
Università degli Studi Roma Tre – Dipartimento di Matematica e Fisica – Corso di Laurea in Matematica

Appunti del corso IN110 Algoritmi e Strutture Dati

5 - Rappresentazione delle informazioni

Prof. Marco Liverani

(liverani@mat.uniroma3.it - http://www.mat.uniroma3.it/users/liverani/IN110)

Sommario

- Cenni sulla numerazione in base 2, in base 8 ed in base 16
- Organizzazione della memoria del calcolatore in bit e byte
- Convenzioni per la rappresentazione di numeri interi, razionali, caratteri alfanumerici
- Il codice ASCII
- I principali tipi di dato
- I puntatori

Numerazione in base 10

- Nella vita di tutti i giorni siamo abituati a rappresentare i numeri in base 10
- Ogni numero viene rappresentato fattorizzandolo in multipli di potenze di 10:

$$365_{10} = 3 \times 10^2 + 6 \times 10^1 + 5 \times 10^0$$

- In questo tipo di numerazione utilizziamo 10 simboli convenzionali (l'*alfabeto* della nostra codifica): 0, 1, 2, 3, ..., 9
- Utilizzando un criterio simile possiamo scegliere di rappresentare i numeri con basi diverse da 10, ad esempio la base 2 o la base 16

Numerazione in base 2

- La macchina opera con una logica *binaria* che riflette direttamente la struttura fisica delle sue componenti
- Nella numerazione in «base n» si possono usare le cifre da 0 a n-1: nella notazione binaria si usano quindi le sole cifre 0 e 1
- Nella numerazione binaria ogni numero viene rappresentato fattorizzandolo in multipli di **potenze di 2**:

$$365_{10} = 256 + 64 + 32 + 8 + 4 + 1$$

$$= 1 \times 2^{8} + 0 \times 2^{7} + 1 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 101101101_{2}$$

Numerazione in base 16

- In **base 16** (numerazione **esadecimale**) possiamo utilizzare 16 simboli: {0, 1, 2, ..., 9, A, B, ..., F}
- «A» rappresenta il numero 10 (A₁₆=10₁₀), «B» l'11, «C» il 12, «D» il 13, «E» il 14 ed «F» il 15
- Esempi:
 - o il numero 16_{10} è rappresentato da 10_{16} , ossia

$$16_{10} = 1 \times 16^1 + 0 \times 16^0 = 10_{16}$$

 $_{
m o}$ il numero 1234 $_{
m 10}$ è rappresentato da 4D2 $_{
m 16}$, ossia, tenendo conto che 13 $_{
m 10}$ =D $_{
m 16}$

$$1234_{10} = 4 \times 16^2 + 13 \times 16^1 + 2 \times 16^0 = 4D2_{16}$$

Informazioni numeriche

1

- La memoria della macchina è un "casellario" molto grande suddiviso in locazioni di memoria, numerate progressivamente mediante degli indirizzi di memoria che ne identificano univocamente la posizione
- Una cifra binaria è chiamata bit (una contrazione di «binary digit»)
- Ogni locazione è composta da un insieme di 8 bit che compongono un byte
- Con un solo byte è possibile rappresentare piccoli numeri interi (compresi tra 0_{10} =000000002 e 255 $_{10}$ =1111111112)
- Per rappresentare numeri più grandi la macchina aggrega più locazioni di memoria contigue:
 - o con 2 byte è possibile rappresentare numeri binari di 16 cifre (16 bit), compresi tra 0 e 65.535
 - o con 4 byte è possibile rappresentare numeri binari di 32 cifre (32 bit) compresi tra 0 e 4.294.967.295
 - o con 8 byte (64 bit) è possibile rappresentare numeri compresi fra 0 e 18 miliardi di miliardi, ...

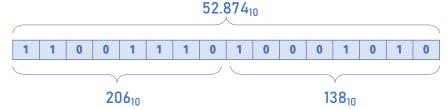
Informazioni numeriche

2

- Per rappresentare numeri con il segno (interi relativi) si adotta la *convenzione* di considerare il primo bit come rappresentante del segno: ad esempio 0 per il segno negativo ed 1 per il segno positivo
- Con 2 byte (16 bit, di cui 15 per la rappresentazione del numero ed 1 per il segno) potremo così rappresentare numeri compresi tra +32.767 e -32.767
- Complessivamente vengono così rappresentati 65.534 numeri, di cui 32.767 positivi (considerando anche lo zero) e 32.767 negativi
- Per rappresentare **numeri con la virgola** (razionali positivi o negativi) si utilizza la notazione scientifica:

$$-12,345 = -12345 \times 10^{-3}$$

- Quindi (semplificando un po) basta adottare un'altra convenzione: ad esempio, su un insieme di 32 bit il primo rappresenterà il segno, con 28 bit rappresenteremo le cifre significative del numero e con gli ultimi 3 bit rappresenteremo l'esponente negativo
- Così si possono rappresentare **alcuni** numeri razionali compresi, tra –268.435.455 e +268.435.455, con un massimo di 8 cifre dopo la virgola. Più è grande (in valore assoluto) il numero e meno cifre decimali potremo rappresentare


Informazioni non numeriche

- Con i computer spesso si trattano informazioni non numeriche, come caratteri alfabetici (o meglio, alfanumerici) o rappresentazioni grafiche
- Mediante opportune *convenzioni* è possibile rappresentare utilizzando la codifica binaria ogni tipo di informazione
- Per i caratteri alfanumerici (caratteri alfabetici, simboli di interpunzione, cifre numeriche ed altri simboli ancora) esiste una tabella di codifica standard che associa ad ogni carattere un codice numerico intero: la codifica ASCII (American Standard Code for Information Interchange)
- Ad esempio il carattere «a» è associato al codice 61, il carattere «b» al 62, e così via

Tipi di dato e dichiarazione delle variabili

1

- Una medesima sequenza di bit può dunque rappresentare un numero intero positivo, un differente numero relativo, un numero razionale ovvero un carattere alfanumerico
- Per indicare alla macchina come dovrà essere trattata una certa sequenza di bit memorizzati in un determinato blocco della memoria, è necessario che il programmatore a priori dichiari il tipo di dato che intenderà associare ad una certa variabile nell'ambito di un intero programma o di una determinata funzione
- Con la dichiarazione del tipo di una variabile si indica anche alla macchina la quantità di memoria che dovrà essere riservata (allocata) per la memorizzazione delle informazioni trattate dal programma

Tipi di dato e dichiarazione delle variabili

2

- In ogni linguaggio di programmazione vengono messi a disposizione del programmatore dei tipi di dato elementari con cui possono essere definite le variabili o le strutture dati più complesse ed articolate
- I tipi di dato fondamentali, disponibili in quasi tutti i linguaggi di programmazione sono i seguenti:
 - o Intero (in C: short, unsigned, int e long)
 - o Floating point (in C: float, double)
 - o Carattere (in C: char)
- I **puntatori** sono delle variabili che contengono l'**indirizzo di memoria** in cui è allocata un'altra variabile: si dice così che **puntano** ad un'altra variabile

la variabile B è un puntatore che «punta» alla variabile A