
Facoltà di Architettura Laurea Specialistica in Progettazione

Prova scritta del 14 febbraio 2007 Proff. Laura Tedeschini Lalli, Paola Magrone.

NOME:	COGNOME:
MATRICOLA:	
parli. Informazioni parziali su più informazioni parziali, e quindi non	oblemi proposti. Sceglierne SOLO DUE e svilup- 1 di 2 problemi rimangono un quadro generale di aumentano la valutazione! tti. Non usare altri fogli e riportare le risposte negli
1. Sulla sfera di raggio $R=3$ du un angolo $\alpha=\frac{\pi}{6}$ - fare uno schizzo della situazion	e cerchi massimi si incontrano nei poli formando
divisa la sfera.	e di ciascuno dei quattro spicchi in cui viene
	ncontrano sull'equatore formando un angolo β . entrano formando due quadrilateri ciascuno di ne;

	2 . Un	cilindro	${\it circolare}$	ha altezza	a infinita e	raggio 1	. Due r	ette di j	pendenza
3π	e 5π s	i incontr	ano in un	punto P	del cilindr	о.			

(i) quante altre intersezioni hanno sul cilindro? (nessuna, una, due, infinite);

- $\left(ii\right)$ a che distanza sul cilindro da P si trova il secondo punto di incontro?; Suggerimento:
- (1) scegliere delle coordinate nel dominio fondamentale;
- (2) scrivere l'equazione delle rette che passano per P;
- (3) calcolare tramite la relazione di equivalenza....

 3. Un tetraedro ha lato 5. Un piano che passa per due dei suoi vertici lo taglia in modo simmetrico. - fare uno schizzo della situazione;
- l'intersezione di questo piano con il tetraedro é un triangolo T. Fare uno schizzo e dire di che tipo di triangolo si tratta.
(i) Calcolare i lati e l'altezza di questo triangolo.
(ii) Calcolare la distanza sulla superficie del tetraedro tra il vertice di questo triangolo e il punto medio della sua base.

- disegnare questo percorso sul tetraedro.

Suggerimento: esiste sempre lo sviluppo piano!

4. Dare la definizione di gruppo;
Osservare il motivo rappresentato nell'ultima pagina, studiare il gruppo di isometrie del piano che lo lascia invariato
(i) evidenziare una regione minima che genera tutto il motivo attraverso successivi movimenti rigidi;
(ii) scrivere gli elementi e i generatori del gruppo.