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Abstract. We are looking for infinitely many weak solutions for a
semilinear elliptic equation with indefinite nonlinearity. The presence
of an L2 function perturbs the symmetry of the problem. The result
is obtained using the approach introduced by Rabinowitz for positive
nonlinearities.

1. Introduction

We are interested in the following problem:

(Pf )

{
−∆u− λu = W (x)p(u) + f(x) in Ω
u = 0 on ∂Ω,

where Ω is a bounded open subset of RN (N ≥ 3) with a smooth boundary.
The parameter λ varies in the whole real line R and f is an L2(Ω) func-
tion. The function W (x) is bounded in Ω and different from zero almost
everywhere (“thin” zero set; see (W )), while p(u) is a continuous, subcriti-
cal (with respect to the Sobolev embedding), and superlinear function (see
(p1)–(p3)). Moreover, we ask that p is an odd function ((p4)).

Therefore, for f ≡ 0, problem (Pf ) becomes symmetric and thus problems
like (Pf ) are called perturbed while the indefiniteness of the problem is due
to the change of sign of W (x).
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In recent years much work has been devoted to such indefinite problems
(not only with symmetry): see e.g. [2], [3], [1], [9], [10], [17], [22], and [20]
for an idea of the results on this subject.

The main result of the paper, that is, Theorem 3.1, assures that, under
suitable assumptions, the energy functional If associated with problem (Pf )
has an unbounded sequence of critical values provided

θ ≡ (N + 2)− (N − 2)s
N(s− 1)

>
s+ 1
s

, (1.1)

where s is the growth exponent of the function p appearing in (p2).
Let us remind the reader that, if W (x) is a positive function, problem (Pf )

has been studied by Struwe [21], Bahri-Berestycki [7], and Rabinowitz [19].
The results contained in these three papers are slightly different, but the
interesting aspect is due to the utilization of three different approaches and
methods of proof. In particular, Rabinowitz, in [19], proves that, if λ = 0
and W (x) > 0, If has an unbounded sequence of critical values provided s
satisfies (1.1).

The indefinite perturbed problem (Pf ) was studied in 1996 by Tehrani
[23] and by Badiale [5] in case where W (x) is a continuous changing sign
function and has a “thick” zero set. More precisely they study problems of
the following type:{

−∆u− λu = W (x)p(u) + f(x)h(u) in Ω
u = 0 on ∂Ω.

(1.2)

Using Struwe’s approach, Tehrani proves that, if W ≡ f and under suitable
assumptions onW,p, h, if λ does not belong to the spectrum of the Laplacian,
problem (1.2) has infinitely many solutions provided s satisfies (1.1). On the
other hand, using the method of Bahri-Berestycki, Badiale achieves the same
result for any f ∈ L2(Ω) but only for λ less than the first eigenvalue of the
Laplacian and for a smaller range of s.

We observe that the class of functions W we deal with is complementary
to theirs (with respect to zero sets).

Let us explain now how we prove Theorem 3.1 following the ideas of
Rabinowitz [19]. First of all, let us consider the symmetric problem

(P)

{
−∆u− λu = W (x)p(u) in Ω
u = 0 on ∂Ω,

where p and W are the same as in (Pf ). Multiplicity results for this problem
were obtained, for example, in [2] and [23], if λ does not belong to the



multiple solutions for perturbed indefinite semilinear elliptic equations 1109

spectrum of the Laplacian, under different assumptions with respect to ours;
in particular the function W (x) is a continuous changing sign function and
has a “thick” zero set.

Using a Z2 version of the mountain pass theorem due to Ambrosetti and
Rabinowitz [4], we prove that for any real parameter λ problem (P) possesses
an unbounded sequence of weak solutions. We underline that we prove that
the energy functional I associated with (P) has an unbounded sequence βk =
I(uk) of critical values and also that the sequence {uk} of weak solutions is
unbounded.

Therefore, in order to study problem (Pf ), we introduce an auxiliary C1

functional Jf . We show that, for large critical levels, the critical points of
Jf are the same as those of If , and Jf satisfies (PS) condition (3◦ and 4◦

of Proposition 3.1). So, to obtain our thesis, it is sufficient to show that
Jf possesses an unbounded sequence of critical values. The main difficulty
to overcome was that of proving the properties of the functional Jf in the
presence of a changing sign term. For this purpose we imposed an additional
integral condition involving W and P (see (pW )).

It is an interesting open question as to whether Theorem 3.1 holds weaken-
ing (1.1). In the definite case Bahri-Lions [8] and Bolle-Ghoussoub-Tehrani
[11] were able to value of s to s < n(n− 2)−1.

2. The symmetric case

Let us consider the following problem:

(P)

{
−∆u− λu = W (x)p(u) in Ω
u = 0 on ∂Ω,

where Ω is a bounded open set of RN , N ≥ 3, with smooth boundary ∂Ω,
λ ∈ R. Let p be a nonlinear function satisfying the following assumptions:

(p1) p is a continuous function;
(p2) ∃a1, a2 > 0 : |p(t)| ≤ a1 + a2|t|s, s ∈ (1, N+2

N−2),∀ t ∈ R;
(p3) ∃r > 0 : 0 < (s+ 1)P (t) ≤ tp(t) ∀|t| ≥ r, where P (t) =

∫ t
0 p(τ) dτ.

Let us observe that hypothesis (p3) implies that there exist two constants
a4, a5 > 0 such that

P (t) ≥ a5|t|s+1 − a4 ∀t ∈ R. (2.1)

Therefore, there is a constant a3 > 0 such that
1

s+ 1
(tp(t) + a3) ≥ P (t) + a4 ≥ a5|t|s+1 ∀t ∈ R. (2.2)
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Furthermore, let us assume that
(p4) p is an odd function.

LetW ∈ L∞(Ω) be a function that assumes both positive and negative values
in Ω, and let us define W+(x) = sup{W (x), 0}, W−(x) = − inf{W (x), 0}
for any x ∈ Ω and W± = sup{W±(x) : x ∈ Ω}. Let 0 < λ1 < λ2 ≤
· · · ≤ λk ≤ λk+1 ≤ · · · be the sequence of eigenvalues of the operator −∆
with respect to the zero boundary conditions on Ω. Each eigenvalue λk is
repeated according to its (finite) multiplicity.

Let us require
(pW1) ∃R > 0 : W−(p(t)t − (s + 1)P (t)) ≤ γ|t|2 ∀ t ≥ R, for some γ ∈

(0, ( s+1
2 − 1)(λ − λ)), with λ = λk+1 if λ ∈ [λk, λk+1), k ∈ N, and

λ = λ2 if λ < λ1;
(W) meas{x ∈ Ω : W (x) = 0} = 0, W+(x) 6≡ 0.

The main result of this section is the following:

Theorem 2.1. Suppose that the functions p and W satisfy (p1)–(p4), (pW1),
and (W). Then problem (P) possesses an unbounded sequence of weak solu-
tions.

Proof. The proof of this theorem is an application of the following Z2

version of the mountain pass theorem due to Ambrosetti and Rabinowitz
([4]):

Theorem 2.1. Let E be a Hilbert space and let I ∈ C1(E,R) be even,
satisfy the Palais–Smale condition, and I(0) = 0. Let E+, E− ⊂ E be closed
subspaces of E with dimE− − codimE+ = 1 and suppose there holds the
following:

(I1) ∃ρ, α > 0 : I|∂Bρ∩E+ ≥ α,
(I2) ∃R > 0 I ≤ 0 on E− \BR.

Consider the following set:

Γ = {h ∈ C0(E,E) : h is odd, h(u) = u if u ∈ E−, ||u|| ≥ R}.
Then

(a) ∀δ > 0, h ∈ Γ, ∂Bδ ∩ E+ ∩ h(E−) 6= ∅.
(b) The number β := infh∈Γ supu∈E− I(h(u)) ≥ α is a critical value for I.

Let E = H1
0 (Ω), equipped with the norm

||u|| =
(∫

Ω
|∇u|2

) 1
2
,
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and

I(u) =
∫

Ω

1
2
|∇u|2 − λ

2
u2 −W (x)P (u). (2.3)

Obviously, I ∈ C1(E,R), I(0) = 0 and is even. Moreover, condition (PS)
holds for any λ ∈ R by (pW1) and (W ), as was proved in [2, 15], if λ < λ1,
and in [14] if λ ≥ λ1.

To verify (I1) let us suppose λ ≥ 0, as the case λ < 0 can be proved in
a simpler way. For any λ ∈ R+, λ ∈ [λk0−1, λk0) 6= ∅, where we assume
λ0 = 0. Let us choose Vk0−1 = 〈v1, . . . , vk0−1〉 where the function vj is an
eigenfunction associated to λj and E+ = E+

0 = V ⊥k0−1, hence codimE+
0 =

k0 − 1. By (p2), for any u ∈ E,

I(u) ≥ 1
2

(∫
Ω
|∇u|2 − λ

∫
Ω
|u|2
)
− CW+

∫
Ω
|u|s+1 − C,

where C (here and in the following) denotes a generic positive constant. By
the Gagliardo–Nirenberg inequality (see e.g. [16], [13])

||u||Ls+1 ≤ αs
(∫

Ω
|∇u|2

)a
2
(∫

Ω
|u|2
) 1−a

2
,

where a ∈ (0, 1) is defined by

1
s+ 1

= a
(1

2
− 1
N

)
+ (1− a)

1
2
,

and, by the variational characterization of the eigenvalues,(∫
Ω
|u|2
) 1

2 ≤ λ−
1
2

k0

(∫
Ω
|∇u|2

) 1
2
, ∀u ∈ E+

0

one gets, for any u ∈ E+
0 ∩ ∂Bρ,

I(u) ≥ ρ2

2
− CW+

(
αs+1
s ‖u‖s+1λ

(s+1)(a−1)
2

k0

)
− λ

2
λ−1
k0
‖u‖2 − C

≥ ρ2
(1

2

(
1− λ

λk0

)
− C λ

(s+1)(a−1)
2

k0
ρs−1

)
− C, (2.4)

which easily implies (I1).
Let us prove (I2). We choose k0 mutually disjoint balls B1, . . . , Bk0 , where

Bi ⊂ Ω+ and Ω+ := {x ∈ Ω : W (x) > 0}, in such a way that Ω+\∪k0
i=1Bi 6= ∅,

and k0 nonnegative functions ϕ1, . . . , ϕk0 , ϕi ∈ C∞0 (Bi) for i = 1, . . . , k0.
Then set E− = E−0 := span{ϕ1, . . . , ϕk0}. Therefore, dimE−0 − codimE+

0 =
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1. Let u ∈ E−0 \ BR0 for R0 sufficiently large; hence, u =
∑k0

i=1 tiϕi, ti ∈ R.
For any λ ∈ R+, by (2.1),

I(u) =
1
2

(∫
Ω
|∇u|2 − λ

∫
Ω
|u|2
)
−
∫

Ω+

W+(x)P (u)

≤ C

2

k0∑
i=1

|ti|2||ϕi||2 − C
k0∑
i=1

|ti|(s+1)

∫
Ω+

W+(x)|ϕi|(s+1) + C (2.5)

≤ C

2

k0∑
i=1

|ti|2 − C
( k0∑
i=1

|ti|2
) s+1

2 + C.

Therefore, I(u) < 0 as s + 1 > 2 and R0 = C
∑n

i=1 |ti|2 → +∞. Now
Theorem 2.1 applies and we get a critical value

β0 := inf
h∈Γ0

sup
u∈E−0

I(h(u))

where Γ0 = {h ∈ C0(E,E) : h is odd, h(u) = u if u ∈ E−0 , ‖u| ≥ R0}. Next
we repeat the same procedure now working with E+

1 = V ⊥k0
and

E−1 = span{ϕ1, . . . , ϕk0+1},

with ϕk0+1 ∈ C∞0 (Bk0+1), the ball Bk0+1 ⊂ Ω+ being disjoint from Bi for
i = 1, . . . , k0 and Ω+ \ ∪k0+1

i=1 6= ∅. We find a second critical value

β1 := inf
h∈Γ1

sup
u∈E−1

I(h(u)),

where Γ1 is defined as Γ0, with R0 replaced by R1 > R0. Continuing in this
fashion, we find infinitely many critical values βk, k ≥ 0.

Now we want to obtain an estimate from below for βk. By (a) there exists
w ∈ ∂Bρ ∩ E+

k ∩ h(E−k ); therefore,

sup
u∈E−k

I(h(u)) ≥ I(w) ≥ inf
u∈∂Bρ∩E+

k

I(u). (2.6)

To obtain a lower bound for the right-hand side of (2.6), we observe that by
(2.4) since (1 − λ

λk0
) > 0 we can choose ρ = ρ(k0) such that the coefficient

of ρ2 is 1/4; that is,(1
2

(
1− λ

λk0

)
− Cλ

(s+1)(a−1)
2

k0
ρs−1

)
=

1
4
. (2.7)
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First of all this implies ρ(k0)s−1 = Cλ
(1−a)(s+1)

2
k0

; hence, for any k ≥ 0

ρ(k0 + k)s−1 = Cλ
(1−a)(s+1)

2
k0+k .

Moreover, by (2.7) and (2.4), one finds that

I(u) ≥ 1
4
ρ(k0 + k)2 − C

for any u ∈ ∂Bρ ∩ E+
k . Since λj ≥ Cj

2
N for large j (see [12]), we obtain

βk ≥ Cλ
(1−a)(s+1)

s−1

k0+k ≥ Ck
(1−a)(s+1)2
N(s−1)

for k large. We have proved that I possesses an unbounded sequence of
critical values βk = I(uk) where uk is a weak solution of (P).

Now we are going to prove that {uk} is unbounded in E. Since I ′(uk)uk =
0, for any λ ∈ R we have∫

Ω
|∇uk|2 =

∫
Ω

(λu2
k +W (x)p(uk)uk) ≥ 0;

hence, ∫
Ω
W+(x)p(uk)uk +

∫
Ω
λu2

k ≥
∫

Ω
W−(x)p(uk)uk. (2.8)

Let us observe that by (p2) and (2.1)∫
Ω
W+(x)p(uk)uk ≤ a1

∫
Ω
W+(x)|uk|+ a2

∫
Ω
W+(x)|uk|s+1

≤ a1W
+||uk||2L2 +

a2

a5

∫
Ω
W+(x)P (uk) + C.

(2.9)

Therefore, by (2.8), (2.9), and (p3)

(λ+ a1W
+)||uk||2L2 +

a2

a5

∫
Ω
W+(x)P (uk)

≥ (s+ 1)
∫

Ω
W−(x)P (uk)− C;

(2.10)

that is,

C1||uk||2L2 +
∫

Ω
W (x)P (uk) ≥ −C, (2.11)

where C1 = (λ+ a1W
+)(max a2

a5
, s+ 1)−1. So (2.11) and the fact that

βk =
1
2

∫
Ω

(W (x)p(uk)uk − 2W (x)P (uk))→ +∞
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yield

max (1, 2C1 − λ) ||uk||2 ≥
∫

Ω
|∇uk|2 + (2C1 − λ)

∫
Ω
u2
k =

∫
Ω
W (x)p(uk)uk

+
∫

Ω
λu2

k + (2C1 − λ)
∫

Ω
u2
k +

∫
Ω

2W (x)P (uk) −
∫

Ω
2W (x)P (uk)

≥ −C +
∫

Ω
(W (x)p(uk)uk − 2W (x)P (uk))→ +∞.

Hence, {uk} must be unbounded in E.

3. The nonsymmetric case

This section deals with (Pf ) where f ∈ L2(Ω), f 6≡ 0. The corresponding
Euler functional is

If (u) =
∫

Ω

(1
2
|∇u|2 − λ

2
u2 −W (x)P (u)− f(x)u

)
, u ∈ H1

0 (Ω). (3.1)

Let us define the set Iε = {u ∈ H1
0 (Ω) : I ′f (u) = 0, If (u) ≥ ε > 0}, where ε

is a sufficiently small positive number. We assume the following hypothesis:

(pW ) ∃δ > 0 : 0 <
∫
Ω W

−(x)h(uk)∫
Ω W

+(x)h(uk)
≤ 1 − δ, definitively ∀ {uk} ∈ Iε where

h(uk) = ukp(uk)− 2P (uk).

Lemma 3.1. If (pW ) holds, there exists a constant C̃ > 0 such that

C̃
∣∣∣ ∫

Ω
W (x)h(u)

∣∣∣ ≥ ∫
Ω
|W (x)|h(u) ∀u ∈ Iε. (3.2)

Obviously the constant C̃ ≥ 1.

Proof. By (pW )

0 < lim sup
{k:uk∈Iε}

∫
ΩW

−(x)h(uk)∫
ΩW

+(x)h(uk)
= K < 1.

So

lim sup
{k:uk∈Iε}

∫
ΩW

+(x)h(uk) +
∫

ΩW
−(x)h(uk)∣∣∫

ΩW
+(x)h(uk)−

∫
ΩW

−(x)h(uk)
∣∣

≤
1 + lim sup{k:uk∈Iε}

∫
Ω W

−(x)h(uk)∫
Ω W

+(x)h(uk)

1 + lim inf{k:uk∈Iε}
(
−
∫
Ω W

−(x)h(uk)∫
Ω W

+(x)h(uk)

) =
1 +K

1−K . ¤
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We are going to prove the following theorem, which extends the result by
Rabinowitz (see Theorem 10.4 of [18]) to the case of indefinite nonlinearities,
following the same spirit:

Theorem 3.1. If p and W satisfy (p1)–(p4), (pW ), (pW1), (W ), and
f ∈ L2(Ω), f 6≡ 0, then problem (Pf ) possesses infinitely many solutions,
provided that s in (p2) is further restricted by the condition (1.1).

In order to prove Theorem 3.1 we will need some additional lemmas and
propositions.

Lemma 3.1. Under the hypotheses of Theorem 3.1, there exists a constant
A depending on ||f ||L2 such that, if u belongs to Iε, then∫

Ω
|W (x)| (P (u) + a4) ≤ A

(
If (u)2 + 1

) 1
2 . (3.3)

Remark 3.1. If f ≡ 0 and P is a homogeneous function, one can show,
without hypothesis (pW ), that∫

Ω
W (x)|u|s+1 ≤ A

(
If (u)2 + 1

) 1
2 . (3.4)

This suggests that the estimate (3.3) may be too strong. However, the
proofs carried out in the sequel will highlight that an estimate like (3.4) is
not useful, because W changes sign.

Proof. Suppose u is a critical point of If ; then by (p3) and by Remark 3.1,

|If (u)| =
∣∣∣If (u)− 1

2
I ′f (u)u

∣∣∣ =
∣∣∣ ∫

Ω

1
2
W (x)p(u)u−W (x)P (u)− 1

2
fu
∣∣∣

≥ 1
2

∣∣∣ ∫
Ω
W (x)(p(u)u− 2P (u))

∣∣∣− 1
2

∣∣∣ ∫
Ω
fu
∣∣∣

≥ 1
2C̃

∫
Ω
|W (x)|p(u)u− 1

C̃

∫
Ω
|W (x)|P (u)− 1

2
||f ||L2 ||u||L2

≥ s− 1
2C̃

∫
Ω
|W (x)|P (u)− 1

2
||f ||L2 ||u||L2

≥ s− 1
2C̃

∫
Ω
|W (x)|(P (u) + a4)− C||u||2L2 − C. (3.5)

Let us observe now that by the Hölder inequality,

||u||2L2 =
∫
supp W

1

|W (x)|
2
s+1

|W (x)|
2
s+1 |u|2 ≤ C

(∫
Ω
|W (x)||u|s+1

) 2
s+1

.

(3.6)
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By the Young inequality, since s+ 1 > 2, for ε > 0,

C
(∫

Ω
|W (x)||u|s+1

) 2
s+1 ≤ C(ε) + ε

∫
Ω
|W (x)||u|s+1,

where C(ε)→∞ as ε→ 0. Hence by (3.5) and using (2.2), one finds that

|If (u)| ≥
(s− 1

2C̃
− ε

a5

)∫
Ω
|W (x)|(P (u) + a4)− C(ε)− C (3.7)

so, choosing ε such that ( s−1
2C̃
− ε

a5
) > 0, the thesis follows. ¤

Now let χ ∈ C∞(R,R) be such that χ(ξ) ≡ 1 for ξ ≤ 1, χ(ξ) ≡ 0 for
ξ ≥ 2, and χ′(ξ) ∈ (−2, 0) for ξ ∈ (1, 2). Moreover, let us define Q(u) ≡
2A
(
If (u)2 + 1

) 1
2 and

ψ(u) ≡ χ
(
Q(u)−1

∫
Ω
|W (x)| (P (u) + a4)

)
.

Observe that, by Lemma 3.1, if u ∈ Iε, the argument of χ lies in
[
0, 1

2

]
;

therefore, ψ(u) ≡ 1. Finally, set

Jf (u) =
∫

Ω

(1
2
|∇u|2 − λ

2
u2 −W (x)P (u)− ψ(u)f(x)u

)
. (3.8)

Then Jf (u) = If (u) if u is a critical point of If with If (u) ≥ ε > 0. In the
next proposition we will show the main properties of Jf .

Proposition 3.1. Under the hypotheses of Theorem 3.1 the following prop-
erties of Jf hold:

1◦ Jf ∈ C1(E,R);
2◦ There exists a constant D depending on ‖f‖L2 such that

|Jf (u)− Jf (−u)| ≤ D(|Jf (u)|
1
s+1 + 1) for all u ∈ E;

3◦ There exists a constant M0 > 0 such that if Jf (u) ≥M0 and J ′f (u) =
0, then Jf (u) = If (u) and I ′f (u) = 0;

4◦ There exists a constant M1 ≥ M0 such that, for any c > M1, Jf
satisfies (PS)loc at c.

Proof. 1◦ It is true by standard arguments.
2◦ Observe that ∣∣∣ ∫

Ω
fu
∣∣∣ ≤ α1

(
|If (u)|

1
s+1 + 1

)
. (3.9)
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Indeed, since (W ) holds, by (2.2), one gets∣∣∣ ∫
Ω
fu
∣∣∣ =

∣∣∣ ∫
supp W

f

W (x)
1
s+1

W (x)
1
s+1u

∣∣∣ ≤ ∥∥∥fW (x)−
1
s+1

∥∥∥
L2

∥∥∥W (x)
1
s+1u

∥∥∥
L2

≤ C
∥∥∥W (x)

1
s+1u

∥∥∥
Ls+1

≤ C
(∫

Ω
|W (x)|(P (u) + a4)

) 1
s+1

. (3.10)

Now, if u ∈ supp ψ, one has∫
Ω
|W (x)| (P (u) + a4) ≤ 2Q(u) = 4A

(
If (u)2 + 1

) 1
2 ≤ C (|If (u)|+ 1) ,

so the last inequality and (3.10) yield (3.9).
Now let us estimate the “lack” of symmetry of Jf .

|Jf (u)− Jf (−u)| =
∣∣∣ ∫

Ω
(−ψ(u)fu+ ψ(−u)fu)

∣∣∣ ≤ (ψ(−u) + ψ(u))
∣∣∣ ∫

Ω
fu
∣∣∣.

(3.11)
Observe that, by (3.9), one has

ψ(u)
∣∣∣ ∫

Ω
fu
∣∣∣ ≤ ψ(u)α1

(
|If (u)|

1
s+1 + 1

)
, (3.12)

so, by the definitions of If , Jf , and by (3.12), we deduce

|If (u)| =
∣∣∣ ∫

Ω

1
2
|∇u|2 − λu2

2
−W (x)P (u)− fu− ψfu+ ψfu

∣∣∣
≤ |Jf (u)|+ |ψ − 1|

∣∣∣ ∫
Ω
fu
∣∣∣ ≤ |Jf (u)|+

∣∣∣ ∫
Ω
fu
∣∣∣. (3.13)

So, by (3.12), (3.13), and using the Young inequality,

ψ(u)
∣∣∣ ∫

Ω
fu
∣∣∣≤ Cψ(u)

(
|Jf (u)|

1
s+1 +

∣∣∣ ∫
Ω
fu
∣∣∣ 1
s+1 + 1

)
≤ C

(
|Jf (u)|

1
s+1 + 1

)
.

(3.14)
Hence, using (3.14) and a similar estimate for ψ(−u), together with (3.11),
yields 2◦.

To prove 3◦ it suffices to prove that for M0 large, if u is critical for Jf
with Jf (u) ≥M0, then

Q(u)−1

∫
Ω
|W (x)| (P (u) + a4) < 1. (3.15)

The definition of ψ then implies ψ(v) ≡ 1 for v near u. Hence, ψ′(u) = 0, so
Jf (u) = If (u), J ′f (u) = I ′f (u), and 3◦ will follow. Actually by the definition
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of Jf one gets

J ′f (u)u =
∫

Ω

[
|∇u|2 − λu2 −W (x)p(u)u− (ψ(u) + ψ′(u)u)fu

]
. (3.16)

Setting θ(u) = Q(u)−1
∫

Ω |W (x)| (P (u) + a4), one has

ψ′(u)u = χ′(θ(u))θ′(u)u

= χ′(θ(u))Q(u)−2
[
Q(u)

∫
Ω
|W (x)|p(u)u− uQ′(u)

∫
Ω
|W (x)|(P (u) + a4)

]
= χ′(θ(u))Q(u)−2

[
Q(u)

∫
Ω
|W (x)|p(u)u− (2A)2If (u)I ′f (u)uθ(u)

]
.

Set now

T1(u) = χ′(θ(u))(2A)2Q(u)−2If (u)θ(u)
∫

Ω
fu,

T2(u) = χ′(θ(u))Q(u)−1

∫
Ω
fu.

One gets

J ′f (u)u = (1 + T1(u))
∫

Ω
|∇u|2 − λ(1 + T1(u))

∫
Ω
u2 (3.17)

−(1 + T1(u))
∫

Ω
W (x)p(u)u− T2

∫
Ω
|W (x)|p(u)u −(ψ(u) + T1(u))

∫
Ω
fu.

Consider now

Jf (u)− 1
2(1 + T1(u))

J ′f (u)u. (3.18)

If ψ(u) = 1 and T1(u) = T2(u) = 0 then (3.18) reduces to the left-hand side
of (3.5), so (3.15) is a consequence of (3.3). Since 0 ≤ ψ(u) ≤ 1, if T1(u)
and T2(u) are small enough, the calculation made in (3.5) can be used in
(3.18) to prove a similar estimate, with A replaced by a larger constant, still
smaller than 2A, so again (3.15) holds. Therefore, it suffices to show that
T1(u), T2(u) → 0 as M0 → ∞. If u 6∈ supp ψ then T1(u) = T2(u) = 0, so
we assume u ∈ supp ψ. By (3.9) and the definition of T1 and χ,

|T1(u)|≤ 2(2A)2 |If (u)|
(2A)2|If (u)2 + 1|θ(u)

∣∣∣ ∫
Ω
fu
∣∣∣

≤ 4α1|If (u)|−1
(
|If (u)|

1
s+1 + 1

)
. (3.19)
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Now, if u ∈ suppψ, by the definition of Jf and If one gets

If (u) ≥ Jf (u)−
∣∣∣ ∫

Ω
fu
∣∣∣.

Thus, by (3.9)

If (u) + α1|If (u)|
1
s+1 ≥ Jf (u)− α1 ≥

M0

2
(3.20)

for M0 to be chosen large enough. Therefore, if If (u) ≤ 0, (3.20) and the
Young inequality with (s+ 1)′ = ν imply

αν1
ν

+
|If (u)|
s+ 1

≥ M0

2
+ |If (u)|,

which is impossible if we choose M0 ≥ 2αν1
ν . Hence, If (u) > 0. Therefore,

(3.20) yields If (u) ≥ M0
4 or If (u) ≥ (M0

4α1
)s+1. So in both cases If (u)→ +∞

as M0 → +∞, which together with (3.19) shows T1(u) → 0 as M0 → +∞,
and using the same argument T2(u) → 0 as M0 → +∞. This concludes the
proof of 3◦.

The check of 4◦ follows the same lines as the previous proof. It suffices
to show that there exists M1 > M0 such that if {um} ∈ E = H1

0 (Ω), M1 ≤
Jf (um) ≤ K, and J ′f (um)um → 0, then {um} is bounded. Let us fix m ∈ N
such that um ∈ supp ψ. Indeed, if um /∈ supp ψ, then ||um|| is bounded
since the functional If is symmetric and the (PS) condition was proved in
[14]. For large m and ρ > 0 one has

ρ||um||+K ≥ Jf (um)− ρJ ′f (um)um

=
(1

2
− ρ(1 + T1(um))

) (
||um||2 − λ||um||2L2

)
+[ρ(ψ(um) + T1(um))− ψ(um)]

∫
Ω
fum −

∫
Ω
P (um)W (x) (3.21)

+ρ(1 + T1(um))
∫

Ω
ump(um)W (x) + ρT2(um)

∫
Ω
ump(um)|W (x)|.

For M1 sufficiently large, and therefore T1, T2 small, we can choose ρ ∈
((s+ 1)−1, 2−1) and ε > 0 such that

1
2(1 + T1(um))

> ρ+ ε > ρ− ε > 1
(s+ 1)(1 + T2(um))

. (3.22)

Hence, one finds that(1
2
− ρ(1 + T1(um))

) (
||um||2 − λ||um||2L2

)
≥ ε

2
||um||2 − Cλ||um||2L2 (3.23)
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and

[ρ(ψ(um) + T1(um))− ψ(um)]
∫

Ω
fum ≥ −C||um||2L2 . (3.24)

We are going to estimate the last three integrals in (3.21).

−
∫

Ω
P (um)W (x) + ρ(1 + T1(um))

∫
Ω
ump(um)W (x)

+ρT2(um)
∫

Ω
ump(um)|W (x)|

≥ −
∫

Ω
P (um)|W (x)|+ ρ(1 + T1(um))

∫
Ω
ump(um)W (x)

+ρT2(um)
∫

Ω
ump(um)|W (x)|+ ρ

∫
Ω
ump(um)|W (x)|

−ρ
∫

Ω
ump(um)|W (x)| − ρ(1 + T2(um))(s+ 1)

∫
Ω
|W (x)|P (um)

+ρ(1 + T2(um))(s+ 1)
∫

Ω
|W (x)|P (um)

= ρ(1 + T2(um))
∫

Ω
(ump(um)− (s+ 1)P (um))|W (x)|

+(ρ(1 + T2(um))(s+ 1)− 1)
∫

Ω
|W (x)|P (um)

+ρ(1 + T1(um))
∫

Ω
ump(um)W (x)− ρ

∫
Ω
ump(um)|W (x)|. (3.25)

By (p3) the first integral is positive, while by (2.1) the second integral is
greater than

−C +
ε

2
a5

∫
Ω
|W (x)||um|s+1. (3.26)

For what concerns the third integral one finds, by (p3) and (pW1),

ρ(1 + T1(um))
∫

Ω
ump(um)(W+(x)−W−(x))

ρ(1 + T1(um))
∫

Ω
(s+ 1)P (um)W+(x)− γρ(1 + T1(um))

∫
Ω
u2
m − C

−ρ(1 + T1(um))
∫

Ω
(s+ 1)P (um)W−(x)

ρ(1 + T1(um))
∫

Ω
(s+ 1)P (um)W (x)− C ||um||2L2 − C
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+C||um||2 − C ||um||2L2 − C. (3.27)

It remains to estimate the last integral in (3.25). By (p2) and (p3) one has

−ρ
∫

Ω
ump(um)|W (x)| ≥ −C

∫
Ω
|um| − C

∫
Ω
P (um)|W (x)| − C

−C ||um||L2 − 4AC(|If (um)|2 + 1)
1
2 − C, (3.28)

where we have used the fact that um ∈ supp ψ. Let us observe now that

If (um) = Jf (um) + (ψ − 1)
∫

Ω
fum ≤ K +

∣∣∣ ∫
Ω
fum

∣∣∣ ≤ K + C‖um‖2L2 ;

(3.29)
hence,

−ρ
∫

Ω
ump(um)|W (x)| ≥ −C − C‖um‖2L2 . (3.30)

So from (3.21), using (3.23), (3.24), (3.26), (3.27), and (3.30), we get

ρ||um||+K≥ C||um||2 + C

∫
Ω
|W (x)||um|s+1 − C ||um||2L2 − C. (3.31)

Let us observe now that by the Hölder inequality,

||u||2L2 =
∫
supp W

1

|W (x)|
2
s+1

|W (x)|
2
s+1 |u|2 ≤ C

(∫
Ω
|W (x)||u|s+1

) 2
s+1

.

(3.32)
By the Young inequality, since s+ 1 > 2, for ε > 0,

C
(∫

Ω
|W (x)||u|s+1

) 2
s+1 ≤ C(ε) + ε

∫
Ω
|W (x)||u|s+1, (3.33)

where C(ε)→∞ as ε→ 0. By (3.31)–(3.33), one has

ρ||um||+ C ≥ C||um||2 + C

∫
Ω
|W (x)||um|s+1 − C(ε)− ε

∫
Ω
|W (x)||u|s+1.

Choosing ε small enough, one finds

ρ||um||+ C ≥ C||um||2;

that is, {um} is bounded in E. Then by standard arguments 4◦ holds. ¤
In order to obtain an unbounded sequence of critical values for the func-

tional If , by 3◦ of Proposition 3.1, it suffices to prove that Jf possesses
multiple critical values. Let us introduce the following minimax values:

bk := inf
h∈Γk

sup
u∈E−k

Jf (h(u)),
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where Γk and E−k are defined as in the proof of Theorem 2.1. These minimax
values will not in general be critical for Jf unless f ≡ 0. Since the presence
of the ψ term in Jf does not affect the verification of (I1), (I2), arguing as in
the proof of Theorem 2.1, we obtain the following lower bound for bk: there
exists a constant C and k̃ ∈ N such that

bk ≥ C kθ for all k ≥ k̃, (3.34)

where θ was defined in (1.1).
To get critical values of Jf from the sequence {bk}, another set of minimax

values must be introduced. Define

Uk = {u = tϕk+1 + w : t ≥ 0, w ∈ E−k },

Λk ={h ∈C(Uk, E), h is odd, h = id on Qk ≡ (E−k \
◦
BRk)∪(E−k+1\

◦
BRk+1

)}.

Set
ck := inf

h∈Λk
sup
u∈Uk

Jf (h(u)).

Comparing the definition of ck and bk it is easy to check that ck ≥ bk.

Proposition 3.1. Assume ck > bk ≥M1. For δ ∈ (0, ck − bk) define

Λk(δ) := {h ∈ Λk : Jf (h(u)) ≤ bk + δ for u ∈ E−k }

and
ck(δ) := inf

h∈Λk(δ)
sup
u∈Uk

Jf (h(u)). (3.35)

Then ck(δ) is a critical value of Jf .

Proof. This proof follows the same lines as Proposition 10.43 of Rabinowitz
[18], using 1◦ and 4◦ of Proposition 3.1. ¤

Now, if ck > bk for a sequence of k → ∞, then by Proposition 3.1 and
by (3.34), Jf has an unbounded sequence of critical values and the proof is
complete. It remains to show that the relation ck = bk is impossible for all
large k.

Proposition 3.1. If ck = bk for all k ≥ k∗, there exists a constant C > 0,
and k̂ ≥ k∗ such that

bk ≤ Ck
s+1
s (3.36)

for all k > k̂.
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Comparing (3.36) to (3.34) and (1.1), one gets a contradiction, and the
proof of Theorem 3.1 is complete.
Proof of Proposition 3.1. Let ε > 0 and k ≥ k∗. Choose h ∈ Λk such
that

sup
u∈Uk

Jf (h(u)) ≤ bk + ε. (3.37)

Since Uk ∪ (−Uk) = E−k+1, h can be continuously extended to E−k+1 as an
odd function. Therefore, by definition of bk

bk+1 ≤ sup
E−k+1

Jf (h(u)) = max
BRk+1

∩E−k+1

Jf (h(u)) = Jf (h(w)) (3.38)

for some w ∈ BRk+1
∩ E−k+1. If w ∈ Uk by (3.37) and (3.38),

Jf (h(w)) ≤ bk + ε. (3.39)

Suppose w ∈ −Uk. Then, since by (3.34) bk → ∞ as k → ∞, (3.38) and 2◦

of Proposition 3.1 imply Jf (−h(w)) > 0 if k is large, say k ≥ k̂. By 2◦, the
oddness of h and (3.37), one gets

Jf (h(w)) = Jf (−h(−w)) ≤ Jf (h(−w)) +D
(

(Jf (h(−w)))
1
s+1 + 1

)
≤ bk + ε+D((bk + ε)

1
s+1 + 1). (3.40)

Combining (3.38)–(3.40) one finds

bk+1 ≤ bk + ε+D((bk + ε)
1
s+1 + 1). (3.41)

Since ε is arbitrary, (3.41) implies

bk+1 ≤ bk +D((bk)
1
s+1 + 1) (3.42)

for all k ≥ k̂. Arguing as in Proposition 10.46 of Rabinowitz [18], (3.42)
implies the thesis by induction. ¤
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