Facoltà di Architettura Istituzioni di Matematiche 2

I prova in corso d'anno - 18 Aprile 2009 Proff. Laura Tedeschini Lalli, Paola Magrone, Giulio Caciotta, Michele Cascarano

NOME:	COGNOME:	_
MATRICOLA:		
	olgere i seguenti esercizi, utilizzando il retro dei fogl Riportare le risposte negli spazi.	i per i con
1. Un triangolo ha ve	ertici P_1, P_2, P_3 , di coordinate	
	$P_1 = (1, 2, 1),$	
	$P_2 = (0, 2, a),$	
	$P_3 = (2, 2, 2).$	
i) Calcolare l'area del	l triangolo (evidentemente, in funzione di a).	
ii) Determinare il val	ore del parametro $a \in \mathbb{R}$ tale che l'area del triangolo sia 3.	
iii) Per quali valori d	li a il triangolo risulta isoscele?	

2. Una tenda indiana (Tepee) di base circolare è sorretta da tre pali, simmetricamente disposti, che si incontrano in un punto e formano con il terreno un angolo di 60° . Sapendo che l'area della base della tenda è di 9π m^{2} , i) Scrivere un'equazione che metta in relazione il raggio della base e l'altezza della tenda;
ii) Calcolare il raggio della base circolare.
iii) Calcolare l'altezza della tenda.

3. Data la retta r di equazioni parametriche:

$$\begin{cases} x = 1 + 3t \\ y = 2 - t \\ z = 4t \end{cases}$$

DETERMINARE:

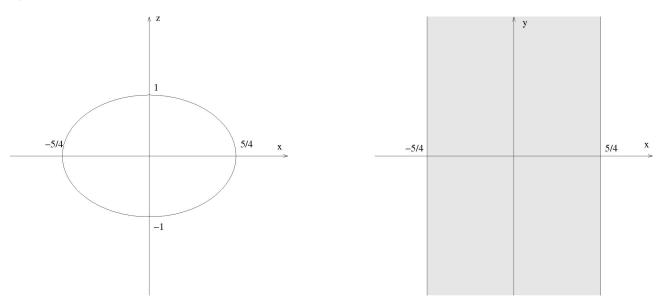
i) L'equazione del piano ortogonale alla retta e passante per il punto $P_1=(1,1,1).$

ii)la distanza tra $P_2=(0,2,-1)$ e la retta r.

iii) Scrivere le retta r in forma cartesiana (come intersezione di due piani).

4. Date le tre rette di equazione

$$r: \begin{cases} x = \frac{1}{3}t \\ y = 1 + t \\ z = -1 - t \end{cases} \qquad s: \begin{cases} x = 1 + 2t \\ y = t \\ z = 1 + 3t \end{cases} \qquad q: \begin{cases} x = 1 + t \\ y = 3t \\ z = 1 - 3t \end{cases}$$


stabilirne la mutua posizione (quali sono parallele, quali incidenti, quali sghembe).

 ${f 5}.~i)$ Una quadrica ha equazione

$$x = z^2/4$$

in $\mathbb{R}^3.$ Specificare il tipo di quadrica e tracciarne uno schizzo schematico.

ii) Una quadrica ha le seguenti intersezioni con i piani coordinati Scrivere l'equazione della quadrica

e tracciarne uno schizzo tridimensionale.

5. Una piramide a base quadrata ha tutti gli spigoli di 8m. Quanto misura l'altezza?

Immaginate di sezionarla con un piano: otterrete un poligono.

Studiate il poligono che si ottiene, a seconda dell'orientamento e della posizione del piano secante rispetto alla piramide.

Riempite quindi la seguente lista indicando quali figure sono cosí possibili,

e con quali orientamento e posizione del piano; quali impossibili (e perché), lasciate in bianco gli indecidibili (per ora).

Se volete, potete tracciare schizzi sul retro, al fine di riempire la lista. Noi correggiamo la lista.

Triangoli: equilateri

isosceli rettangoli

scaleni (cioe' tutti i lati e gli angoli diversi)

Quadrilateri: quadrati

rettangoli

trapezi (isosceli e rettangoli)

quadrilateri non regolari

parallelogrammi

 rombi

poligoni a 5 lati

In questa piramide, vi sono coppie di lati che giacciono su rette tra loro sghembe?