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1. Relative Entropy

Let ρ be a density matrix acting on a Hilbert space H. The
von Neumann entropy of ρ is defined by

S(ρ) := −Tr(ρ lnρ) (1)

It has the following properties:

1. S(ρ) ≥ 0, ∀ρ, with “=” only if ρ is pure.

2. S(·) is strictly concave.

3. S(·) is subadditive and strongly subadditive.

Item 1. is obvious. Item 2. and subadditivity follow from the following
general inequality: Let f be a real-valued, strictly convex function on
the real line, and let A and B be self-adjoint operators on H. Then

Tr(f (B)) ≥ Tr(f (A)) + Tr(f ′(A) · (B − A)), (2)

with “=” only if A = B. (Set f (x) = x lnx to prove 2. & SA.)



Proof of inequality (2), due to Klein:

Let {ψj}∞j=0 be a CONS of eigenvectors of B corresponding to
e.v.’s βj . Let ψ be a unit vector in H, and cj := 〈ψj , ψ〉. Then

〈ψ, f (B)ψ〉 =
∑
j

|cj |2 f (βj) ≥ f (
∑
j

|cj |2βj) = f (〈ψ,Bψ〉). (3)

Convexity of f also implies that

f (〈ψ,Bψ〉) ≥ f (〈ψ,Aψ〉) + f ′(〈ψ,Aψ〉) · 〈ψ, (B − A)ψ〉.

If ψ is an eigenvector of A then the R.S. is

= 〈ψ, [f (A) + f ′(A) · (B − A)]ψ〉. (4)

Eq. (2) follows by summing eqs. (3) and (4) over a CONS of
eigenvectors of A!



Properties of relative entropy
Let ρ and σ be density matrices on H. The relative entropy of ρ
with respect to σ is defined by

S(ρ||σ) := Tr(ρ(lnρ− lnσ)), (5)

assuming that ker(σ) ⊆ kerρ.
Crucial properties of S(ρ||σ) are:

I Positivity: S(ρ||σ) ≥ 0, as follows from inequality (2). (6)

I Convexity: S(ρ||σ) is jointly convex in ρ and σ.

Next, let T be a trace-preserving, completely positive map on the
convex set of density matrices on H. Then

S(ρ||σ) ≥ S(T (ρ)||T (σ)).

Exercise: Show that this inequality, due to Lindblad and Uhlmann,
implies Strong Subadditivity, (first established by Lieb and Ruskai):

S(ρ12) + S(ρ23)− S(ρ123)− S(ρ2) ≥ 0.



Jost’s warning

⇒ Existence of TD limit of entropy for quantum systems, etc.
Remark: S has a somewhat tantalizing homological interpretation (↗
Baudot & Bennequin).

I have learned the neat proof of (2) and the right way of introducing the
2nd Law of thermodynamics from Res Jost. He warned some of us that,
at a party, one should never start a conversation about

I Irreversibility and the arrow of time

I The interpretation of quantum mechanics

I Religious faith

because most people mistakenly believe that they know something about
these topics and get emotional if they are proven wrong or confused.



Goals of lecture

Indeed, there is much confusion – even among grown-up physicists
– about the origin of time’s arrow and of irreversible behavior; and
there is enormous confusion about the meaning of quantum
mechanics! Not having to make a career, anymore, I can afford to
get entangled with some of these confusions and to try to alleviate
them. In today’s lecture, I attempt to uncover origins of the arrow
of time. Irreversible behavior of a physical system can arise from:

I Choice of unlikely initial conditions far from thermal
equilibrium for a physical system; dispersive properties of its
environment (e.g., a macroscopic thermal reservoir).

I Time evolution of a “small system”, such as a particle, under
the influence of noise coming from its environment.

I System shedding energy and “information” into massless
modes that propagate to “∞”; entanglement of system with
degrees of freedom no longer accessible to observation.

I Time evolution of qm systems producing detectable events.



2. The Second Law of Thermodynamics – Clausius and
Carnot

Rudolf Clausius

Consider qm system, S , consisting of two nearly infinite thermal
reservoirs, R1 and R2, at temperatures T1 and T2, joined by a
thermal contact, C . The state of S is given by a density matrix Pt ;
the Hamiltonians of R1 and R2 are denoted by H1 and H2, resp.,
the Hamiltonian of C , which includes interaction terms between C
and R1 ∨ R2, by HC . For simplicity, state space of C is finite-dim.
Before C is opened, the state of S is the Gibbs state (L-v N), P ref :



Sketch of system

P ref := Ξ−1exp(−β1H1)⊗1C⊗exp(−β2H2), (βi := 1/kBTi ). (7)

Heat power of Ri , i = 1, 2:

Pi (t) := ”
d

dt
Tr(PtHi )” = −iTr(Pt [Hi ,HC ])



Positivity of entropy production

Assuming that R1 and R2 are filled with an ideal quantum gas or w.
black-body radiation and exploiting dispersive props. of reservoirs, one
proves that, in TD limit, Pt approaches a so-called non-equilibrium
stationary state (NESS), P∞, as t →∞. (See Dirren & F; Jaksic &
Pillet; F, Merkli & Ueltschi, ...) Consider relative entropy

S(Pt ||P ref ) = Tr(Pt(lnPt − lnP ref )

It is easy to see that

Ṡ(Pt ||P ref ) = β1P1(t) + β2P2(t) (8)

If Pt approaches a NESS P∞, which is time-translation-invariant, then

1. Ṡ(Pt ||P ref ) has a limit, σ∞, as t →∞, and it follows from (6) that

σ∞ ≥ 0, (positivity of entropy production) (9)



2nd Law according to Clausius

2. P1(t) has a limit, denoted −P∞, as t →∞, and

P1(t) + P2(t)→ 0, as t →∞. (10)

From Eqs. (8) through (10) we derive the 2nd Law in the
formulation of Clausius:

P∞ (
1

T2
− 1

T1
)︸ ︷︷ ︸

>0

≥ 0, (11)

i.e., heat flows from the warmer reservoir R1 to the colder one R2.
If atoms can flow through C , from R1 to R2, then

σ∞ ≡ P∞(β2 − β1)− I∞(β2µ2 − β1µ1) ≥ 0, (12)

where I∞ is the particle current flowing from R1 to R2, and µi is
the chemical potential of Ri .



Onsager, Ohm,..., and the 0th Law of Thermodynamics

Additional results:

I Return to Equilibrium (R, J-P, B-F-S,...); Isothermal Theorem
(AS-F) ⇒ e.g., ∆F = W , in quasi-static, isothermal proc.

I σ∞ > 0 (weak coupling; F-M-Ue), Onsager relations (J-O-P)

I Ohm’s Law (weak coupling; F-M-Ue): If T1 = T2 = T then

I∞ ≈ R−1 · (µ1 − µ2) (13)

I Universal current fluctuations; full counting statistics, etc.

A fundamental problem: 0th Law of TD
Existence of ∞ heat baths, local equilibration of macroscopic
systems? – “eth” versus many-body localization; (preliminary
results by Goldstein, Hara, Lebowitz, Tasaki, Tumulka, Zanghi;
DeRoeck, Huveneers,...)



Carnot’s formulation of the 2nd Law

Sadi Carnot

Replace C by a heat engine (e.g., a “quantum locomotive”), E ,
that extracts heat energy from R1, releases part of it into R2 (with
T1 > T2), and performs work; S = R1 ∨ E ∨ R2.
E is driven periodically in time, with period τ > 0. Thus, its
Hamiltonian, HE (t), is time-dependent, with period τ . Assuming
that R1 and R2 have good dispersive properties (ideal quantum
gases or black-body radiation) and applying Floquet theory, one
proves that the true state, Pt , of S approaches a time-periodic
state, Pasy (t), with period τ (Abou Salem & F,...); P ref as above.



The example of a steam locomotive

Let ∆Qi denote the heat energy extracted from Ri , ∆W the work
done by E , and ∆S the change in relat. entropy, during one cycle.



Carnot’s bound on the degree of efficiency of E

Pos. of rel. entr. & approach to time-periodic state (t →∞) ⇒

0 ≤ ∆S = −
∆Q↗1
T1

+
∆Q↙2
T2

, per cycle. (14)

Note that because of periodicity in t (period τ)

∆UE := Tr(Pasy (t + τ)HE (t + τ))− Tr(Pasy (t)HE (t)) = 0 (15)

By (14), (15) and 1st Law of TD,

η :=
∆W

∆Q↗1
=

∆Q↗1 −∆Q↙2

∆Q↗1
≤ T1 − T2

T1
≡ η Carnot (16)

= iff ∆S = 0

This is Carnot’s formulation of the 2nd Law.



3. Quantum Brownian Motion

Albert Einstein Marian Smoluchowski



Sketch of a model

Yellow disk is a tracer particle immersed in an (ideal) quantum
Bose gas, which it interacts with.
The small white disks are atoms of the quantum gas.
Tracer particle hops on a lattice Z3; Hilbert space of pure state
vectors is `2(Z3)⊗ C2; Hamiltonian given by

HP := −∆X

2M
⊗ 1 + 1⊗ σz , X ∈ Z3. (17)

Atoms in Bose gas are free, non-relativistic particles with mass
m (= 1

2)� M moving in R3. Interaction of Tracer particle with
atoms in Bose gas given by operator

HI := g
∑
j

W (X − xj), xj ∈ R3 : position of j th atom, (18)

W (x) a “suitable” 2× 2 -matrix-valued function on R3; (FGR!).



Accessible regimes

The density of the Bose gas is

ρ = ρ0g
−2, where ρ0 is a constant, g as in (18). (19)

Bogolyubov limit: g → 0. In this limit, Hamiltonian given by

H := HP + HBG + ν

∫
R3

dx W (X − x){b∗(x) + b(x)}, (20)

where ν :=
√
ρ0/2, and b∗(x) and b(x) are creation- and

annihilation operators satisfying the usual canonical commutation
relations.
Two regimes:
(A) ν small, M = ν−2M0, M0 const., (kinetic regime);
(B) ν large, with M = ν2M0, ν−2 ↔ ~, (mean-field regime)

We now study regime (A) and assume that Bose gas is in thermal
equilibrium at temperature T > 0: Quantum Brownian Motion!



Properties of model & results
Model is lattice-translation invariant. Let Zνt denote the effective
dynamics of state ρ of particle after having taken a trace over
degrees of freedom of Bose gas; (not a semi-group). Then

Zνt ≈ exp[t(−i adσz + ν2M)], (21)

where M is the (explicitly known) generator of a semigroup of
completely positive maps (related to linear Boltzmann eq. for
Wigner distr. of ρ). Using a cluster expansion of Zνt around the
right side of Eq. (21), we control the diffusion constant, D:

〈([X (t)− X (0)]2〉T ∼ D · t, as t →∞, (22)

with D ≈ (vν · tν)2/tν ∝ ν2; (vν ∝ ν2, tν ∝ ν−2).
Idea of proof of (22):

〈([X (t)− X (0)]2〉T =

∫ t

0
dτ

∫ t

0
dσ〈Ẋ (τ) · Ẋ (σ)〉T (23)



Diffusion and equipartition

If 〈Ẋ (τ) · Ẋ (σ)〉T decays integrably fast in |τ − σ| then right side of (23)
grows linearly in t, as t →∞. Int. decay (with decay rate of O(ν2)) can
be established starting from (21) and applying a cluster expansion in
time. Note that ‖Ẋ (t)‖ < O(ν2). (This is in marked contrast to ordinary
Brownian motion for which Ẋ (t) does not exist.). Furthermore,
distribution of functions of Ẋ (t) approaches Maxwell velocity distr.; i.e.,
the Equipartition Theorem holds.
These are the first and only results on the derivation of diffusive motion
from fundamental quantum dynamics, (De Roeck-F, De R-Kupiainen)!

Further Results:

1. Add a random potential to HP : At large disorder, D tends to 0,
as ν → 0; (F-S)

2. Add ext. force pushing tracer part. ⇒ Einstein relation, i.e.,
∂v/∂F |F=0 = βD, holds in simplified models! (De R-F-Schnelli)

3. Gas of tracer particles suspended in heat bath: NL Boltzmann eq.
with “good” properties, such as R to E; (F-Gang Zhou)



4. Hamiltonian Friction

“A moving body will come to rest as soon as the force pushing it
no longer acts on it in the manner necessary for its propulsion.”

(Aristotle)

Leonardo Da Vinci Guillaume Amontons

In this section we study friction in a model of a particle moving through
an ideal Bose gas, as described by the mean-field regime (B), M = ν2M0,
ν−2 ↔ ~ with ~→ 0, of the model (Z3 → R3, no int. deg. of freedom)
introduced in Sect. 3, at zero temperature, T = 0.



Mean-Field-, or Classical Limit

The limit ν−2 ≡ ~→ 0 corresponds to the classical (Hamiltonian)
limit of the quantum system:

(X ,−iν−2∇X )→ (X ,P), b(x)→ β(x), b∗(x)→ β(x),

where β is a complex-valued (c-number) field in H1(R3). The
phase space of the classical system is given by R6 ×H1(R3).
It’s symplectic structure is encoded into the Poisson brackets:

{β(x), β(y)} = iδ(x − y), {X i ,Pj} = −δij (24)

Other Poisson brackets = 0. The Hamilton functional is given by

Hcl(X ,P;β, β) :=

=
P2

2M0
+ 2

∫
R3

dx W (X − x)Reβ(x) +

∫
R3

dx (∇β)(x) · (∇β)(x) (25)



Equations of Motion and an Egorov-type Theorem

The equations of motion of the particle and of the Landau-
Ginzburg order parameter field β of the Bose gas are given by

Ẋt = M−10 Pt , Ṗt = F − 2

∫
R3

dx ∇W (Xt − x) Reβt(x), (26)

where F is an external force acting on the particle, and

i β̇t(x) = −∆βt(x) + W (Xt − x) (27)

Remark:
Canonical quantization of the Hamiltonian system (24)-(25), with
~ = ν−2, reproduces the quantum system we started from.

One can prove a Egorov-type theorem (see F-K-S): Quantization
and time-evolution commute, up to errors of order ν−2!
This means that insights into the dynamics of the classical system
reveal features of the qm dynamics in a regime of large values of ν.



Friction by Emission of Cherenkov Radiation
We first study “stationary” solus. of eqs. (26) and (27); i.e., we set

Ṗt = 0 and βt(x) = γv (x − vt − X0), with Xt = X0 + vt.

Eq. (26) then tells us that the external force F must be cancelled
by the second term on the right side of (26), which describes a
friction force arising from the particle’s emission of Cherenkov
radiation of sound waves into the Bose gas.

Result: If W is smooth and of short range then there is a positive
constant Fmax <∞ (max. strength of ext. force) such that:

1. For |F | < Fmax there are two solus. propagating with speeds
v− (stable solu.) and v+ > v− (“run-away” solu.).

2. For |F | > Fmax , stationary solutions do not exist.



F = 0, v∗ = 0⇒ Aristotle was right!

Next, we study what happens to the particle when F = 0. Well, as
long as speed of particle is larger than speed of sound, v∗, in Bose
gas it keeps loosing energy into sound waves, which, thanks to the
dispersive properties of the gas, propagate outwards to ∞. For an
ideal Bose gas, v∗= 0. In this case, particle will come to rest, as
time t tends to ∞. Here is a theorem:

Theorem (see F-GZ)
In an ideal Bose gas, if W is smooth and of short range then, given an
arbitrary δ ∈ (0, δ∗), with δ∗ ≈ 0.66, there exists an ε = ε(δ) > 0 such

that, for initial conditions with ‖(1 + |x |2)
3
2 β0(x)‖ < ε, |P0| < ε:

|Pt | ≤ O(t−
1
2−δ), ‖βt −∆−1W (Xt − ·)‖∞ → 0, as t →∞.

Choosing δ > 1
2 , then Xt → X∞, as t →∞, with |X∞| <∞.

Remark: Similar results for interacting Bose gases with v∗ > 0, and in
the kinetic limit (↗ Bauerschmidt-De Roeck-F).



5. L’insoutenable irréversibilité de l’évolution quantique

“Alle Naturwissenschaft ist auf die Voraussetzung der vollständigen
kausalen Verknüpfung jeglichen Geschehens begründet.” –
Albert Einstein (Zurich, 1910)

Well, is it?

Answering this question from the point of view of Quantum Mechanics is
the goal of this part of my lecture. I propose to discuss the fundamental
irreversibility (that many physicists find “unbearable”) of the evolution of
isolated, but open physical systems, as featured by Quantum Mechanics.

A. Einstein W. Heisenberg N. Bohr



How do we describe an isolated physical system?

It is the irreversibility of quantum-mechanical time evolution that mirrors
the basic difference between Past and Future:

I Past = a factual history of events

I Future = a branching tree of potentialities

We start with a

Pedestrian Definition of an Isolated Physical System

According to quantum theory, an isolated physical system, S , is specified
by the following data:

1. A list, OS , of directly observable/detectable physical properties
represented by abstract self-adjoint operators X̂ ;

2. self-adjoint operators, X (t), on a Hilbert space H representing
props. X̂ ∈ OS at time t, with X (t) = U(s, t)X (s)U(t, s), where
U(t, s), t, s ∈ R, is a unitary propagator on H describing
time-evolution of operators in the Heisenberg picture.



Properties potentially observable at times ≥ t

Let E≥t ⊆ B(H) denote the von Neumann algebra generated by all
the operators {X (s)|X̂ ∈ OS , s ≥ t}. By definition

B(H) ⊇ E≥t ⊇ E≥s ⊇ {X (s)|X̂ ∈ OS}, for s > t. (28)

6= ← loss of access to information (!)

Loss of access to information is a fundamental feature of relat.
local quantum theory with massless particles, such as QED
(↗Buchholz and Roberts): “ 2nd Law of the quantum-mech.
measurement process”!
Suppose that S has been prepared in a state ρ at a time t0. For
t > t0, we set

ρt(A) := ρ(A), ∀A ∈ E≥t .

By (28) and the phenomenon of entanglement, ρt can be a mixed
state on E≥t even if ρ might be a pure state on E≥t0 .



The Fundamental Axiom of Observations/Measurements

Given that S has been prepared in a state ρ at some time t0, it
may happen that, around some later time t, the state ρt on the
algebra E≥t is very close to an incoherent superposition of eigen-
states of an operator X (t), for some X̂ ∈ OS ; (more precisely, that
“X (t) is a function of the density matrix rep. ρt”.) If this happens
then – Axiom –

1. X̂ is observed/measured around time t;

2. X̂ then has a value ξ ∈ σ(X̂ );

3. to improve prediction of future events, the state ρt must then
be replaced by the state ρt,ξ defined by

ρt,ξ(A) :=
ρ(Πξ(t)AΠξ(t))

ρ(Πξ(t))
, ∀A ∈ E≥t , (29)

where Πξ(t) is spect. proj. of X (t) corresp. to the ev. ξ.



“ETH” and Irreversibility

Obviously, eqs. (28) and (29) are quantum-theoretical expressions of a
fundamental irreversibility: Whenever an event that amounts to the
detection of a physical quantity X̂ ∈ OS happens in a system S its state
does not evolve according to a Schrödinger eq., but according to eq.
(29). Pictorially:

Along “histories” – whenever events happen – quantities such as energy
or angular momentum are not conserved.



... n. The irreversible evolution of the Universe

Five basic enigmas:
I. The universe expands (rather than contracts).
II. There appears to be a basic asymmetry in the content of matter

and of anti-matter in the universe.
III. Existence of Dark Matter: p � ρ.
IV. Existence of Dark Energy :p = ρ.
V. Ex. tiny, highly homogeneous intergalactic magnetic fields.
Suspicion: There must be a common root for these phenomena!
Possible explanation: Besides gµν , introduce complex axion field, ϕ, with
renormalizable gϕ4- interaction. Write

ϕ = eσ+iθ, with

σ̇ : “chemical potential” tuning matter – anti-matter asym;
θ̇ : couples to helicity, A ∧ FA, of very heavy abelian gauge field, A, conj.
to jB−L; σ ↔ Dark Matter; θ ↔ Dark Energy.

Initial inflation caused by relaxation of initial configuration, ϕ0, of axion

towards equilibrium point in field space. Etc., (see blackboard!).



The unbearable arrow of time we can’t escape from:

40 years!

And this creates an “immense feeling of liberty”:

the past: a history of facts
↓

the future: a “garden of forking paths” (Borges)

Thank you!


