > 1) and of total integral 1: [, d>2 Ec(z) = 1; moreover, L;(z) :=
J &k S li(k) with b (k) = 2ks and lp(k) = —2iky, which must be
R2

interpreted as a tempered distribution, as any Fourier transform of Lllo .

functions. The explicit expression of L;(z) can be expressed using the
residues theorem and gives:
—1 T9 1 oy

—= and La(z) =———F5.

T |af? ™ [af?

Ll(.CC) =

Finally, using the properties of Z¢(z) we find that L; xZ.(z) = L;(z) +
R;(z), with |R;(x)| < C/|z|? for |x| > 1 and some C' > 0. In conclusion,

~ ~ er d2k —ik-(x— 2
<0—b1;0—b2>gc’0 = _< / W@ k-( y)fl(k)>

[—71'771')2

([ emen)( [ e sin)

[771',7T)2 [771-’7‘-)2

= —(Li(x —y))* — La(z —y) - La(y — =) + R(z — ),

where |R(z)| < €8 2l for |z| > 1. Using the explicit expressions of

||

Li(x), La(x), we get the desired result.]



