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0.1 Introduction

Complex and large networks have generated much interest over the last few
years, as they can be used to describe several biological, social and techno-
logical systems.

There are different ways to analyze a network.
Given a network it is often important to understand which of its nodes is the
most central.
The concept of centrality has been used several times in sociology, psychol-
ogy and computer science. Measuring the centrality of a given node means
understanding its role and importance within a specific network.
Different analyses of a network have discovered diverse properties of nodes.
For each property, a specific measure of centrality has been formulated: some
are based on positional aspects of the nodes, how their position affects their
role in network connectivity. Other properties, instead, study the mediation
force of a node, its influence on neighbor nodes, and its importance in the
flow of information.

Despite all these multiple proposals, a satisfying definition of "what makes
a central node?" has not yet been given.
The only clear thing, on which everyone agrees, is that centrality is a con-
struct at the level of the nodes.
In this regard, we could set ourselves other objectives:
Understanding what characterizes the category;
Looking for what all these measures of centrality have in common;
Finding, if any, structural properties of the nodes that are not measures of
centrality;

In this work we would like to provide a strong investigation of the most
important classical centrality measures and propose an axiomatic approach
to verify if the above measures are working for what they are designed for.
In other words, we will try to define the centrality of graphs through a system
of axioms. Therefore, we will investigate the axioms that identify centrality,
study the measures that validate these axioms, and finally understand what
has prevented us from providing a valid definition until now.



0.2 Centrality in Graphs

0.2.1 Notions of graph theory

In the study of social networks, and therefore in our case in the search for
centrality, a valid starting point is given by the theory of graphs which pro-
vides us with a mathematical approach and a language for the description
of the networks and their characters. In fact, it provides us with a basis
of concepts and theorems that adapt and can represent the essential char-
acteristics of social networks. So let’s see some basic elements of graph theory.

A graph G = (V, F) is a pair of disjoint sets: V' is a non-empty, discrete,
finite set, whose elements are the vertices of the graph, sometimes also called
nodes or points, while F is the set of edges of the graph, also called arcs or
sides, which is a subset of the Cartesian product V x V., or a set of pairs
of vertices of the graph. Often, for greater clarity, V(G) and E(G) denote
respectively the set of vertices and edges of graph G. Conventionally, the
letters n and m indicate the cardinality of V' and F, that is the number of
vertices and edges of the graph: n = |V(G)| and m = |E(G)|.

The graph G = (V, E) with V(G) = v and E(G) = 0 is the null graph.

If e € E(G) and e = (u,v), with u,v € V(G), then the vertices u and v

are said to be adjacent to each other and constitute the ends of the edge e;
at the same time we will say that the edge e is incident on the vertices v and
v. An edge (u,u) from a vertex w in itself is a loop.
If for each pair of vertices w,v € V(G) there is at most only one edge
(u,v) € E(G) we will say that the graph G is simple. On the contrary,
a multigraph is a graph in which there are two or more distinct edges that
have the same pair of vertices as ends.

The graph G = (V, E) is oriented if the edges are considered as ordered
pairs of vertices: in this case (u,v) # (v,u). If e = (u,v) € E(G) is an edge
of the oriented graph G, we will say that the edge is outgoing from w and is
entering in v.

Vice versa if the edges of the graph are considered as unordered pairs, that is
if (u,v) = (v,u) for each edge of the graph, then we will say that the graph
is not oriented.

However in the following, for simplicity, we will indicate with (u,v) both
the non-oriented edges, and those with a direction, belonging to an oriented
graph, explaining where it should not be clear from the context, if it is ori-
ented edges or not oriented. It is good to specify that an oriented graph G



such that (u,v), (v,u) € E(G) is not a multigraph, since the two edges come
out and enter in different vertices.

Given an oriented graph G = (V, E), it is possible to define the transposed
graph GT, placing V(GT) = V(G) and E(GT) = {(u,v) : u,v € V(G) and
(v,u) € E(G)}; in fact it is the graph obtained by G reversing the direction
of the edges.

It is often very useful to produce a graphical representation of a graph using
a drawing. Graphs can be drawn by representing vertices as points and edges
as segments (oriented or non-oriented) or curves that join pairs of vertices.
If E(G) = V(G) x V(G) then we will say that the graph is complete: in this
case, for each pair of distinct vertices there is an edge that connects them.
We will denote the complete graph with n vertices with the notation K.

A graph with "many" edges with respect to the number of vertices is
called dense, while on the contrary a graph with "few" edges is called sparse;
in general we can say that a graph is scattered if the number of edges is of the
same order of magnitude as the number of vertices: | E(G) |= O(] V(G) |).

A weighted graph is a graph with which weights have been associated
with each of its vertices or with each of its edges.
In the case of graphs weighted on the vertices the weight of a vertex is a
function w : V(G) — R; in the case of graphs weighed on the edges, the
weight function w is defined as w : E(G) — R.
In an undirected graph, the degree of a vertex v, deg(v), is given by the
number of edges incident on it; if deg(v) = 0 then we will say that v is an
isolated vertex, while if deg(v) = n — 1, that is if v is adjacent to every other
vertex of the graph, v is universal.
In a graph we define the maximum degree, A(G), given by the maximum
degree of its vertices, and the minimum degree, §(G), given by the minimum
degree of its vertices.
A graph is regular if the vertices all have the same degree (A(G) = §(G));
in particular if deg(v) = p for every v € V(G) then G is a p-regular graph.
It will be helpful to represent a graph in terms of its adjacency matrix A, in
which a ij = 1if (¢,7) is in E.

Nodes that are not adjacent may nevertheless be reachable from one to
the other. A walk from node u to node v is a sequence of adjacent nodes
that begins with v and ends with v. A trail is a walk in which no edge is
repeated. A path is a trail in which no node is visited more than once.

The length of a walk is defined as the number of edges it contains, and the
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shortest path between two nodes is a known as a geodesic.

The length of a geodesic path between two nodes is known as the geodesic
or graph-theoretic distance between them. We can represent the graph the-
oretic distances between all pairs of nodes as a matrix D in which d;; gives
the length of the shortest path from node 7 to node j.

A geodesic is a shortest path between two nodes.

Given an undirected graph G(V, E), con |V| =n, |E| =mx; € V(G)Vi =
1,...,n, let dist(z;, ;) is the distance between the nodes x; and z; ;g;x(7) is
the number of shortest paths between node x; and x; passing through node
x; (geodesic).

A cycle is a path that has the same starting and ending node.
A graph is said to be connected if there exists a path between every two
nodes in the graph.
A tree is a connected graph that does not contain any cycles.
A component of a graph is a maximal connected subgraph of the graph. The
component to which i belongs is denoted C(7).

0.2.2 A short historical account

As we know, centrality is a fundamental concept for the study of network
analysis.

We briefly summarize the development of the concept of centrality by fol-
lowing [1, 4]. As early as the late 1940s Bavelas (1948,1950) and Leavitt
(1951) realized they could use centrality to explain different communication
performances and network members work on a number of variables including
problem solving time, number of mistakes, leadership perception, efficiency
and job satisfaction.

Their research has led to a great deal of experimental, theoretical and impli-
cations of the network structure especially in the context of organizations.

Consequently, many studies followed to use centrality to analyze influ-
ence in interorganizational networks (Laumann and Pappi, 1973; Marsden
and Laumann, 1977; Galaskiewicz, 1979), power (Burt, 1982; Knoke and
Burt, 1983), in exchange networks Marsden, 1982), competence in formal
organizations (Blau, 1963), job opportunities (Granovetter, 1974), adoption
of innovation (Coleman et al., 1966 ), corporate interlocks (Mariolis, 1975;
Mintz and Schwartz, 1985; Mizruchi, 1982), power in organizations (Brass,
1984, and differential growth rates between medieval cities (Pitts, 1979).



Although many centrality measures were immediately proposed, each

suitable for analyzing a specific quality of the network, the category itself
has never been well defined.
As we have already mentioned, however, the one thing everyone agrees on is
that centrality is a construct at the node level. But what specifically defines
the category? What do all centrality measures have in common? Are there
structural properties of nodes that are not measures of centrality?

Sabidussi, in 1966, tries to provide a mathematical answer to these ques-
tions. He suggested a number of criteria that measures must meet in order
to qualify as centrality measures. For example, he felt that adding an edge
to a node should always increase the centrality of the node and that adding
an edge anywhere in the network should never reduce the centrality of any
node.

These requirements seem reasonable, and it’s easy to see the value of sepa-
rating measures that do well from those that don’t.

Approaching more actively to the method given by Sabidussi, we immedi-
ately notice some things that are not good.

First, it appears that its criteria eliminate the most well-known measures of
centrality, including the centrality between.

This is unfortunately a counter productive result.

Furthermore, while its criteria provide some desirable, prescriptive charac-
teristics for a centrality measure, they do not actually attempt to explain
what centrality is.

Later, in 1979, Freeman provided another approach to answer the ques-
tion "what is centrality?".
He examined a number of published measures and reduced them to three
basic concepts for which he provided canonical formulations.
These were the degree, the proximity and the between.
He noted that all three reach their maximum values for the center of a star-
shaped network, consequently argued that this property is the defining char-
acteristic of centrality measures.

Borgatti (2005) has recently proposed a dynamic, model-based view of
centrality that focuses on outcomes for nodes in a network where something
flows from node to node across edges. He argues that the fundamental ques-
tions that must be asked about individual nodes in the context of dynamic
flow are:

(a) how often traffic flows through a node,
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(b) how long does it take to get to a node.

Once these questions are set, it becomes easier to construct theoretical mea-
sures of graphs based on the network structure that predict the answers to
these questions.

Therefore, in this approach, the centrality measures are expressed as predic-
tive models of specific properties of the network flows.

0.3 Axioms for Centrality

Various are the centrality measures that have been studied in the literature,
each of which is used to characterize a different individual property.

0.3.1 The Centrality measures
Geometric measure

We call geometric those measures assuming that importance is a function of
distances.

Degree measure The degree centrality indicates the potential commu-
nication activity of a node: attaches high value to individuals who have a
great influence on their neighbors.

el = 20 1)

Decay measure
M(i,g) =Y 8" (2)
J#i

Where for a given network G = (N, g),i € N and 0 < § < 1,

Note that as 6 gets close to 0, MJ approaches M9 and as § gets close to
1, M counts the total number of nodes in the component to which i belongs.
For intermediate values of §, M§ is similar to M“°*¢ and measures how close
¢ is to other nodes on average.



Closeness measure The closeness of x is defined by

1
RENY ¥
It indicates the potential of a node in communication control: emphasizes
players who have easy contact with everyone else.
Closeness is that nodes that are more central have smaller distances, and
thus a smaller denominator, resulting in a larger centrality.

Assuming that nodes with an empty coreachable set have centrality 0 by
definition.

Lin’s index Nan Lin tired to repair the definition of closeness for
graphs with infinite distances by weighting closeness using the square of the
number of coreachable nodes; his definition for the centrality of a node x
with a nonempty coreachable set is:

{yld(y, z) < oo}*

Zd(y7m)<oo d(ya ZL‘) (4)

Harminic centrality Marchiori and Latora propose to replace the av-
erage distance with the harmonic mean of all distances.

Indeed, in case a large number of pairs of nodes are not reachable, the
average of finite distances can be misleading: a graph might have a very low
average distance while it is almost completely disconnected. The harmonic
mean has the useful property of handling cleanly.

In general for each graph-theoretical notion based on arithmetic averaging or
maximization there is an equivalent notion based on the harmonic mean.

We thus define the harmonic centrality of x as:

1 1
Ly 2 dyw ©)

Ty d(y,z)<ooy#x

Spectral measure

Spectral measures compute the left dominant eigenvector of some matrix
derived from the graph, and depending on how the matrix is modified before



the computation we can obtain a number of different measures.
Existence and uniqueness of such measures is usually derivable by the theory
of nonnegative matrices.

The left dominant eigenvector The left dominant eigenvector of the
plain adjacency matrix. Can be thought as the fixed point of an iterated com-
putation in which every node starts with the same score, and then replaces
its score with the sum of the scores of its predecessors.

The vector is then normalized, and the process repeated until convergence.
Dominant eigenvectors fail to behave as expected on graphs that are not
strongly connected.

Seeley’s index The dominant eigenvector rationale can be slightly
amended. Each has a reputation and is giving its reputation to its suc-
cessors so that they can build their own.

It is more reasonable to divide equally our reputation among our successors.
From a linear-algebra viewpoint, this corresponds to normalizing each row of
the adjacency matrix using the /; norm.

The matrix resulting from the /;-normalization process is stochastic, so the
score can be interpreted as the stationary state of a Markov chain.

Also Seeley’s index does not react very well to the lack of strong connectivity.

Katz’s index Katz introduced his celebrated index using a summation
over all paths coming into a node, but weighting each path so that the sum-
mation would be finite.

Katz’s index can be expressed as

k=1 Z BrA (6)

The attenuation factor 5 must be smaller than 1/A, where A is the dom-
inant eigenvalue of A.
Katz immediately noted that the index was expressible using linear algebra
operations: k= 1(1 — fA) — 1.
Katz’s index is the left dominant eigenvector of aperturbed matrix SAA +
(1—B\)e’1.

e is a right dominant eigenvector of A such that 1e? = ).

The normalized limit of Katz’s index when § — 1/ is a dominant eigen-
vector.



We can see the Katz measures also as a weighted count of generic walks
which can also go over the same nodes. Here the extent to which the weights
decrease with length is an arbitrary parameter b

C = Zwijwij = baij + bZ(CLQ)i]‘ + .= Z bk(ak)ij <7)
J

k01

where k is the length of the walk.

PageRank The PageRank is one of the most discussed and quoted
spectral indices. PageRank is the unique vector p satisfying:

p=apA~ + (1 — a)v,

where A~ is again the [l-normalized adjacency matrix of the graph,
a € [0..1) is a damping factor, and v is a preference vector.

Brinand Page themselves propose a different but essentially equivalent
line an applicant in the style of Hubbell’s indexr, and acknowledge that A~
can have null rows, in which case the dominant eigenvalue of A~ could be
smaller than one, and the solution might need to be normalized to have unit
[1 norm.

Equation is of course solvable even without any patching, giving:
p=(1-a)(l—ad)

and finally: p = (1 —a)v Y, o’ A’

HITS The HITS algorithm using the web metaphor of “mutual rein-
forcement”: a page is authoritative if it is pointed by many good hubs, and
a hub is good if it points to authoritative pages.

This process converges to the left dominant eigenvector of the matrix
AT A,

Path-based measures

The path-based measures exploit not only the existence of shortest paths but
actually take into examination all shortest paths (or all paths) coming into
a node. We remark that indegree can be considered a path-based measure,
as it is the equivalent to the number of incoming paths of length one.

Betweenness The betweenness centrality measure computes the prob-
ability that a random shortest path passes through a given node:

N 223 gik(d)
ep(@i) = (n—1)(n—2) ®)
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The intuition behind betweenness is that if a large fraction of shortest
paths passes through x, then x is an important junction point of the network.
It is the index of the independence of a node: emphasizes individuals through
whom it is easy to pass information.

Spectral measures as path-based measures The spectral measures
can be interpreted as path-based measures and in both cases we can express
these algebraic operations in terms of suitable paths.

The left dominant eigenvector of a nonnegative matrix can be computed with
the power method by taking the limit of 1A% /||1A¥||
for k — oco. Analogously, Seeley’s index can be computed by taking the limit

of 14" it assigns to each x the sums of the weights of the paths coming in
to x.

0.3.2 A family of centrality measures

It is also interesting (as Manuj Garg does in his article "Axiomatic founda-
tions of centrality in networks", 2009) [3] to axiomatize the main centrality
measures in distant families and study the characteristics of family areas.

In his article we will see the degree, closeness and decay measures which
all belong to the same family of measures.
The feature that links these measures is the limitation for breadth first search
tree research.
Another common feature is that the centrality of a node, defined by the first
three measures, is additively separable in all the other nodes.
These measures assign the same centrality to symmetric nodes and the max-
imum centrality to the central ones of a star.
He goes so far as to say that the degree, closeness and decay centrality mea-
sures belong to the same family of measure.

For each of these three measures it also defines a series of axioms that
characterize it, which we will briefly discuss below.

There are four axioms completely characterize the degree centrality mea-
sure.

Axiom 0.3.2.1 (Isolation)
Ng(i) =0 = M(i,g) = 0 (9)
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Axiom 0.3.2.2 (Simmetry) Ifi,j € N are symmetric in g, then M (i, g) =
M(j,9)-

Axiom 0.3.2.3 (Additivity) Let Pg = {gl,..., gk} be a subnetwork-partition
Ofg7 then M(ng) :lel kM(Zagl>

Axiom 0.3.2.4 (Star Maximization) M () should be such that {(c*, g%)} €
argmaz i genxa(ny M (i, 9)-

,,,,,

Where he have considered the follow definition:

Definition 0.3.2.1 (Symmetric Nodes) For a given network G = (N, g),
nodes 1,5 € N are symmetric in g if 3m : N — N, a permutation on N,

s.t. w(i) = j,7(j) =i and g™ = g; where g* = {w(i)w(j)|ij € g}.

It is easy to see that M?9() satisfies the above axiom, two symmetric
nodes always have the same number of neighbors.

Definition 0.3.2.2 (Subnetwork-Partition) P, = {¢1, ..., gx} is a subnetwork-
partition of g if

a Gl = (N, q) is a subnetwork of G = (N, g)¥Vl € {1, ..., k}.

b Uecp,..mgi =g
cgNg = @Vl,l/ S {1, ,k}

Where the subnetwork-partition is a partition of ¢ into distinct sub-
sets of itself such that their union is g. The crucial thing is that for each
[, N(g;) = N,each g is defined over the entire set of nodes.

And the last axiom is based on star network. Formally, a star network is
a network Gx = (N, g*) such that gx = {c* j|j € N ¢*}, where the node ¢*
is called the center or hub of the network.

Then he presents the characterization of the closeness centrality measure.

Axiom 0.3.2.5 (Breadth-First Search) Given G = (N,g) and i € N,
fOT any GB(Z) = (Na gB(Z)) €11, M<Zag) = M(Zth(l))

Axiom 0.3.2.6 (C-Additivity) For any Gg(i) € T, and the correspond-

ing subnetwork-partition, P, (i) = {g1(%), ..., g (7)}, then

12
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o M(i,gk(i)) = > jeem, (%) for some function f().
Axiom 0.3.2.7 (Closeness) For each j* € Ty (i), then

(G~ {3"" 1)}

f) = Y (10)

where j* € Ny-1(g) and j*' € Tj,_1(d); j° = i.

For for this characterization we need some background on Breadth-First
Search Trees.
A cycle is a path that has the same starting and ending node.
A network is said to be connected if there exists a path between every two
nodes in the network. A tree is a connected network that does not contain
any cycles. A component of a network is a maximal connected subnetwork
of the network.

Formally, C' = (N’,¢’) is a component of G = (N, g) if

e NNC N,¢ Cg;

e (N',g') is connected;

e ifi e N and ij € g, then j € N and ij € ¢'.

The component to which i belongs is denoted C'g(7).

Breadth-First Search Trees: Given a network G and a node i € G, we
can define a Breadth-First Search Tree (BFST) in G rooted at i as follows:
begin at node 4, which we call the root node, and explore for all its neigh-
boring nodes. Then for each of those neighboring nodes, explore for their
unexplored neighboring nodes, and so on, until there are no more nodes left
to explore — either because all the nodes of the network have been exhausted
or all remaining nodes are disconnected from i, they are in a different com-
ponent of the network than i belongs to, C'g(7).

For the purpose of the second axiom, define, for a fixed Gg(7), Gi(i) =
(N, gx(7)) as the level-k-search-tree. Note that in Gy (7), each node in Tj_;(7)
is connected with at least one node in T} (7).

All other nodes are disconnected with these nodes and each other, they are
isolated in G (7). In the notation of definition, P, (i) = {g1(7), ..., gx (2) }.
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Axiom of C-Additivity captures two important additivity (or separability)
features of the measure:
First, it says that i derives its centrality independently from each level of
Gp(1).
Second, within each level, i’s centrality is additively separable in each node
of the level.

The next axiom can now be stated.

Axiom 0.3.2.8 (Up-Closure) For any Gg(i) € T; and a given 0 < § < 1,

then
M(i,gp(i)) = > 6[M(5", g5(0)I|5"]) + 1] (11)

JrETL(E)

This expression is easier to interpret: i’s centrality is ¢ times the sum
of the centrality of all the nodes in its neighborhood in their respective up-
closure trees corresponding to a given BFST, plus a § for each of those
neighboring nodes.

Thus far, we have a characterization for degree, closeness and decay cen-
trality measures.
Going through those characterizations, it seems that there isn’t much com-
mon between these measures.
I show that these three measures are a closely related family.
By only varying Axiom of Closeness we can get the other two measures.
So, let us define two new axioms which will give us this family of measures.

The modification of Axiom of Closeness we need to characterize M?9()
is the following.

Axiom 0.3.2.9 (Degree) For any Gg(i) € T;, for each j* € Ty (i), then

M(G* {55

1" = .

L (12)

where j* € Nj-1(g) for some j*1 € Tj,_1(i);
Jo =1 and 1 is the indicator function.

This axiom clearly shows that M?9() is a special case of M<°¢(). Ac-
cording to this axiom, the centrality of a node i does not depend on any node
other those in it’s neighborhood. This is the essential feature of M99() that
we emphasized earlier as well, but capture it in a different way here.

14



The modification of Axiom of Closeness to characterize Md() is as follows:

Definition 0.3.2.3 (Axiom of Decay) For any Gg(i) € T; and a given
0 <6 <1, for each j* € Ty.(i), f(j*) = 5f(5*Y) where j* € Nj*1(g) for
some j*t € Tp_1(i); k > 2.

Note that Axiom of Decay above is silent about f(j)
We can now show that the three measures belong to the same family.

Proposition 1 Suppose M() satisfies Azxioms of Symmetry, Star Mazx, BF'S
and C-Additivity. Then:

o M() = M¢9s¢() if and only if M() satisfies Aziom Closeness as well.
o M() = M®9() if and only if M() satisfies Aziom Degree as well.

o M() = M°() if and only if M() satisfies Aziom Decay as well.

It is useful to note here that betweenness and eigenvector centrality mea-
sures both violate Axiom BFS. This is the key distinguishing feature between
these measures and the measures characterized in this paper. Additionally,
the centrality of a node when defined by either of these measures is not ad-
ditively separable in other nodes.

The aim of his work is to axiomatize the standard centrality measures
into distinct families.
characterizations of three important centrality measures — degree, closeness
and decay — and establishing them as part of the same family.
We can now redefine degree centrality in terms of the out-degree of a node.
Such axiomatizationes lend structure to, and provide a better understanding
of, the vast array of centrality measures that exist. Moreover, it is easier to
distinguish between different measures once we know their precise structural
bases.

0.3.3 Closeness centrality VS harmonic centrality

An alternative to the proximity centrality index - harmonic centrality index
- which give comparable results and present a possible interpretation on a
disconnected graph without closeness centrality is study by Even Yannch
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Rochart in work "Closeness centrality extended to unconnected graph: The
harmonic centrality index" (2009), [5] where he finds in the measure of har-
monic centrality something more.

For each node, to calculate the closeness centrality index, we need the
distance between all the pairs of vertices, i.e. the geodesic distance. To
do this we go to write a matrix. If the graph is disconnected the distances
between the vertices of two different components is infinite. In this case the
closeness centrality index is useless.

We study so how can you use the closeness centrality index for any graph.
A proposal is to write the infinite distance between two vertices as two dis-
tinct components of the number of vertices of the graph: the minimum max-
imum path in a graph with n vertices n — 1. I can generalize

n—1

a\di) = : 13
Cal:) > iz dist(wi, x5) + ma (13)
where m = |E| and a € R, « costant > the diameter of the graph.

The innovative proposal of this article is the index of harmonic centrality.

1 1
14
1—n %]: dist(z;, ;) (14)

This index attaches greater importance to well-connected vertices.
If the graph is disconnected I will still have lower values. and this reflects
the inability of individuals of different components to communicate with each
other, and the maximum value is in the center of the stars where the index
is (14 (n—2)3) = 2nT)

Three types of networks are used in these studies:
e random networks

e rcal networks.

e scale-free networks,

For each node we calculate the two indices (harmonic and closeness) and
compare the ranks using the Sperman p correlation.
During the simulation the standard deviation and the p were calculated.
For real graphs it is calculated only at the p.
For random graphs the generalization starts with unconnected vertices and
for each pair of vertices is created a edge with fixed probability.
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For scale-free scratches at each step we add both vertices and sides propor-
tionally. The probability of two nodes being tied is proportional to their
degree of connection.

The computational complexity of harmonic centrality is (n|E|) for closeness
centrality.

When the degree is connected these two centralities are very similar:
The nodes that are close to the node we are interested in will improve their
size (i.e. if a node is in a dense cluster, even if small, it will have a high
value index); in this calculation the harmonic centrality is compatible with
the closeness centrality.

If instead we have a graph not connected with the harmonic centrality I have
a value other than zero. This does not mean that the node can communicate
with everyone, but represents its role in the graph. Being in a small compo-
nent does not imply having a small harmonic centrality.

Harmonic centrality with high values, respect for closeness centrality, even
for disconnected and scattered graphs.

0.3.4 What do centrality measures measure?

Starting from what Freeman, Borgatti and Everett did in their article "A
graph-theoretic perspective on centrality" (2005), [1] they analyze the mea-
sures of Betweenness, Closeness, and Degree and many of their variants
and study it in relation to four characteristics: types of walks considered
( geodesics, disjoint sides, etc...), types of summary (average or sum), the
properties of walk (length and volume), position of the node involved (radial
or medial).

It is apparent in this review of measures that all of the measures evaluate a
node’s involvement in the walk structure of a network. That is, they evaluate
the volume or length of walks of some kind that originate, terminate, or pass
through a node. Furthermore, all are based on the marginals of an appropri-
ately constructed node-by-node matrix, although the method of calculating
marginals can vary from simple sums to averages and weighted averages to
harmonic means, and so on. Thus four basic dimensions distinguish between
centrality measures: the types of walks considered (called Walk Type, such
as geodesic or edge-disjoint), the properties of walks measured (called Walk
Property, namely volume or length), the type of nodal involvement (called
Walk Position, namely radial or medial), and type of summarization (called
Summary Type, such as sum or average).

The Walk Type dimension concerns the restrictions that some measures im-
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Freeman degree, Sade k-path,

Bonacich eigenvector, Katz status, Anthonisse rush Freeman
Hubbell status, Hoede status, betweenness,

VOLUME Doreian iterated Hubbell, Freeman et al. flow between,
Markovsky et al. GPI, Friedkin TEC, Friedkin MEC

Coleman power, Bonacich power Burt prestige

Freeman closeness,

LENGTH Stephenson-Zelen information Friedkin IEC

Borgatti FD

pose on the kind of walks considered, such only geodesics, only true paths,
limited length walks, and so on. The Walk Property dimension distinguishes
between measures that evaluate the number of walks a node is involved in
from measures that evaluate the length of those walks. The Walk Position di-
mension distinguishes between measures that evaluate walks emanating from
a node from measures that evaluate walks passing through a node.

The choice between radial and medial measures can be seen in terms of
the distinct roles played by nodes in the network.

A radial measure of volume counts the number of these paths in which a
given node serves as an endpoint.

A medial measure counts the number of these paths in which the node
serves as an interior point.
Together, the radial and the medial add up to the total number of paths that
a node is involved with in any role. In this sense, we can speak of decom-
posing a node’s total involvement in the paths of a network into radial and
medial portions.

If so, radial and medial measures are complementary and both are needed
to deliver a complete picture of a node’s contribution to the network .

Total Involvement = Radiality + Mediality
In conclusion we can say that following Sabidussi (1966), we have de-
scribed the notion of centrality in purely graph-theoretic terms: what all

measures of centrality do is assess a node’s involvement in the walk structure
of a network. This is the graph-theoretic answer to the question ‘What do
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centrality measures measure?’” We have suggested that centrality measures
differ along four key dimensions: choice of summary measure, type of walk
considered, property of walk assessed, and type of involvement.

The choice of summary dimension has the least variance, consisting mostly
of simple sums and averages, along with a few exemplars of weighted sums
(e.g., eigenvectors) and centroids. The type of walk dimension distinguishes
measures based on edges, geodesics, paths, trails and walks. The property
of walk dimension distinguishes between volume and length measures. The
type of involvement dimension distinguishes between radial and medial mea-
sures.

It can be seen that the single distinction made by Borgatti between fre-
quency and time can be derived as a collapsing of the property of walk and
type of involvement dimensions.

The medial measures essentially measure the impact of the presence of a
node on the dyadic cohesion among all pairs of nodes. In other words, they
measure the change in cohesion that would result from removing a given node.

As such, medial measures do not depend on core/periphery structures
for interpretability, and in fact are particularly useful when networks have
"clumpy" structures characterized by wide variation in local density. At a
general level, we note the relationship of centrality concepts with the con-
cepts of graph cohesion and cohesive subgroups. The key underlying concept
is that of dyadic cohesion—the social proximity of pairs of actors in a network.

Dyadic cohesion is what is measured by the W matrix that undergirds
all measures of centrality. There are two fundamental ways of analyzing co-
hesion. One is to seek regions of the network that are more cohesive than
others — a focus on the pattern of cohesion.

The other is to attribute to individual nodes their share of responsibility for
the cohesion of the network — a focus on the amount of cohesion.

0.4 Thesis Layout

Follow the work of Vigna and Boldi, [7], we can analyze eleven centralities
measure and three axioms of centrality for
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0.4.1 The work of Vigna and Boldi for the centrality

They try to provide a mathematically survey of the most important clas-
sic centrality measures known from the literature and propose an axiomatic
approach to establish whether they are actually doing what they have been
designed for.

Surprisingly, only a new simple measure based on distances, harmonic cen-
trality, turns out to satisfy all axioms. The harmonic centrality is a correction
to Bavelas’s classic closeness centrality designed to take into account unreach-
able nodes.

One of the most important notions that researchers have been trying to
capture in such networks is “node centrality” every node has some degree of
influence or importance within the social domain under consideration, and
one expects such importance to surface in the structure of the social network.

Centrality is a quantitative measure that aims at revealing the impor-
tance of a node.
Among the types of centrality that have been considered in the literature,
many have to do with distances between nodes.
Take, for instance, a node in an undirected connected network: if the sum of
distances to all other nodes is large, the node under consideration is periph-
eral; this is the starting point to define Bavelas’s closeness centrality, which
is the reciprocal of peripherality.
The role played by shortest paths is justified by one of the most well-known
features of complex networks, the so called small-world phenomenon.
A small-world network is a graph where the average distance between nodes
is logarithmic in the size of the network.
The purpose of this paper is to pave the way for a formal well-grounded as-
sessment of centrality measures, based on some simple guiding principles; we
seek notions of centrality that are at the same time robust and understand-
able.
We shall present and compare the most popular and well known centrality
measures .
The comparison will be based on a set of axioms.
We compare the measures we discuss in an information-retrieval setting.
The results suggest that simple measures based on distances, harmonic cen-
trality, can give better results than some of the most sophisticated indices
used in the literature.

As already mentioned the centrality is a fundamental tool in the study
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of social networks: the first efforts to define formally centrality indices were
put forth in the late 1940s by the Group Networks Laboratory at MIT di-
rected by Alex Bavelas, those concluded that centrality was related to group
efficiency in problem-solving.

In the following decades, various measures of centrality were employed in a
multitude of contexts.

We can certainly say that the problem of singling out influential individuals
in a social group is what that sociologists have been trying to capture.

Freeman acutely remarks that the central node of a star should be deemed
more important than the other vertices.

In fact, the center of a star is at the same time :

1. the node with largest degree;

2. the node that is closest to the other nodes ;

3. the node through which most shortest paths pass;

4. the node with the largest number of incoming paths of length k, for
every k;

5. the node that maximizes the dominant eigenvector of the graph matrix;

6. the node with the highest probability in the stationary distribution of
the natural random walk on the graph.

Degree is probably the oldest measure of importance ever used.

The most classical notion of closeness, instead, was introduced by Bavelas

for undirected, connected networks as the reciprocal of the sum of distances
from a given node.
Centrality indices based on the count of shortest paths were formally devel-
oped independently by Anthonisse and Freeman, who introduced between-
ness as a measure of the probability that a random shortest path passes
through a given node or edge.

Katz’s index is based instead on a weighted count of all paths coming
into a node.

Another line of research studies spectral techniques to define centrality.
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Jon Kleinberg defined another centrality measure called: HITS .
The idea is that every node of a graph is associated with two importance
indices: one measures how reliable a node is, and other measures how good
the node is in pointing to authoritative nodes, with the two scores mutually
reinforcing each other. The result is again the dominant eigenvector of a
suitable matrix.

A set N of n nodes and a set A C N x N of arcs.
An arc with the same source and target is called a loop.
The transpose of a graph is obtained by reversing all arc directions .
A symmetric graph is a graph such that x — y whenever y — .
A successor of x is a node y such that x — y, and a predecessor of x is a
node y such that y — z.
The outdegree d*(z) of a node = is the number of its successors, and the
indegree d~(x) is the number of its predecessors.
A path (of length k) is a sequence xg, 21, ..., Tx—1, where x; — ;41,0 < j < k.
A walk (of length k) is a sequence xg,x1,..., 41, Where z; — x;41 or
Tjy1 — ZE]',O <5< k.

A connected component of a graph is a maximal subset in which every
pair of nodes is connected by a walk .
A graph is connected if there is a single connected component.
A strongly connected component is terminal if its nodes have no arc towards
other components.
The distance d(z,y) from z to y is the length of a shortest path from x to y,
or oo if no such path exists.
The nodes reachable from z are the nodes y such that d(z,y) < co.
The nodes coreachable from z are the nodes y such that d(y, x) < oc.
A node has trivial (co)reachable set if the latter contains only the node itself.
The notation A~, where A is a non negative matrix, will be used throughout
the paper to denote the matrix obtained by [1-normalizing the rows of A,
that is, dividing each element of a row by the sum of the row (null rows are
left unchanged).

The three axioms

Sometimes, the attitude was actually to provide evidence that different mea-
sures highlight different kinds of centralities and are, therefore, equally in-
comparably interesting.

While it is clear that the notion of centrality,in its vagueness, can be inter-
preted differently giving rise to many good but incompatible measures, we
will provide evidence that some measures tend to reward nodes that are in
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no way central.

We propose to understand (part of) the behavior of a centrality measure
using a set of axioms. It is reasonable to set up some necessary axioms that
an index should satisfy to behave predictably and follow our intuition.

Defining such axioms is a delicate matter.

First of all, the semantics of the axioms must be very clear. Second, the
axioms must be evaluable in an exact way on the most common centrality
measures. Third, they should be formulated avoiding the trap of small, fi-
nite (counter) examples, on which many centrality measures collapse. We
assume from the beginning that the centrality measures under examination
are invariant by isomorphism, that is, that they depend just on the structure
of the graph, and not on particular labeling chosen for each node.

To meet these constraints, we propose to study the reaction of centrality
measures to change of size, to (local) change of density and to arc additions.

To do so, we need to try something entirely new—evaluating exactly (i.e.,
in algebraic closed form) all measures of interest on all nodes of some repre-
sentative classes of networks.

A good approach to reduce the amount of computation is using strongly con-
nected vertex-transitive graphs as basic building blocks: these graphs exhibit
a high degree of symmetry, which should entail a simplification of our com-
putations.

Finally, since we want to compare density, a natural choice is to pick the dens-
est strongly connected vertex-transitive graph, the clique, and the sparsest
strongly connected, the directed cycle.

Consider a graph made by a k-clique and a p-cycle. Because of invariance
by isomorphism, all nodes of the clique have equal score, and all nodes of the
cycle have equal score, too; but which nodes are more important? Probably
everybody would answer that if p = k the elements on the clique are more
important, and indeed this axiom is so trivial that is satisfied by almost
any measure of which we are aware, but we are interested in assessing the
sensitivity to size, and thus we state our first axiom as follows:

Axiom 0.4.1.1 (Size axiom) Consider the graph Sy, made by a k-clique
and a directed p-cycle. A centrality measure satisfies the size axiom if for
every k there is a Py, such that for all p > Py in Sy, the centrality of a node
of the p-cycle s strictly larger than the centrality of a node of the k-clique,
and if for every p there is a K, such that for all k > K, in Sy, the centrality
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of a node of the k-clique is strictly larger than the centrality of a node of the
p-cycle.

Connect a node x of the k-cycle with a node y of the p-cycle through a
bidirectional arc, the bridge.
If k = p, the vertices  and y are symmetric, and thus must necessarily have
the same score.
Now, we increase the density of the k-cycle as much as possible, turning it
into a k-clique.

We are thus strictly increasing the local density around z, leaving all
other parameters fixed, and in these circumstances we expect that the score
of = increases.

Axiom 0.4.1.2 (Density axiom) Consider the graph Dy, made by a k-
clique and a p-cycle connected by a bidirectional bridge x <> y ,where x is a
node of the clique and y is a node of the cycle. A centrality measure satisfies
the density axiom if for k = p the centrality of x is strictly larger than the
centrality of y.

Finally, we propose an axiom that specifies strictly monotonic behavior
upon the addition of an arc:

Axiom 0.4.1.3 (Score-Monotonicity Axiom) A centrality measure sat-
isfies the score-monotonicity axiom if for every graph and every pair of nodes
x,y such that x - y,when we add x — y to G the centrality of y increases.

In some sense, this axiom is trivial: it is satisfied by essentially all cen-
trality measures we consider on strongly connected graphs.Thus, it is an
excellent test to verify that a measure is able to handle correctly partially
disconnected graphs.

Recapitulate

We are considering 11 centralities (harmonic, indegree, closeness, between-
ness, Katz, Lin, dominant eigenvector, Seeley’sindex, HITS, SALSA, pager-
ank) and 3 axioms (size, density, score-monotonicity). We can to verify 33
statements.

For simplicity all our results are summarized in this Table where we dis-

tilled them into simple yes/no answers to the question:
Does a given centrality measure satisfy the axioms?
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Centrality Size Densisty | Score monotonicity
Degree only k yes yes
Harnomic yes yes yes
Closeness no no no
Lin only k no no
Betweenness | only p no no
Dominant only k yes no
Seeley no yes no
Katz only k yes yes
Pagerank no yes yes
HITS only k yes no
SALSA no yes no

It was surprising that only harmonic centrality satisfies all axioms. All
spectral centrality measures are sensitive to density. Row-normalized spec-
tral centrality measures are insensitive to size, whereas the remaining ones
are only sensitive to the increase of k£ (or p in the case of betweenness).

All non-attenuated spectral measures are also non-monotone. Both Lin’s and
closeness centrality fail density tests.

Closeness has, indeed, the worst possible behavior, failing to satisfy all our
axioms. While this result might seem counter intuitive, it is actually a con-
sequence of the known tendency of very far nodes to dominate the score,
hiding the contribution of closer nodes, whose presence is more correlated to
local density.

All centralities satisfying the density axiom have no watershed: the axiom
is satisfied for all p, k > 3. The watershed for closeness (and Lin’s index) is
k < p, meaning that they just miss it, whereas the watershed for betweenness
is a quite pathological condition (k < (p* + p + 2)/4): one needs a clique
whose size is quadratic in the size of the cycle before the node of the clique
on the bridge becomes more important than the one on the cycle (compare
this with closeness, where k = p + 1 is sufficient).

We remark that our results on geometric indices do not change if we re-
place the directed cycle with a symmetric (i.e., undirected) cycle, with the
additional condition that k > 3. It is possible that the same is true also of
spectral centralities, but the geometry of the paths of the undirected cycle
makes it extremely difficult to carry on the analogous computations in that
case.

We have presented a set of axioms that try to capture part of the intended
behavior of centrality measures. We have proved or disproved all our axioms
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for ten classical centrality.

Nonetheless, we believe we have made the important point that geometric
measures are relevant not only to social networks, but also to information
retrieval.
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