Chiral anomalies.

Jürg Fröhlich (Dated: September 21, 2016.)

1. Preliminaries.

Let M be a 2n-dimensional Eculidean or Minkowski space; and let

$$\{\gamma^0, \gamma^1, \dots, \gamma^{2n-1}\} \subset M_{2^n}(\mathbb{C})$$

be the corresponding representation of the Clifford algebra $\text{Cl}_{1,2n-1}(\mathbb{R})$. It is customary to define the 2n+1-th gamma matrix γ as

$$\gamma = i\gamma^0 \cdots \gamma^{2n-1} \ .$$

If M is four dimensional, γ is often denoted as γ^5 . The matrix γ anticommutes with every γ^{μ} , $\mu \in \{0, 2n-1\}$. We adopt the convention of summing over repeated indices; in addition an index can be lowered or raised using the metric. The Dirac operator D is defined, in local coordinates, by

$$D = i\gamma^{\mu}(\partial_{\mu} - iA_{\mu}) ,$$

where *A* is a (external) gauge field. A Fermi field of mass *m* is denoted by $\psi(x)$, $x \in M$, and its adjoint is $\bar{\psi}(x) = \psi^*(x)\gamma_0$. The field $\psi(x)$ is a 2^n component spinor field that obeys the Dirac equation

$$(2) D\psi = 0.$$

There are two currents associated with the Dirac equation (2):

(3)
$$\mathcal{J}^{\mu} = \bar{\psi} \gamma^{\mu} \psi , \qquad \text{(standard current)};$$

(4)
$$\tilde{\mathcal{J}}^{\mu} = \bar{\psi} \gamma^{\mu} \gamma \psi$$
, (chiral or axial current).

The conservation of the standard current comes from the global U(1) invariance of the action for the Fermi and gauge field; in particular, $\partial_{\mu} \mathcal{J}^{\mu} = 0$ and $\partial_{\mu} \tilde{\mathcal{J}}^{\mu} \propto m$ when A = 0 (considered as an external field). Therefore if the Fermi field is massless, the chiral current is also conserved: $\partial_{\mu} \mathcal{J}^{\mu} = 0 = \partial_{\mu} \tilde{\mathcal{J}}^{\mu}$ for m = 0 and A = 0. Let us denote by

(5)
$$Q = \int \mathscr{J}^0(\underline{x}, t) d\underline{x} ,$$

(6)
$$\tilde{Q} = \int \tilde{\mathscr{J}}^0(\underline{x}, t) d\underline{x}$$

the two conserved charges.

Remark 1.1. It is possible to use a coordinate free language to define the currents and charges. Let I^{μ} be a conserved current, $\partial_{\mu}I^{\mu}=0$. The 2n-1 dual form associated to I^{μ} is defined by

$$i = i_{\mu_1\cdots\mu_{2n-1}} \mathrm{d} x^{\mu_1} \wedge \cdots \wedge \mathrm{d} x^{\mu_{2n-1}} ,$$

with $i_{\mu_1\cdots\mu_{2n-1}} = \varepsilon_{\mu_1\cdots\mu_{2n}}I^{\mu_{2n}}$. The conservation $\partial_{\mu}I^{\mu} = 0$ is true iff $\mathrm{d}i = 0$. In addition, $\mathrm{d}i = 0$ yields $i = \mathrm{d}\beta$, with β a 2n-2 form (the potential of the conserved current). The conserved charge Q can be written as the integral

$$Q = \int_{\Sigma} i$$

of the form i in the space hypersurface Σ .

2.
$$n = 1$$
.

By Poincaré's lemma, $\partial_{\mu} \mathcal{J}^{\mu} = 0 \Leftrightarrow di = 0 \Rightarrow i = \frac{Q}{2\pi} d\varphi$, where $\frac{Q}{2\pi}$ is a normalization factor and φ a scalar field. Therefore

(7)
$$\mathscr{J}^{\mu} = \frac{Q}{2\pi} \varepsilon^{\mu\nu} \partial_{\nu} \varphi .$$

In addition, when n=1 and m=0 the following identity is satisfied: $\tilde{\mathcal{J}}^{\mu} = \varepsilon^{\mu\nu} \mathcal{J}_{\nu}$. It follows that

(8)
$$\tilde{\mathcal{J}}^{\mu} = \frac{Q}{2\pi} \partial^{\mu} \varphi .$$

If $F_{\mu\nu} = 0$, then $\partial_{\mu} \tilde{\mathcal{J}}^{\mu} = 0$; hence $\Box \varphi = 0$, and its action is that of a free massless field

(9)
$$S(\varphi) = \frac{1}{4\pi} \int \partial_{\mu} \varphi \partial^{\mu} \varphi dx.$$

The conjugate momentum field $\pi(x)$ is defined in the usual fashion

(10)
$$\pi(x) = \frac{\delta S(\varphi)}{\delta \dot{\varphi}} = \frac{1}{2\pi} \dot{\varphi} = -\frac{1}{Q} \mathcal{J}^{1}(x) .$$

Quantizing the field and its conjugate momentum canonically, we obtain the well known equal-time commutation relation

(11)
$$[\pi(\underline{x},t),\varphi(\underline{y},t)] = -i\delta(\underline{x}-\underline{y}) \qquad (\hbar=1=c) .$$

The axial current is given by $\tilde{\mathcal{J}}^0 = Q\pi$, $\tilde{\mathcal{J}}^1 = \frac{Q}{2\pi}\varphi'$; and yields the anomalous commutator

(12)
$$[\mathcal{J}^0(\underline{x},t), \tilde{\mathcal{J}}^0(y,t)] = i\frac{Q^2}{2\pi}\delta'(\underline{x}-\underline{y}).$$

Let us now introduce the left and right currents $\mathscr{J}_{\ell/r}^{\mu} = \mathscr{J}^{\mu} \pm \mathscr{\tilde{J}}^{\mu}$. The corresponding left and right chiral spinors $\psi_{\ell/r} = \frac{(1\mp\gamma)}{2}\psi$ satisfy

(13)
$$\psi_{\ell/r}^{(q)}(\underline{x},t) = : \exp 2\pi i \frac{q}{Q} \int_{\underline{x}}^{\infty} \mathscr{J}_{\ell/r}^{1}(\underline{y},t) d\underline{y} :$$

$$= : \exp \pi i q \left[\pm \varphi(\underline{x},t) + \int_{x}^{\infty} \pi(\underline{y},t) d\underline{y} \right] :$$

where q is a parameter yet to be defined. Using the commutation relations (11), it is possible to calculate the commutator between the charge operator $\hat{Q} = \frac{Q}{2\pi} \int \varphi'(\underline{x}, t) d\underline{x}$ and the chiral field operator

$$[\hat{Q}, \psi_{\ell/r}(x)] = Qq \psi_{\ell/r}(x) .$$

It is therefore necessary that Qq = -1, for the electron to be observable. In addition,

(15)
$$\psi_{\ell}(\underline{x},t)\psi_{\ell}(y,t) = e^{i\pi q^2}\psi_{\ell}(y,t)\psi_{\ell}(\underline{x},t);$$

hence q = 1 to preserve the anticommutation relations.

In the presence of an external electromagnetic field $E = \varepsilon^{\mu\nu} \partial_{\mu} A_{\nu}$ the action reads

$$S(\varphi) \to S(\varphi, A) = S(\varphi) + \int \mathcal{J}^{\mu}(x) A_{\mu}(x) d^2x = \frac{1}{4\pi} \int [\partial_{\mu} \varphi \partial^{\mu} \varphi + 2Q\varphi E] d^2x$$
.

The corresponding equation of motion is

$$\Box \varphi = QE = \frac{2\pi}{Q} \partial_{\mu} \tilde{\mathcal{J}}^{\mu} ;$$

and it yields the form of the chiral anomaly in 1 + 1 dimensions. It is also possible to define a conserved (but *not* gauge invariant) current

(17)
$$\hat{\mathcal{J}}^{\mu}_{\ell/r} = \mathcal{J}^{\mu}_{\ell/r} \mp \frac{Q^2}{2\pi} \varepsilon^{\mu\nu} A_{\nu} .$$

In fact, since the standard current is conserved, $\partial_{\mu} \hat{J}^{\mu}_{\ell/r} = \partial_{\mu} \tilde{J}^{\mu} \mp \frac{Q^{2}}{2\pi} E = 0$. The corresponding charge $\int \hat{J}^{0}_{\ell/r}(\underline{x},t) d\underline{x}$ is gauge invariant and conserved in time.

3. Arbitrary $n \in \mathbb{N}_*$.

In arbitrary dimensions it is not possible to bosonize the Fermi fields as it was done in (13). Therefore we introduce two gauge fields: the vector A_{μ} as before, and the *axial* vector Z_{μ} . The Dirac operator becomes

(18)
$$D_{A,Z} = i\gamma^{\mu}(\partial_{\mu} - iA_{\mu} - iZ_{\mu}\gamma) .$$

The corresponding action for the Fermi fields is

(19)
$$S(\bar{\psi}, \psi; A, Z) = \int \bar{\psi}(x) D_{A,Z} \psi(x) d^{2n} x,$$

that yields an effective action

(20)
$$e^{iS_{\text{eff}}(A,Z)} = \text{const.} \int_{\text{Berezin}} e^{iS(\bar{\psi},\psi;A,Z)} \mathcal{D}\psi \mathcal{D}\bar{\psi} = \det_{\text{ren}} D_{A,Z}.$$

The constant in (20) is chosen such that $S_{\rm eff}(0,0)=0$. The functional integral in (20) is equivalent to a renormalized determinant with the condition $\det_{\rm ren} D_{0,0}=1$. The correlation functions with respect to the effective action are calculated in the usual way:

(21)
$$\langle \mathcal{J}^{\mu_1}(x_1) \cdots \tilde{\mathcal{J}}^{\nu_1}(y_1) \cdots \rangle_{A,Z}^{\text{corr}} = (-i) \frac{\delta}{\delta A_{\mu_1}(x_1)} \cdots (-i) \frac{\delta}{\delta Z_{\nu_1}(y_1)} \cdots S_{\text{eff}}(A,Z) .$$

Now if we perform a gauge and axial transformation

$$(22) A_{\mu} \mapsto A_{\mu} + \partial_{\mu} \chi ,$$

(23)
$$Z_{\mu} \mapsto Z_{\mu} + \partial_{\mu} \alpha ,$$

a transformation is induced on the Fermi fields:

(24)
$$\psi \mapsto \psi_{\chi,\alpha} = e^{i(\chi + \alpha \gamma)} \psi$$

(25)
$$\bar{\psi} \mapsto \bar{\psi}_{\chi,\alpha} = \bar{\psi} e^{i(-\chi + \alpha \gamma)} .$$

Therefore, at the classical level $S(\bar{\psi}, \psi; A, Z) = S(\bar{\psi}_{\chi,\alpha}, \psi_{\chi,\alpha}; A + d\chi, Z + d\alpha)$. The quantum anomalies emerge if the Fermi fields' transformation has a nontrivial Jacobian: the latter modifies the Berezin integral, thus breaking the classical invariance. More explicitly, we get

(26)
$$\mathcal{D}\psi\mathcal{D}\bar{\psi} = (J^{-1})\mathcal{D}\psi_{\chi,\alpha}\mathcal{D}\bar{\psi}_{\chi,\alpha} ,$$

where, at least formally,

(27)
$$J = \exp[2i \operatorname{Tr}(\alpha \gamma)].$$

To regularize the Jacobian, it is possible to proceed as follows. For simplicity, let us consider the concrete case of a compact toric manifold $M = \mathbb{T}^{2n}$ with imaginary time. Then the Dirac operator has discrete spectrum $\sigma(D_{A,0}) = \{i\lambda_m \in i\mathbb{R}, m \in \mathbb{Z}\}$, with the λ_m symmetrically distributed with respect to zero. It follows that

(28)
$$\operatorname{Tr}(\alpha\gamma) = \sum_{m \in \mathbb{Z}} \int \psi_m^*(x) (\alpha\gamma\psi_m)(x) \mathrm{d}^{2n} x = \lim_{M \to \infty} \sum_{m = -M}^M e^{-\frac{\lambda_m^2}{M^2}} \int \psi_m^*(x) (\alpha\gamma\psi_m)(x) \mathrm{d}^{2n} x \ .$$

We suppose that $[\alpha \gamma, D_A]_+ = 0$; and denote $M^{-2} \equiv \beta$, $D_A \equiv D$. Then

$$\begin{split} \frac{d}{d\beta} \operatorname{Tr}(\alpha \gamma e^{\beta D^2}) &= \operatorname{Tr}(\alpha \gamma e^{\beta D^2} D \cdot D) = \operatorname{Tr}(D\alpha \gamma e^{\beta D^2} D) \\ &= -\operatorname{Tr}(\alpha \gamma D e^{\beta D^2} D) = -\frac{d}{d\beta} \operatorname{Tr}(\alpha \gamma e^{\beta D^2}) \;, \end{split}$$

therefore $\text{Tr}(\alpha \gamma e^{\beta D^2})$ is independent of β . In addition, $\text{Tr}(\alpha \gamma e^{D_A^2/M^2}) = -\int \alpha(x) \mathcal{A}(x) d^{2n}x$, with \mathcal{A} the index density. For n=2, \mathcal{A} has the following form:

(29)
$$\mathcal{A}(x) = -\frac{1}{32\pi^2} F_{\mu\nu}(x) \underbrace{\tilde{F}^{\mu\nu}(x)}_{\mathcal{E}^{\mu\nu\lambda\delta} F_{\lambda\delta}} = -\frac{1}{8\pi^2} \mathbf{E}(x) \cdot \mathbf{B}(x) .$$

In general dimensions, it is a polynomial of degree n. The index density is calculated by means of a Dyson expansion, in which all but one term vanish either because of the properties of the gamma matrices or in the limit $\beta \to 0$. The only surviving term is the one of degree n, that yields the result.

Now, it is possible to compute the transformed effective action.

(30)
$$S_{\text{eff}}(A + d\chi, Z + d\alpha) = S_{\text{eff}}(A, Z) + 2i \int \alpha(x) \mathcal{A}(x) d^{2n}x.$$

By means of equation (30), the chiral anomaly is obtained in a straightforward way:

(31)
$$\partial_{\mu} \langle \mathcal{J}^{\mu}(x) \rangle_{A,Z} = -i \frac{\delta \mathcal{S}_{\text{eff}}(A + d\chi, Z + d\alpha)}{\delta \chi(x)} \bigg|_{\chi,\alpha=0} = 0 ,$$

(32)
$$\partial_{\mu} \langle \tilde{\mathcal{J}}^{\mu}(x) \rangle_{A,Z} = -i \frac{\delta S_{\text{eff}}(A + d\chi, Z + d\alpha)}{\delta \alpha(x)} \bigg|_{\chi,\alpha=0} = 2 \mathcal{A}(x) .$$

Alternatively, it is possible to compute the effective action perturbatively:

$$S_{\text{eff}}(A, Z) = \left[\text{tr}(\ln D_{A, Z}) \right]_{\text{renormalized}}$$

$$= \underset{(\ln(1+x)=\sum_{j}\frac{(-1)^{j+1}}{n}x^{j})}{=} \sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} \underbrace{\gamma^{\mu}A_{\mu}/\gamma^{\mu}\gamma Z_{\mu}} \underbrace{1} \underbrace{j}$$

For n=2, the relevant diagram is the one with j=3 vertices (proportional to $\alpha \mathbf{E} \cdot \mathbf{B}$). Finally, we review how to compute the anomalous commutators. Let $\mathscr{J}_{\ell/r}^{\mu}$ be defined by (17), and define the new currents

(33)
$$\hat{\mathcal{J}}_{\ell/r}^{\mu}(\cdot) = \mathcal{J}_{\ell/r}^{\mu}(\cdot) \mp 2\omega^{\mu}(\cdot;A) ,$$

where ω is the Chern-Simons form. Then $\partial_{\mu} \hat{\mathcal{J}}^{\mu}_{\ell/r} = 0$, and the corresponding conserved charges are gauge invariant. However, the currents $\hat{\mathcal{J}}^{\mu}_{\ell/r}$ themselves *are not* gauge invariant.

In n=2, ω is a 3-form that has the form $\omega=A\wedge dA$ (for an Abelian gauge theory). Therefore $d\omega=dA\wedge dA=F\wedge F$, that does not vanish since F is a 2-form. The Hodge dual $*(F\wedge F)$ of $F\wedge F$ is the scalar $F_{\mu\nu}\tilde{F}^{\mu\nu}$ that we already encountered in the definition of \mathcal{A} , see equation (29).

Let us consider the general framework of an Hamiltonian field theory of free massless chiral fermions in an external electromagnetic field. Denote by $\mathscr V$ the affine space of vector potentials A, and $\mathscr F_A$ the corresponding Fock space. The Hilbert bundle $\mathscr H$ is the bundle with base space $\mathscr V$ and fibre $\mathscr F_A$ over $A \in \mathscr V$. On $\mathscr V$, the gauge transformations χ induce orbits of vector potentials. Let $g^{\chi}(x) = e^{i\chi(x)}$, and $\mathcal G = \{g^{\chi}(x)\}$ be the group of time-independent gauge transformations. It is possible to give a projective representation U of $\mathcal G$ on $\mathscr H$ that satisfies

(34)
$$U(g_1)U(g_2) = \lambda(g_1, g_2)U(g_1g_2),$$

with $\lambda(g_1, g_2)$ a phase factor. The generator of $U(e^{i\chi})$ is denoted by $\int \chi(\underline{x})G(\underline{x})d\underline{x}$. $G(\underline{x})$ has the following form for left-handed fermions:

(35)
$$G(\underline{x}) = -i \underline{\nabla} \frac{\delta}{\delta A(x)} + \mathscr{J}_{\ell}^{0}(\underline{x}, A) .$$

Locally, it is always possible to use $\hat{\mathcal{J}}_{\ell}^{0}$ instead of \mathcal{J}_{ℓ}^{0} , obtaining

(36)
$$\hat{G}(x) = -i \underline{\nabla} \frac{\delta}{\delta A(x)} + \hat{\mathcal{J}}_{\ell}^{0}(\underline{x}, A) .$$

Since G is an abelian group, $[\hat{G}(\underline{x}), \hat{G}(\underline{y})] = 0$. This gives the anomalous commutator by a direct computation

$$(37) \quad 0 = [\hat{G}(\underline{x}), \hat{G}(\underline{y})] = [\mathcal{J}_{\ell}^{0}(\underline{x}), \mathcal{J}_{\ell}^{0}(\underline{y})] - 2i\underline{\nabla}\frac{\delta}{\delta A(x)}\omega^{0}(\underline{y}, A) + 2i\underline{\nabla}\frac{\delta}{\delta A(y)}\omega^{0}(\underline{x}, A) \; .$$

For n = 1, equation (37) takes the well-known form

(38)
$$[\mathscr{J}_{\ell/r}^{0}(\underline{x}), \mathscr{J}_{\ell/r}^{0}(y)] = \pm \frac{i}{4\pi^{2}} (B(\underline{x}) \cdot \underline{\nabla}) \delta(\underline{x} - y) .$$