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Quantum Theory somewhat comparable to
construction of Babylonian tower, with similar
consequences ...!

Claims:

(1) Without information loss and entanglement retrieval of
information from quantum systems by measurements/
observations would be impossible; no info. paradoxes!

(2) Operator algebras (including type III, factors!) have been
invented to be used in QT, rather than to be ignored!
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Introduction — Some basic questions and claims

Much confusion and disorientation surround the Foundations of Quantum
Mechanics — so much thereof that most mathematicians do not want to
touch this subject. There are many prejudices that are wrong or, to say
the least, inaccurate and confusing. To mention but one example: We
tend to teach to our students that the time-evolution of states of a
system is described, in quantum mechanics, by the Schrodinger equation,
and that the Schrodinger picture and the Heisenberg picture are
equivalent. Well, nothing could be farther from the truth when
considering systems accessible to observations! — Etc. Not having to
make a career, anymore, | consider it to be my duty to attempt to
alleviate some of this confusion — | believe | have made a little progress.




Introduction — ctd., some fundamental problems

In our courses, we tend to describe quantum-mechanical systems,
S, as pairs of a Hilbert space, Hs, and of a propagator,
(U(t,s))¢,scr, describing time evolution. Unfortunately, these data
hardly encode any interesting (invariant) information about S that
would enable one to draw conclusions about its physical properties,
and they give the erroneous impression that quantum theory might
be a deterministic theory.

—Fundamental questions and problems:

» What do we have to add to the usual formalism of quantum
theory to arrive at a mathematical structure which — through
interpretation — can be given physical meaning, without the
intervention of “observers” (at places where they obviously do
not play any role)?

» What is the origin of the intrinsic randomness of quantum
theory, given the deterministic character of Schrodinger
equation? Does it differ from classical randomness?



Introduction - ctd.

» What is the meaning of states, “observables” and events
(,* R. Haag) in quantum mechanics? Do we understand the
time evolution of states of quantum systems, and what does it
have to do with solutions of the Schrodinger equation?

» What do we mean by an isolated system in quantum
mechanics, and why is this an important notion*? How can

one prepare a system in a prescribed state?
*Because only for isolated systems a general description of

the Heisenberg time evolution of “observables” is available!

Goal of Lecture

Sketch a theory of events and of direct and indirect observations/

measurements in quantum mechanics based on two new ideas:

e Loss of access to information, & entanglement with “lost”
(inaccessible) degrees of freedom.

e Specification of list of “instruments” serving to observe events.



Metaphor for the " mysterious holistic aspects” of
Quantum Mechanics

QM is QM-as-QM and
everything else is everything
else

(

“The one thing to say about art is that it is one thing.
Art is art-as-art and everything else is everything
else.” (Ad Reinhardt)



2. Direct (projective, or von Neumann) Measurements

In classical Hamiltonian mechanics, observable physical quantities of an
isolated system, S, are described by real, continuous functions on the
phase space, I', of S. Their time evolution is governed by the usual
Hamiltonian equations of motion formulated in terms of Poisson brackets.
Heisenberg's 1925 paper on quantum-theoretical “Umdeutung” contains
revolutionary ideas, further elaborated upon by Dirac, of how to replace
the basic concepts of Hamiltonian mechanics by new ones leading to a
quantum-mechanical description of physical systems:

> Physical quantities of a system S are represented by “symmetric
matrices”, F, (s.a. linear operators acting on a Hilbert space, Hs)

> The Poisson bracket, {F, G}, of two phys. quantities, F and G, in a
classical description of S is to be replaced, in QM, by

ih~'[F, G],

where F and G are the s.a. operators representing the physical
quantities corresponding (in classical mechanics) to F and G.



Definition of quantum-mechanical systems

» The Heisenberg time evolution of an operator F representing a
physical quantity of an isolated systems S is governed by

d~ S
SF () = iR, P

where t € R is time, and Fl(: I/-\I(t)) is the Hamilton operator of S.
Definition of isolated physical systems in quantum mechanics

Physical quantities of an isolated physical system S are represented by
selfadjoint operators acting on a Hilbert space Hs; all states of S are
density matrices on Hs. (Generalization: — C*-algebras!)

() We define &, 5 to be the von Neumann algebra generated by all
physical quantities of an isolated physical system S potentially
measurable/observable in the time interval [t, s], with t < s. In
simple cases,

&lt,s) = {linear combinations of H)?,-(t,-)|t <t <sVi}, (1)

1



Definition of gm systems — ctd.

(1

where )A((t) is the s.a. operator representing a physical quantity X
potentially measurable/obs. at time t, in the Heisenberg picture.

It is natural to require that &, g € Ep,]  Whenever t' < 't
and s’ > s. We set

Exv=\/ Erg. Zoe=centerof &, £:=\/ g (2)
sis>t t<s

where (+) indicates closure in the weak topology on B(Hs). An event
potentially detectable in [t, s] is an orthogonal projection I € &}, .

An “instrument” serving to detect events in S (e.g., reading the
value of a physical quantity of S) is an abstract abelian C*-algebra
Ts. In quantum mechanics, in order to characterize the information
on an isolated system S that can potentially be retrieved, one must
specify the list, ‘

Os == {Zs}iecs,

of all instruments of S.



Definition of gm systems — ctd.

Remarks.

1. For simplicity, we assume that there are only finitely many
instruments, and that all instruments are finite-dimensional. They
are then generated by finite families of mutually orthogonal
projections: Zs = {[, }nels, Where Is is a finite set of indices.

2. The notion of an “instrument” is not intrinsic. It depends on the
“observer”, in the sense that the nature and amount of information
available on a physical system S depends on an “observer's”
abilities (e.g., on the experimental equipment he/she can use) to
retrieve information about S — which may change with time.

3. Very often, the number of instruments available to an “observer” to
detect events in S tends to be very small. There are many
interesting examples of mesoscopic systems for which the set of
instruments consists of the spectral projections of a single
self-adjoint operator, X, corresponding, e.g., to clicks of some
detectors; (example given below).



Definition of gm systems — ctd.

(111 For every time t, there is a (usually reducible) representation, 7, of
all instruments {Z¢}ic.. as families of commuting projections
contained in £>4:

Tt - Is = {I'Ia}ae,s — {ﬂa(t) S 521’}04615 (3)

The set of ops. in >+ representing instruments of S is denoted by Os(t).
Key idea: Loss of access to information

\ B(H) D2 E D& D Ess 2 Os(s),  forany s> t‘ (4)
A [.L.]
(1.L. = “Information Loss"!)

Examples of (generally non-autonomous) systems exhibiting “Information
Loss": “Small systems” (e.g., an n-level atom) temporarily interacting
with a quantized wave medium releasing signals that become inaccessible
to further observation after some time; (type-/, situation!)



Information Loss and Huyghens Principle
More fundamentally, “Information Loss" always arises in QFT's with
massless particles, such as QED, as shown by Buchholz and Roberts;
(type-111 situation): (4) (= Information Loss and Entanglement with
inaccessible degrees of freedom) is then a consequence of Huyghens’
Principle for the electromagnetic field:

world line of J. F. 7
All operators in £ are localized in V , P. = (t,X). The Figure shows
that &4, properly contains £, for t > ty, and that

(E>e)' NExy D AL



Example of a concrete (mesoscopic) gm system with only
one instrument:

conducting “T-channel” ending in detectors D, and D,
and in an electron gun, quantum dot, PV P’, with P
binding up to N electrons.




Example — ctd.

S=EV(PVP)

E contains all measuring devices, including the two e™- detectors,
D; and Dgr. The only directly observable quantity in this system is
the click of either D; or Dg: A detector clicks iff an e~ is entering
it. Mathematically, this quantity is represented by the linear
operator

< 1 0 B
X—1P®<0 _1>E, with P =PV P, (5)

which has the (infinitely degenerate) eigenvalues £ = +1, with
& =41 < Dy clicks, & = —1 ¢ Dg clicks.

Os consists of all bd. functions of X.



Direct (projective) measurements

Next, we should clarify why “Information Loss”, in the sense of Eq.
(4), is a fundamental property of an isolated system S featuring
events; i.e., why (4) might be a basic ingredient of a quantum
theory of events and experiments. The answer is found in the
phenomenon of entanglement (with “lost” /inaccessible degrees of
freedom), and it yields a theory of “direct (projective)
measurements”!

(In the next section, we will explain what information can be
reconstructed from long sequences of projective measurements of
just a few quantities: Theory of “indirect measurements”.)
Suppose S has been prepared in a state p at some time tp; ( th.
of state prep.!): p may be given by a unit ray in Hg, i.e., it may be
a pure state. We define p; to be the state on the algebra &>
obtained by restricting p to £>¢:

pi(A) = p(A), VA€ Exn. (6)



Direct measurements

By (4) (“Information Loss”), p; may be a mixed state even if p is
pure on B(Hs). This is what entanglement is all about! It is then
possible that p; is very close (in norm) to an incoherent superpos.
of eigenstates of projections forming an instrument; e.g., to one
formed by the spectral projections of a s.a. operator rep. a
physical quantity, in which case this quantity has an objective
value at time t. Thus, it is “Information Loss” that makes it
possible to gain information about S by allowing one to measure
the value of some physical quantity! One may want to call this the

“Second Law of Quantum Measurement Theory”

Let us make this story a little more precise! Given a von
Neumann algebra M and a state p on M, we define the adjoint
action of an operator X € M on p by setting

adx(p)(A) = p([X. Al), VA€ M.



A little algebra
We define the ‘“centralizer” of a state p on M by

C, = {X € Madx(p) = 0}.

Note that p is a trace on C,,. Let Z, denote the center of C,,.

Let X(t) = X*(t) € E>¢ be the operator representing a physical quantity
of S at time t, with X(t) = Y./ _; £&aMa(t), (spect. dec. of X(t)). Then
this quantity has an objective value at time t iff X(t) € Z,, (---) =

Zp o(t), VAEEs:

Let {MN,(t)}aecss be a representation in £>; of an instrument Zs, and let
ti=1- Z Mo (t).
a€ls
Suppose that M,(t) € Z,.(or C,,),Va € Is, and N+ € Z,,(or C,,) Then
pe(A) =D p(Ma(H)AMa(1)) + p(M-AME),  VAEEs,  (7)

a€ls



Fundamental axiom of the quantum-mechanical

measurement process

This means that p; is an incoherent superposition of states corresponding
to events M,(t), a € Is, and of a state p,(M+(-)MT*) not detectable by
the instrument Zs. (Amendment: Eq. (7) must hold only up to small
errors!)

Axiom:

1. Given that S has been prepared in a state p, the first event after the
preparation of S can be detected as soon as Eq. (7) holds for some
instrument Zs € Og, provided all projections M, (t),a € Is, and the
projection 1 belong to the center, Z,,, of Cp,/(..., Z>¢, of Ex¢).

In simple prose, Eq. (7) then implies that if p; could be represented
by a density matrix, P, on £>; then, on the range of P,

M. (t), a € Is, and M+ are functions of P;, (up to multiplication by
elements in the center of £>;)

2. The probability to detect the event IN,(t),« € Is, is given by Born's
Rule
Prob{MN,(t) is detected} = p(MN,(t)), (8)



Fundamental axiom — ctd.

and p(MN+) is the probability that, at time t, the instrument
Ts does not detect anything it can identify.

3. If the event corresponding to the projection M,(t) is detected
then the state to be used for predictions after time t should
be taken to be

p(Ma(t) ATla(t))
p(Ma(t))

and if the instrument does not detect anything it can identify
then the state

pra(A) = VA € Ey,

i p(I'ILAI‘IL)
AAi=————7 VA
Pt ( ) p(I—IJ_) ’ € gZh
should be used.

A mathematically precise formulation of this Axiom lies beyond the
scope of this lecture — debate desirable!



A “Garden of Forking Paths” — ETH Approach to QM

Item 3 of the Axiom is sometimes referred to as the “collapse of the wave
function”, an unfortunate expression, because the “collapse” meant
here is not a physical process, but the passage to a conditional expectation.

E: “events” (proj. measnts.), T: “trees” (of states),
H: “histories” ; probs. of “histories” are det. by QM



Projective measurements - summary

(1) Given the initial state of the system S, time evolution,
{U(t,s)}, determines which pot. prop. a € Qg will first
become empirical (objective, measureable), and around
which time!

(2) Measnt. of ay is independent of an earlier measnt. of a;
iff az becomes empirical/objective after time of measnt.
of a; , no matter what the outcome of measnt. of a; was,
i.e., for all states p?l(-) ,J=1, ..., k, with p?l(-) as in (9).

—> Decoherence, “consistent histories”.

(3) Time of measurement: Time, t., of observation of a
det. by minimizing in t the fu. ||@(t)|ranger, — F(F) - 2|,
where F(P,) - z is the “cond. exp.” of a(t) onto Z;.

(4) General theory of repeated measurements: “POVM’s”.




Projective measurements — summary

(5) A state is called “passive” iff the center, 2, , of the
centralizer of &, is time-independent. There are plenty of
examples of passive states:

. Equilibrium (KMS) states at positive temperature in
QFT; KMS states of a QFT in the space-time of a static
black hole.

. Perturbations of the vacuum state by coherent clouds of

massless particles (e.g., of photons).

Passive states have the property that they do not admit any
projective measurements/observations of any physical quantities -
besides measurements of time-independent parameters
characteristic of the state in question, e.g., the temperature or a
chemical potential of an equilibrium state, which, indeed, are
time-independent quantities.

We have to learn more about which states and which types of time
evolutions of isolated systems admit non-trivial measurements! .




3. Indirect (Kraus) measurements

Assume, Og consists of a single finite-dimensional, commutative
algebra with spectrum X’s = a finite set of points, {1,...,N}. In
the concrete model considered in Section 2, Os consists of all
functions of the operator

S 1 0

hence Xs = {—1,+1}.

With each point £ € X5 we associate an orthogonal projection
m¢ € Og, and all operators in Og are linear combinations of the
me's. We suppose that successive projective measurements/
observations of quantities corresponding to operators in Og at
times =~ t1, ..., tx have yielded a sequence of measurement
results,

é(k) = {51) "'76/{} € XSXk (9)



Kraus measurements — ctd.

We assume that S has been prepared in the state p before
measnts. /observations of quantities corresponding to ops. in Os
have started. QM predicts that the probability (frequency) of a
measurement protocol §(k) is given by

Nﬂ(glv "‘7€k) = Tr(ﬂ—ﬁk(tk) to 7rEl(tl) P 71'51([‘1) T Wﬁk(tk))’ (10)

where P is the density matrix coresponding to the state p; (LSW -
formula).Obviously,

S €V 60 = (€ Y), (@) =1 (11)

EkEXs

It follows that 11, extends to a probability measure on the space, =,
of infinitely long measurement protocols; (equipped with the
o-algebra of cylinder sets).



Kraus measurements — ctd.

Let Os[oo] be the algebra of functions in L°°(=, [11,]) that do not
depend on any finite set of measurement outcomes: “Observables
at infinity”; (can be identified with £,.!)

Let =[oo] be the spectrum of Os[oo]. Then the measure p, can be
decomposed into a convex combination of “extremal measures”:

)= [ PO, (12)

The measures j1,(-|v) come from states, p,, of S; for different
points v, they are mutually singular. Thus, a very long
measurement protocol £(X) determines a point v € =[oo] (called a
“fact”) with an error likelihood that tends to 0, as k — oo, and v
then determines the values of all “observables at infinity”.



Exchangeable measures

If the order in which the measurement results &1, ..., &k are obtained does
not matter, for any k, (i.e., if successive measurements commute with
each other) then 1,(&,(1), -+, §o(k)) is independent of the permutation o,
Vo and all k. Then Eq. (12) follows from de Finetti’s theorem, which
also says that the measures p,(-|v) are product measures:

k

ﬂp(gla"'a€k|y):Hp(gj‘y)v (13)

Jj=1

with p(€[v) = 0 and Y p(¢lv) = 1.

A simple example of this situation is a model of the system described in
Section 2, for which Os = (X) and Xs = {—1,+1}. (Assuming that the
electrons moving through the T-shaped wires are entirely independent of
each other and that the detectors D; and Dg return to the same state
after each measurement, and before the next electron travels through the
T-shaped wires, one concludes that the measures y,, are exchangeable.)



Exchangeable measures — ctd.

Let v € {0,..., N} =: =[oc] be the number of e~ in the quantum
dot P. Let us assume, for the time being, that v is time-
independent, i.e., we consider a non-demolition measurement of v.
Because p, is exchangeable, we have that

N
po(€H) = P ()u(P), (14)
v=1
with
k
1p(§¥Nw) = [T p(&lv),
j=1
where:

P,(v): Born probability for v e~ bound by #, as predicted by p;
p(&|v): QM probability for an e~ in the “T-channel” to be
scattered into D¢, & = —1(R),+1(L), given that there are v
electrons bound to P.



Frequencies of “events”

An example of an “observable at infinity” that is usually well defined is
the “asymptotic frequency”, p(&|-), of an event £ € Xs. We define

I+k
1 . I,1+k
fg(/7/+k)(§) — ’ E 557& , with E fg( + )(ﬁ) =1 (15)
j=I+1 13

One expects that, for “most” states p,
(1) The Law of Large Numbers

limy oo £(€) =2 pE]), (16)

for some point (or “fact”) v € Z[oc], holds. This is
indeed the case for the simple model described above.

Hypothesis: We assume that =[oc] = {0, ..., N}, N < oo, with

miny, 2, |p(§|v1) — p(€|r2)| > k >0, for some £ € Xs (17)



“g-hypothesis testing”

With each v € =[0o] we associate a subset

=, kie) =& [F") — plelv) < e}, (18)
where
ek—>0,ﬁek—>oo, as k = o

Main Results:
(2) Disjointness: It follows from Hyp. (17) and definition (18) that, for k
so large that ¢, < K/2,

Zu(Lkie)N=Z,(Lke) =0, 1nn#w

(3) Central Limit Theorem: = Under suitable hypotheses
on the states p,

1, (U =.(/, k;5)> -1, k—ooo

v




hypothesis testing — ctd.

(4) Theorem of Boltzmann-Sanov = If the measures i, are
exchangeable one has that

1 (Ew(/a kig)|v) < C e kol

where ¢ is a relative entropy.

(5) Theorem of Maassen and Kiimmerer = In the simple model
described above, the state of S, restricted to B(Hp)
approaches a state with a fixed number of electrons in the
quantum dot P (“purification”) — for any initial state.

The theory of indirect measurements outlined here only concerns
measurements of time-independent “facts”, which correspond to points
in =[oc] (non-demolition measurements!). However, most interesting
“facts” depend on time! Thus, one must ask how one can acquire
information concerning time-dependent facts indirectly, through repeated,
successive direct measnts. of quantities corresponding to operators in Os.



We consider the simple model introduced above. We assume that
electrons can enter into, or tunnel out of the component P of the
quantum dot P, i.e., the number of electrons, v, in P may slowly vary in
time. We define

S (kie) = L€ | IF9TRE) — p(Llve)| < e VE =1,y 1}

and
PP(Vl’ X Vf) = MP(EV11-~7Vr(k;§))

(6) Theorem on quantum jumps: For each r < oo,

Z Pp(l/l, ey Vr) —1,
Vlyeonylr

in the limit where the temporal variation of the number of
electrons in P tends to 0 and k — oo.

Remark. In suitable limiting regimes, P,(v1, ..., ;) is the path-space
measure of a Markov chain with state space = {1, ..., N}.



4. Conclusions — discussion
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“In all my films, | have been faithful
to these suspension points in the
conclusions. Besides, | have never
written the word ‘END’ on the
screen.”

(Federico Fellini)

“Everyone wants to understand art (physics).
Why don’t we try to understand the song of a
bird? Why do we love the night, the flowers,
everything around us, without trying to
understand them? But in the case of a
painting (result in physics), people think they
have to understand.” (Pablo Picasso)

Thanks for your attantion!
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