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Quantum'Theory'somewhat%comparable%to%
construction%of%Babylonian'tower,%with%similar%
consequences%…!%
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Claims:'

(1) Without%information'loss'and%entanglement%retrieval%of%
information%from%quantum%systems%by%measurements/
observations%would%be%impossible;%no%info.%paradoxes!%

(2) Operator%algebras%(including%type%III1%factors!)%have%been%
invented%to%be%used%in%QT,%rather%than%to%be%ignored!%
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1. Introduction – Some basic questions and claims
Much confusion and disorientation surround the Foundations of Quantum
Mechanics – so much thereof that most mathematicians do not want to
touch this subject. There are many prejudices that are wrong or, to say
the least, inaccurate and confusing. To mention but one example: We
tend to teach to our students that the time-evolution of states of a
system is described, in quantum mechanics, by the Schrödinger equation,
and that the Schrödinger picture and the Heisenberg picture are
equivalent. Well, nothing could be farther from the truth when
considering systems accessible to observations! – Etc. Not having to
make a career, anymore, I consider it to be my duty to attempt to
alleviate some of this confusion – I believe I have made a little progress.



Introduction – ctd., some fundamental problems

In our courses, we tend to describe quantum-mechanical systems,
S , as pairs of a Hilbert space, HS , and of a propagator,
(U(t, s))t,s2R, describing time evolution. Unfortunately, these data
hardly encode any interesting (invariant) information about S that
would enable one to draw conclusions about its physical properties,
and they give the erroneous impression that quantum theory might
be a deterministic theory.

!Fundamental questions and problems:
I What do we have to add to the usual formalism of quantum

theory to arrive at a mathematical structure which – through
interpretation – can be given physical meaning, without the
intervention of “observers” (at places where they obviously do
not play any role)?

I What is the origin of the intrinsic randomness of quantum
theory, given the deterministic character of Schrödinger
equation? Does it di↵er from classical randomness?



Introduction - ctd.

I What is the meaning of states, “observables” and events
(% R. Haag) in quantum mechanics? Do we understand the
time evolution of states of quantum systems, and what does it
have to do with solutions of the Schrödinger equation?

I What do we mean by an isolated system in quantum
mechanics, and why is this an important notion*? How can
one prepare a system in a prescribed state?
*Because only for isolated systems a general description of

the Heisenberg time evolution of “observables” is available!

Goal of Lecture
Sketch a theory of events and of direct and indirect observations/
measurements in quantum mechanics based on two new ideas:
• Loss of access to information, & entanglement with “lost”
(inaccessible) degrees of freedom.

• Specification of list of “instruments” serving to observe events.



Metaphor for the ”mysterious holistic aspects” of
Quantum Mechanics

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!QM!is!QM&as&QM!and!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!everything!else!is!everything!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!else!
!
!
!
!
“The!one!thing!to!say!about!art!is!that!it!is!one!thing.!
Art!is!art&as&art!and!everything!else!is!everything!
else.”!(Ad!Reinhardt)!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!



2. Direct (projective, or von Neumann) Measurements

In classical Hamiltonian mechanics, observable physical quantities of an
isolated system, S , are described by real, continuous functions on the
phase space, �, of S . Their time evolution is governed by the usual
Hamiltonian equations of motion formulated in terms of Poisson brackets.
Heisenberg’s 1925 paper on quantum-theoretical “Umdeutung” contains
revolutionary ideas, further elaborated upon by Dirac, of how to replace
the basic concepts of Hamiltonian mechanics by new ones leading to a
quantum-mechanical description of physical systems:

I Physical quantities of a system S are represented by “symmetric
matrices”, bF , (s.a. linear operators acting on a Hilbert space, HS)

I The Poisson bracket, {F ,G}, of two phys. quantities, F and G , in a
classical description of S is to be replaced, in QM, by

i~�1[bF , bG ],

where bF and bG are the s.a. operators representing the physical
quantities corresponding (in classical mechanics) to F and G .



Definition of quantum-mechanical systems

I The Heisenberg time evolution of an operator bF representing a
physical quantity of an isolated systems S is governed by

d

dt
bF (t) = i [bH, bF (t)],

where t 2 R is time, and bH(= bH(t)) is the Hamilton operator of S .

Definition of isolated physical systems in quantum mechanics

Physical quantities of an isolated physical system S are represented by
selfadjoint operators acting on a Hilbert space HS ; all states of S are
density matrices on HS . (Generalization: ! C⇤-algebras!)

(I) We define E
[t,s] to be the von Neumann algebra generated by all

physical quantities of an isolated physical system S potentially
measurable/observable in the time interval [t, s], with t < s. In
simple cases,

E
[t,s] := {linear combinations of

Y

i

bXi (ti )|t < ti < s, 8i}, (1)



Definition of qm systems – ctd.

where bX (t) is the s.a. operator representing a physical quantity bX
potentially measurable/obs. at time t, in the Heisenberg picture.

It is natural to require that E
[t,s] ✓ E

[t0,s0] whenever t 0  t
and s 0 � s. We set

E�t :=
_

s:s>t

E
[t,s], Z�t = center of E�t , E :=

_

t<s

E
[t,s], (2)

where (·) indicates closure in the weak topology on B(HS). An event
potentially detectable in [t, s] is an orthogonal projection ⇧ 2 E

[t,s].

(II) An “instrument” serving to detect events in S (e.g., reading the
value of a physical quantity of S) is an abstract abelian C⇤-algebra
IS . In quantum mechanics, in order to characterize the information
on an isolated system S that can potentially be retrieved, one must
specify the list,

OS := {I i
S}i2LS ,

of all instruments of S .



Definition of qm systems – ctd.

Remarks.

1. For simplicity, we assume that there are only finitely many
instruments, and that all instruments are finite-dimensional. They
are then generated by finite families of mutually orthogonal
projections: IS = {⇧↵}↵2IS , where IS is a finite set of indices.

2. The notion of an “instrument” is not intrinsic. It depends on the
“observer”, in the sense that the nature and amount of information
available on a physical system S depends on an “observer’s”
abilities (e.g., on the experimental equipment he/she can use) to
retrieve information about S – which may change with time.

3. Very often, the number of instruments available to an “observer” to
detect events in S tends to be very small. There are many
interesting examples of mesoscopic systems for which the set of
instruments consists of the spectral projections of a single
self-adjoint operator, bX , corresponding, e.g., to clicks of some
detectors; (example given below).



Definition of qm systems – ctd.

(III) For every time t, there is a (usually reducible) representation, ⇡t , of
all instruments {I i

S}i2LS as families of commuting projections
contained in E�t :

⇡t : IS = {⇧↵}↵2IS 7! {⇧↵(t) 2 E�t}↵2IS (3)

The set of ops. in E�t representing instruments of S is denoted by OS(t).

Key idea: Loss of access to information

B(H) ◆ E ◆ E�t � E�s ◆ OS(s), for any s > t (4)

6= I .L.!
(I .L. = “Information Loss”!)

Examples of (generally non-autonomous) systems exhibiting “Information

Loss”: “Small systems” (e.g., an n-level atom) temporarily interacting

with a quantized wave medium releasing signals that become inaccessible

to further observation after some time; (type-I1 situation!)



Information Loss and Huyghens Principle
More fundamentally, “Information Loss” always arises in QFT’s with
massless particles, such as QED, as shown by Buchholz and Roberts;
(type-III

1

situation): (4) () Information Loss and Entanglement with
inaccessible degrees of freedom) is then a consequence of Huyghens’
Principle for the electromagnetic field:

world line of J. F. %
All operators in E�t are localized in V+

Pt
,Pt = (t,~x). The Figure shows

that E�t
0

properly contains E�t , for t > t
0

, and that

(E�t)
0 \ E�t

0

� Aout

O



Example of a concrete (mesoscopic) qm system with only
one instrument:

�
!conduc'ng!“T*channel”!ending!in!detectors!DL$and!DR!
and!in!an!electron!gun,!quantum!dot,!P�P’,!with!P$
binding!up!to!N$electrons.!



Example – ctd.

S = E _ (P _ P 0)

E contains all measuring devices, including the two e�- detectors,
DL and DR . The only directly observable quantity in this system is
the click of either DL or DR : A detector clicks i↵ an e� is entering
it. Mathematically, this quantity is represented by the linear
operator

bX = 1P ⌦
✓

1 0
0 �1

◆

E

, with P = P _ P 0, (5)

which has the (infinitely degenerate) eigenvalues ⇠ = ±1, with

⇠ = +1$ DL clicks, ⇠ = �1$ DR clicks.

OS consists of all bd. functions of bX .



Direct (projective) measurements

Next, we should clarify why “Information Loss”, in the sense of Eq.
(4), is a fundamental property of an isolated system S featuring
events; i.e., why (4) might be a basic ingredient of a quantum
theory of events and experiments. The answer is found in the
phenomenon of entanglement (with “lost”/inaccessible degrees of
freedom), and it yields a theory of “direct (projective)
measurements”!
(In the next section, we will explain what information can be
reconstructed from long sequences of projective measurements of
just a few quantities: Theory of “indirect measurements”.)
Suppose S has been prepared in a state ⇢ at some time t

0

; (% th.
of state prep.!): ⇢ may be given by a unit ray in HS , i.e., it may be
a pure state. We define ⇢t to be the state on the algebra E�t

obtained by restricting ⇢ to E�t :

⇢t(A) := ⇢(A), 8A 2 E�t . (6)



Direct measurements

By (4) (“Information Loss”), ⇢t may be a mixed state even if ⇢ is
pure on B(HS). This is what entanglement is all about! It is then
possible that ⇢t is very close (in norm) to an incoherent superpos.
of eigenstates of projections forming an instrument; e.g., to one
formed by the spectral projections of a s.a. operator rep. a
physical quantity, in which case this quantity has an objective
value at time t. Thus, it is “Information Loss” that makes it
possible to gain information about S by allowing one to measure
the value of some physical quantity! One may want to call this the

“Second Law of Quantum Measurement Theory”

Let us make this story a little more precise! Given a von
Neumann algebra M and a state ⇢ on M, we define the adjoint
action of an operator X 2M on ⇢ by setting

adX (⇢)(A) := ⇢([X ,A]), 8A 2M.



A little algebra
We define the “centralizer” of a state ⇢ on M by

C⇢ := {X 2M|adX (⇢) = 0}.

Note that ⇢ is a trace on C⇢. Let Z⇢ denote the center of C⇢.
Let X (t) = X ⇤(t) 2 E�t be the operator representing a physical quantity
of S at time t, with X (t) =

Pn
↵=1

⇠↵⇧↵(t), (spect. dec. of X (t)). Then
this quantity has an objective value at time t i↵ X (t) 2 Z⇢t (· · · ) )

⇢t(A) =
nX

↵=1

⇢(⇧↵(t)A⇧↵(t)), 8A 2 E�t

Let {⇧↵(t)}↵2IS be a representation in E�t of an instrument IS , and let

⇧? := 1�
X

↵2IS

⇧↵(t).

Suppose that ⇧↵(t) 2 Z⇢t (or C⇢t ), 8↵ 2 IS , and ⇧? 2 Z⇢t (or C⇢t ) Then

⇢t(A) =
X

↵2IS

⇢(⇧↵(t)A⇧↵(t)) + ⇢(⇧?A⇧?), 8A 2 E�t (7)



Fundamental axiom of the quantum-mechanical
measurement process

This means that ⇢t is an incoherent superposition of states corresponding
to events ⇧↵(t),↵ 2 IS , and of a state ⇢t(⇧?(·)⇧?) not detectable by
the instrument IS . (Amendment: Eq. (7) must hold only up to small
errors!)

Axiom:

1. Given that S has been prepared in a state ⇢, the first event after the
preparation of S can be detected as soon as Eq. (7) holds for some
instrument IS 2 OS , provided all projections ⇧↵(t),↵ 2 IS , and the
projection ⇧? belong to the center, Z⇢t , of C⇢t/(..., Z�t , of E�t).

In simple prose, Eq. (7) then implies that if ⇢t could be represented
by a density matrix, Pt , on E�t then, on the range of Pt ,
⇧↵(t),↵ 2 IS , and ⇧? are functions of Pt , (up to multiplication by
elements in the center of E�t)

2. The probability to detect the event ⇧↵(t),↵ 2 IS , is given by Born’s
Rule

Prob{⇧↵(t) is detected} = ⇢(⇧↵(t)), (8)



Fundamental axiom – ctd.

and ⇢(⇧?) is the probability that, at time t, the instrument
IS does not detect anything it can identify.

3. If the event corresponding to the projection ⇧↵(t) is detected
then the state to be used for predictions after time t should
be taken to be

⇢t,↵(A) :=
⇢(⇧↵(t)A⇧↵(t))

⇢(⇧↵(t))
, 8A 2 E�t ,

and if the instrument does not detect anything it can identify
then the state

⇢?t (A) :=
⇢(⇧? A⇧?)

⇢(⇧?)
, 8A 2 E�t ,

should be used.

A mathematically precise formulation of this Axiom lies beyond the
scope of this lecture – debate desirable!



A “Garden of Forking Paths” – ETH Approach to QM

Item 3 of the Axiom is sometimes referred to as the “collapse of the wave
function”, an unfortunate expression, because the “collapse” meant
here is not a physical process, but the passage to a conditional expectation.

  E:"“events”"(proj."measnts.),""T:"“trees”"(of"states),""""""""""""""""""""""""""""""""""""""
H:"“histories”";"probs."of"“histories”"are"det."by"QM"



Projective%measurements%–%summary%

(1) Given%the%initial'state'of%the%system%S,!time'evolution,%
{U(t,s)},%determines%which%pot.%prop.%%%%%%%%%%%%%%%%%%%will%\irst%
become%empirical%(objective,%measureable),%and%around%
which%time!%

(2) Measnt.%of%%%%%%%%%is%independent'of%an%earlier'measnt.%of%%%%%%%%%
iff%%%%%%%%%%becomes%empirical/objective%after'time%of%measnt.%
of%%%%%%%%%,%no%matter%what%the%outcome%of%measnt.%of%%%%%%%was,%%
i.e.,%for'all'states'''''''''''''','j='1,'…','k,'with%%%%%%%%%%%%%%%%as%in%(9).%

'''''''Decoherence,'“consistent'histories”.'

(3)  Time%of%measurement:''Time,%%t*',%of%observation%of%%%%%%%%%
%%%%%%%det.%by%minimizing%in%%t%%the%fu.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%where%%%%%%%%%''''''''''is%the%“cond.'exp.”'of%%%%%%%%%%%%%onto'
(4)%General%theory%of%repeated%measurements:%“POVM’s”.%%
%%%%%%%
'

'

'

'

%



Projective%measurements%–%summary%

(5)%A%state%is%called%“passive”'iff%the%center,%%%%%%%%%,%of%the%%
%%%%%%%centralizer%of%%%%%%%%%is%timeFindependent.%There%are%plenty%of%%
%%%%%%%examples%of%passive%states:%
•  %%%%%%%Equilibrium%(KMS)%states%at%positive%temperature%in%%
%%%%%%%%%%%QFT;%KMS%states%of%a%QFT%in%the%spaceatime%of%a%static%
%%%%%%%%%%%black%hole.%
•  %%%%%%%Perturbations%of%the%vacuum%state%by%coherent%clouds%of%%
%%%%%%%%%%%massless%particles%(e.g.,%of%photons).%
Passive%states%have%the%property%that%they%do%not%admit'any'
projective'measurements/observations%of%any%physical%quantities%–%
besides%measurements%of%timeFindependent'parameters%
characteristic%of%the%state%in%question,%e.g.,%the%temperature%or%a%
chemical%potential%of%an%equilibrium%state,%which,%indeed,%are%
timeaindependent%quantities.%
We'have'to'learn'more'about'which'states'and'which'types'of'time'

evolutions'of'isolated'systems'admit'nonFtrivial'measurements!'



3. Indirect (Kraus) measurements

Assume, OS consists of a single finite-dimensional, commutative
algebra with spectrum XS = a finite set of points, {1, ...,N}. In
the concrete model considered in Section 2, OS consists of all
functions of the operator

bX = 1P ⌦
✓

1 0
0 �1

◆

E

,

hence XS = {�1,+1}.
With each point ⇠ 2 XS we associate an orthogonal projection
⇡⇠ 2 OS , and all operators in OS are linear combinations of the
⇡⇠’s. We suppose that successive projective measurements/
observations of quantities corresponding to operators in OS at
times ⇡ t

1

, ...,⇡ tk have yielded a sequence of measurement
results,

⇠(k) := {⇠
1

, ..., ⇠k} 2 X⇥k
S . (9)



Kraus measurements – ctd.

We assume that S has been prepared in the state ⇢ before
measnts./observations of quantities corresponding to ops. in OS

have started. QM predicts that the probability (frequency) of a
measurement protocol ⇠(k) is given by

µ⇢(⇠1, ..., ⇠k) = Tr(⇡⇠k (tk) · · · ⇡⇠1(t1) P ⇡⇠
1

(t
1

) · · · ⇡⇠k (tk)), (10)

where P is the density matrix coresponding to the state ⇢; (LSW -
formula).Obviously,

X

⇠k2XS

µ⇢(⇠
(k�1), ⇠k) = µ⇢(⇠

(k�1)), µ⇢(;) = 1. (11)

It follows that µ⇢ extends to a probability measure on the space, ⌅,
of infinitely long measurement protocols; (equipped with the
�-algebra of cylinder sets).



Kraus measurements – ctd.

Let OS [1] be the algebra of functions in L1(⌅, [µ⇢]) that do not
depend on any finite set of measurement outcomes: “Observables
at infinity”; (can be identified with E1!)

Let ⌅[1] be the spectrum of OS [1]. Then the measure µ⇢ can be
decomposed into a convex combination of “extremal measures”:

µ⇢(·) =
Z

⌅[1]

dP(⌫)µ⇢(·|⌫). (12)

The measures µ⇢(·|⌫) come from states, ⇢⌫ , of S ; for di↵erent
points ⌫, they are mutually singular. Thus, a very long
measurement protocol ⇠(k) determines a point ⌫ 2 ⌅[1] (called a
“fact”) with an error likelihood that tends to 0, as k !1, and ⌫
then determines the values of all “observables at infinity”.



Exchangeable measures

If the order in which the measurement results ⇠
1

, ..., ⇠k are obtained does
not matter, for any k , (i.e., if successive measurements commute with
each other) then µ⇢(⇠�(1), ..., ⇠�(k)) is independent of the permutation �,
8� and all k . Then Eq. (12) follows from de Finetti’s theorem, which
also says that the measures µ⇢(·|⌫) are product measures:

µ⇢(⇠1, ..., ⇠k |⌫) =
kY

j=1

p(⇠j |⌫), (13)

with p(⇠|⌫) � 0 and
P

⇠ p(⇠|⌫) = 1.

A simple example of this situation is a model of the system described in

Section 2, for which OS = hX i and XS = {�1,+1}. (Assuming that the

electrons moving through the T -shaped wires are entirely independent of

each other and that the detectors DL and DR return to the same state

after each measurement, and before the next electron travels through the

T -shaped wires, one concludes that the measures µ⇢ are exchangeable.)



Exchangeable measures – ctd.
Let ⌫ 2 {0, ...,N} =: ⌅[1] be the number of e� in the quantum
dot P . Let us assume, for the time being, that ⌫ is time-
independent, i.e., we consider a non-demolition measurement of ⌫.
Because µ⇢ is exchangeable, we have that

µ⇢(⇠
(k)) =

NX

⌫=1

P⇢(⌫)µ(⇠
(k)|⌫), (14)

with

µ⇢(⇠
(k)|⌫) =

kY

j=1

p(⇠j |⌫),

where:
P⇢(⌫): Born probability for ⌫ e� bound by P , as predicted by ⇢;
p(⇠|⌫): QM probability for an e� in the “T -channel” to be
scattered into D⇠, ⇠ = �1(R),+1(L), given that there are ⌫
electrons bound to P .



Frequencies of “events”

An example of an “observable at infinity” that is usually well defined is
the “asymptotic frequency”, p(⇠|·), of an event ⇠ 2 XS . We define

f (l,l+k)
⇠ (⇠) :=

1

k

0

@
l+kX

j=l+1

�⇠,⇠j

1

A , with
X

⇠

f (l,l+k)
⇠ (⇠) = 1. (15)

One expects that, for “most” states ⇢,
(1) The Law of Large Numbers

limk!1f (l,l+k)
⇠ (⇠) =: p(⇠|⌫), (16)

for some point (or “fact”) ⌫ 2 ⌅[1], holds. This is
indeed the case for the simple model described above.

Hypothesis: We assume that ⌅[1] = {0, ...,N}, N <1, with

min⌫
1

6=⌫
2

|p(⇠|⌫
1

)� p(⇠|⌫
2

)| �  > 0, for some ⇠ 2 XS (17)



“q-hypothesis testing”

With each ⌫ 2 ⌅[1] we associate a subset

⌅⌫(l , k ; ") := {⇠| |f (l ,l+k)
⇠ (⇠)� p(⇠|⌫)| < ✏k}, (18)

where
✏k ! 0,

p
k ✏k !1, as k !1

Main Results:
(2) Disjointness: It follows from Hyp. (17) and definition (18) that, for k
so large that ✏k < /2,

⌅⌫
1

(l , k ; ") \ ⌅⌫
2

(l , k ; ") = ;, ⌫
1

6= ⌫
2

(3) Central Limit Theorem: ) Under suitable hypotheses
on the states ⇢,

µ⇢

 
[

⌫

⌅⌫(l , k ; ")

!
! 1, k !1



hypothesis testing – ctd.

(4) Theorem of Boltzmann-Sanov ) If the measures µ⇢ are
exchangeable one has that

µ
⇣
⌅⌫

1

(l , k ; ")|⌫
2

)  C e�k�(⌫
1

k⌫
2

)

where � is a relative entropy.
(5) Theorem of Maassen and Kümmerer ) In the simple model

described above, the state of S , restricted to B(HP)
approaches a state with a fixed number of electrons in the
quantum dot P (“purification”) – for any initial state.

The theory of indirect measurements outlined here only concerns

measurements of time-independent “facts”, which correspond to points

in ⌅[1] (non-demolition measurements!). However, most interesting

“facts” depend on time! Thus, one must ask how one can acquire

information concerning time-dependent facts indirectly, through repeated,

successive direct measnts. of quantities corresponding to operators in OS .



We consider the simple model introduced above. We assume that
electrons can enter into, or tunnel out of the component P of the
quantum dot P , i.e., the number of electrons, ⌫, in P may slowly vary in
time. We define

⌅⌫
1

,...,⌫r (k ; ") := {⇠ | |f (`k�k,`k)
L (⇠)� p(L|⌫`)| < "k , 8` = 1, ..., r}

and
P⇢(⌫1, ..., ⌫r ) := µ⇢(⌅⌫

1

,...,⌫r (k ; "))

(6) Theorem on quantum jumps: For each r <1,

X

⌫
1

,...,⌫r

P⇢(⌫1, ..., ⌫r )! 1,

in the limit where the temporal variation of the number of
electrons in P tends to 0 and k !1.

Remark. In suitable limiting regimes, P⇢(⌫1, ..., ⌫r ) is the path-space
measure of a Markov chain with state space = {1, ...,N}.



4. Conclusions – discussion

�In all my films, I have been faithful 
to these suspension points in the 
conclusions. Besides, I have never  
written the word �END� on the 
screen.�  
(Federico Fellini) 

“Everyone)wants)to)understand)art)(physics).)
Why)don’t)we)try)to)understand)the)song)of)a)
bird?)Why)do)we)love)the)night,)the)flowers,))
everything)around)us,)without)trying)to)
understand)them?)But)in)the)case)of)a)
pain@ng)(result.in.physics),)people)think)they)
have)to)understand.”)(Pablo)Picasso))
))))))))))).
.....Thanks for your attantion! 

......
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1. J. Fröhlich and B. Schubnel, ”Do we understand quantum
mechanics – finally?”, in: Wolfgang Reiter et al. (eds.), Erwin
Schrödinger – 50 years after, Zurich: European Math. Soc. Publ.
2013, pages 37 - 84.
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