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1. Introduction and statement of the results

Let (M, g) be a Lorentzian manifold. In this paper we first point out how can be faced
the existence of timelike trajectories joining two fixed poiagsz; of a region{z € M :
a < T(2) < b} whereT is a smooth time function, assuming that its boundary is convex. From
a physical point of view we can interpr®f as the space-time where the information about the
gravitational field are “included” in the metric tengprwhile the action of the electromagnetic
field is given by a smooth vector field. The trajectories connecting the couple of events
are the free falling trajectories of a material pomtThe fundamental equation of Classical
Physics related to the motion afinside a gravitational and an electromagnetic field is the
Euler-Lagrange equation related to the action functional

ty

ty
F(z) = —moc/ V—{z,z)dt +q (A(2), z) dt, 1.1)
to to
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(see [8]) wheren is the rest mass of the partickgis its charge (and we shall assume- +1),
cis the speed of lightA(z) gives the action of the electromagnetic field dnd) = g(2)[-, -].
To obtain critical points of the function& one can look for the critical points of the functional

S = %/0 (z,2)do + /Gl (A2), 2) do, (1.2)

0 0o
satisfying(z(o), z(c)) < 0, for anyo (cf. Remark 22). The functionak1.2) was introduced
in [5] to study some fundamental equations in General Relativity.

The existence of critical points fail.2) has been studied by several authors, but just in
the case thalA(z) = 0 (see [4] and references therein). The presenc&(@f # 0 makes the
problem more complicate. As far as we know the only existence results for critical poi#its of
are on standard static manifolds (see [2]).

In this paper we assume that the manifdldhas a smooth time functio, : M — R
namely satisfying

(VT (2, VT (2)) <O, Yz e M.
HereVT (2) is the Lorentzian gradient &f defined by
dT(@[¢] =(VT(2),¢), V¢ e T, M.

The study of critical points a$ will be done under intrinsic assumptions on the funcflorset
VT(2)
V=(VT@, VT(2)
By the help ofW(z) we can define a natural Riemannian metricd\r{see [1]) setting

(¢, 01r= (¢, ¢1) + 2(W(2), £)(W(2), ¢1). (1.4)

(We can easily prove thét.4) is a Riemannian metric, using the wrong way Schwartz inequality,
see [10].) For any fixed constardsb € R with a < b, let us consider the strip

W(2) = (1.3)

Map={zeM:a<T(2 <b}.
Our assumptions are the following:
the metric(-, -) is complete inMg_p. (1.5)

Let
€ 1 1

VRT@. VR T@)r  (VT(@,VT(@)
(see Lemma A.1) be such that

B=pB(2=

I, N>0: v<B8@ KN Yz e Map (1.6)

(here VR represents the gradient with respect to the Riemannian metric). Dendtd lie
hessian off with respect to the Lorentzian metficH T (2)¢, ¢) = d?/ds?(T (y(9))) ;s—o Where
y is a geodesic such tha{0) = zandy (0) = g). We assume that

IK >0: |H'@r<K Yz € Map, (1.7)
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where| - [[r = +/{-, )R-
JA, AL eRAIrR< Ao and [dAr < Az on M. (1.8)

There exist$ > 0 :
(HT'(2¢,2) <0 Vze T YJa a+d[), Ve e T,M, with (¢, VT(2)) =0, (1.9)
(HT'(@¢,¢) >0 Vze T Y]b—34,b[), Ve € T,M, with (¢, VT (2)) =0, (1.10)

and
[dA* —dAl(2)[c]=0 VceTM,Vze T YJa,a+s8)UTt(Qb—-s,b[),

with (¢, VT (2)) =0, (1.12)

whered A is the covariant differential oA andd A* is the adjoint operator af A.

Finally we need the following assumption, giving the Saddle Point structure for the func-
tionalS: there exist® e (0, 2) and two continuous masz), d(z) not depending oft (z) such
that

(¢, O)r— B@(¢, VT ()% < [c(@ +d@ IT@I°](¢. ¢)r. (1.12)

Remark 1.1. Observe that conditions (1.9) and (1.10) are equivalent to the strict convexity of
the boundary oM, (cf. [9])

The main result of the paper is the following

Theorem 1.2. Assum&l1.5)—(1.12). Then for any fixedgzand z there exists a solution of the
Euler-Lagrange equation corresponding to the functio@a®) connecting g with z;.

Remark 1.3. WheneverA = 0, Theorem 1.2 gives the results proved in [9], under non-intrinsic
hypothesis.

Remark 1.4. Using the a priori estimates in Section 4 and relative category as in [6] allows
us to get, under the assumptions of Theorem 1.2, that there exists a sefpérafecritical

points ofS such that{z,} — +oo. Note that the result of Theorem 1.2 has only a geometrical
meaning but not yet a physical interpretation. Indeed while we are able to find critical points
wheres is strictly negative (ifi T (z1) — T (zo)| is sufficiently large), we cannot conclude that
they are time-like. This is due to the particular conservation law satisfied by the critical points
of § (see Proposition 2.1). The presence of the ty%quA(z), z) carries such difficulty, together

with many others related to the a priori estimates. However the proof of Theorem 1.2 is a first
step in the search of time-like critical curves for the functighalVe hope that the techniques
used in that proof will allow also to guarantee the existence of the time-like solutions.

Remark 1.5. For the proof of the existence of time-like critical curvesFothe situation is
completely different with respect to the cade= 0, where the global hyperbolicity assures the
existence of a causal critical curve Bf namely a causal geodesic connecting two given events
(see, e.g., [3]). Indeed, since both integral&iare positively homogeneous of the same degree
with respect taz, if A # 0, global hyperbolicity is not sufficient to obtain a priori estimates
for z even if we use the time coordinate to parameterize the admissible paths.
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2. The variational principle
Denote withH2([0, 1], M) the space

1
HY2([0, 1], M) = {z: [0,1] — M : z e AC([0, 1], M) and f (2, 2)r ds < +oo},
0

where AC([0, 1], M) is the set of absolutely continuous curvesi and (-, -) is defined
in (1.4). Define

ol2 _ [ze HY2([0, 1], M) : 2(0) = 2o, 2(1) = 21}

and
Qr? = {ze 92 2(0.1]) C May) 2.1)

where M, is defined in Section 1. It is well known (see, e.g., [10]) tkdt? is a Hilbert
submanifold ofH2([0, 1], M) and its tangent space at Q*? is given by

T,Q% = {¢ € HM([0, 1], T.M) : £(S) € Ta9M Vs €[0,1], ¢(0) = ¢(1) = 0},
while the Hilbert structure is
1
(€, 0)1 = /0 (DRz, DR¢) ds (2.2)

In order to prove Theorem 1.2 we need the following simple result which gives the equation
satisfied by the critical points &.

Proposition 2.1. If z is a critical point of§ on Q%2, then ze C?([0, 1]) and satisfies the
equation

Dsz+ dA(2)[z] — dA*(2)[Z] = 0. (2.3)
Moreover(z, z) = const

Proof. If zis a critical point of the functiona, then

1 1
| e+ a2 00 =~ [ (@aaride) vee Tt
0 0
and integrating by parts the right-hand side member, sjii@e= ¢ (1) = 0, we get
1 S
/ <'z+ A(2) — [ / ((dA@z(r))) [z(n)] dr}, Ds§> =0 V¢eT,QM (2.4)
0 0
By (2.3) we deduce that + A(2) — [ /5 ((dAz(r)))"[z(r)]dr] is of classC. Thenz is a
continuous curve and applying agadmh4), z is of classC*. Finally, sinced A is the adjoint of
the operatod A, multiplying (2.3) by z, we obtain{Dsz, z) = 0, that is

(z,z) = const [J
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Remark 2.2. Letz € Q%2 be a critical point ofS such that(z(s), z(s)) = E, < 0 for any
s € [0,1] andz(0) = zy, z(1) = z;. Supposey/—E; = mpc. Thenw(s) = z(s) is a critical
point of the functionaF whenevelq = 1, andw(s) = z(—s) is a critical point ofF whenever
g = —1. In both casew is a solution of the differential equation

q .
mw—(*) + gq[d A*(w) — d A(w)][w] = 0. (2.5)
ds\y/—(w, w)
Indeed by Proposition.2, z satisfies equatiof®2.3). Assumeq = 1. By the definition ofF
ty 1 ty t1
F/ == —m C ] ) DS +/ dA ) j +/ A ’ DS
(w)[¢] o —m (w, DsZ) . (d Aw)[¢], w) . (A(w), Dst)

that yelds(2.5) for anyw critical point of clas<C? of F. Since,/—E, = mocC, puttingw(s) =
z(s) in (2.5) we obtain the thesis. The same result can be obtaingd# —1 choosing
w(s) = z(—S).

3. Palais—Smale condition on a strip

For the search of critical points & via variational methods, we need some compactness
assumption on the action functiortal The most natural one is the Palais—Smale condition.

Definition. Let X be a Hilbert manifold$2 an open subset of, F : @ — R aC-functional,
andc a real number. We say thatsatisfies the Palais—Smale condition at the ley¢P.S.).,
on £, if for every sequencéz, }ney in 2 satisfying:

(1) F(zo) — ¢,

(2) lim F'(z) =0,
there exists a subsequen@g, }key converging inQ. A sequencdz,} in  satisfying (1) and
(2) is called a Palais—Smale sequence at the evel

We do not know if the functiona$ satisfies tha Palais—Smale condition, for this reason we
introduce a penalizing family of functionals, denotedshyas follows: letys : [0, +00) —> R
be a smooth@?) real function having the following properties:
D¢ (© = ¢'(0)=¢"0 =0,
)y (o) >0 Vo eR", y'(c) >0,
) lim, 1o 0¥’ (0) — Y (0) = +00.
An example of such a function is given by

1//(0)=eg—(1+0+%02).
Set 1
1,0(0——) if o>
Ye(o) = €

0 if o<
£

’

1
e
1

Now fix two real numbera < b and take, as in section 1,

Map={zeM:a<T(2 <b}.
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Fix0<é < %(b — a) and consider £2-map¢; : R — R such that

b—o foe[b-38b+4],
oc—a if o ela—38,a+74].

¢s(0)={

Take® : My, — R defined asb(z) = ¢5(T (2)). By constructiond vanishes odM, , and
it is positive onM, . For anye > 0 we define the penalized functional

8::QLpr— R

as follows

) 11
B _ . 2)
8. =82 — v <./o <Z’VT(Z)>) ‘. ¥2z)

WhereQ;’f} has been defined if2.1). To prove the Palais—Smale condition is more convenient
to write 8, in the following form:

1 1 1 R 1
Se<z)=—f <'z,'z>R—/ <W,'z>2R+/ (A@), )
2 0 0 0

S ) 11
— . (/0 (z,V T(z))R)—g/O peye ds,

A VRT(2)
W(2) = 3.2
NN TR T oo

(3.1)

where

is such thatW, ¢)r = (W, ¢) (cf. Lemma A.2).
We have the following

Proposition 3.1. Assume&1.6)—(1.8). Let ce R, {8,} be an infinitesimal sequence belonging
toR*. Let{z,} C Q37 be a sequence such that

1
sup [5.(zl<ll < & [ (DFe. Do, (3.4)
0£¢ €T, Q12 0

where§), denotes the differential & .
Thenfol('zn, VRT)E{ is bounded andzis uniformly far fromoMa p.

Wheneverz, is uniformly far fromoMs,p, the boundedness g{)l('zn, VRT)ﬁ is useful to
prove the boundednessfﬁ('zn, Zy)r. Indeed we have the following

Lemma 3.2. If 8.(z,) < ¢, z, is uniformly far fromaM, , and fol(zn, VRT)2 < ¢y, then
f01<'2n, Zn)R is bounded.
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Proof. SinceS.(z,) < c, by (3.1), (3.2) and(1.6)

1 1 1 2 1
E/ (Zn, Zn)R = 8¢(zn) + / <W(Zn)a zn> - / (A(zn), zn)
0 0 0

1 1
1
+ 9, 'z,VRTst)Jr f ds
1ﬂ(/o (@ R “Jo 2z
1 1
<c+N/ <'zn,vRT>éds+||AnR/ Nraa
0 0

1 R ; 1 1
. Zn, VOT)5 d d
v (./o v VTR S)+8/o 2z

1 1 1/2 1
f('zn,'zn>R<2||A||R(/ <'zn,'zn>R) +2c+ 2N/ (70, VRT)Z ds
0 0 0

1 1
1
+28</ Z,VRTZdS)+28/ ds
v O(n R 0 cI)z(zn)

lSincefol('zn, VRT)EQ ds andfo1 1/(®?(z,)) ds are bounded;3.5) implies the boundedness of
fo <.Zn, Zn)R |:|

Then

(3.5)

Proof of Proposition 3.1. For the sake of simplicity during this proof we will writeinstead
of z,. By (3.1) and(3.4), for any¢ € T,Q;7 we have that

1
0< 8;<z)[;]+8n/0 (DRz. DR¢)w

1 1
= [ @ Df)r-2 [ (W, 2e[DR (W, 2e)]
0 L 0
0
1 1
— 2y (/0 ('Z,VRT(Z)>2R) [/0 ('Z,VRT)RDF(('Z,VRT)R)]
1

e (1 1
= VR, ¢)rd an/ D¢, DR
+ 2/; (DS(Z)< g)R S + o ( sg C)R

1
+ / [dAD[C]. 2)+ /0 (A@), Dst) (3.6)

WhereDﬁ(-) denotes the covariant derivative (with respeatlid)) along the directiorg. Now
take

£(s) = [ta(s) — .(9)]Y(2),

where
VRT (2)

Y@= (VRT @), VRT (@)

(3.7)

th(s) =T(z(s)) and t.(s)=((1—-9T(z(0)) +sT(z(1)).
Note thatt, = (z, VRT)g and(W(2), 24 = B(2)t2, wheres is defined in(1.6). Therefore,
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with the above choice af (see also the form of the metridn local coordinates);3.6) becomes
1 1
0< /O (z. DEY(@)[ta(s) — t.(9)] + /O (2, Y@)[ta(s) — t.(9)]
1 1
- /0 (VRB(@, Y @)[ta(s) — t(9)] 17 — 2 /0 B@ta[ta(s) — 1.(9)]

1 1
+ /0 [dADLY @), Z)[ta(8) — t.(9)] + /0 (A@), Ds[(tr(s) — t.(9)) Y @])

— 2y (folinz) Uolfn(fn(s) — tk(s))} (3.8)

e [t 1 (VFe@ ViT()
2 /0 %2 (VFT (2, VRT (2)) (th(®) —t.(9))

1

1
5 [ / Y. Y)r(in(S) — 1(9) + / (DRY, DEY)r(tn(S) — t.(9))°
0 0

1
+ 2/ (Y, DSY)R(tn(s) — () (ta(s) — t*(S))].
0
An integration by parts yields
1
0

Notice that]t,(s)| = |T(z(1)) — T(z(0))| = T, wheret is constant. Moreover, considering that
z e Q 7, itfollows that

1
| (@ Dif(tne) ~ L)Y @]) = - [ AR Y@ -Le)  @9)

||tn - t*” < C*- (310)

Then, since|Y||r < +/N (see(1.6)) using Proposition A.3 and assumptiofisé) and (1.8),
combining(3.8)—(3.10) gives

1 1 1
0<eM [ (2 2a+ VN [ V2 Br (0 - 1) + Mac. [
0 0 0
1 1 1
+ ZN/ (f§+|tn‘[*|)+2A1\/Nc*/ VIZ, 2R + 2%y, (/ t§>
0 0 0

1 1 1 R R
— 20 2 o] | € 1 (VRa(2), VRT(2)) B
2 (/o tn) [/() t”} * 2/0 2%(2) (VRT (2, VRT (2) (ta(8) — t.(9))

1 1 1
8N [ (009~ £6)" 4 8M? [ (2.2t o6V WM [ i
0 0 0

Then assuming by contradiction thﬁﬁﬁ — +o0 (and using the properties gf,) gives the
existence of constanfdg, D1 > 0 such that

1 1 1
0< Do+D1/<'z,'z>R—2w;</ tﬁ)[f fﬁ}
0 0 0

e (11 (Vi@ VT ()
" §~/(; CDS(Z) (VRT (Z), VRT(Z)> (tn(S) - t*(S))

(3.11)
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By (3.5) we deduce the existence of constabts D3 > 0 such that

T 1 1 q
/O(Z,Z)R<D3—|— D4[Wg (/0 tn)—H:/O @2(2)] (3.12)

Finally, combining(3.11) and (3.12), using the properties af, and the sign of VR®(2),
VRT (2))r (ta(S) — t,(S)) near bydM, p, (see the definition ob) allows to conclude tha},fol t2
is bounded. Now, a(z) = ¢;(T (2)) using once again3.11) and(3.12) gives the existence
of constantds, Dg > 0 such that

1

1 1 1
<D + De.
/o 63(t) 5/0 K2t | °

By the definition ofg; we deduce the existence Bf, > 0 for which
1 2Ds
30 ° 2
o5 @5 (1)
Thenfo1 1/(¢2(tn)) must be bounded. Sing%1 t2 is bounded, we have thatis uniformly far
fromoMyp. O

D foranyt € ]a, b[.

Proposition 3.3. Assum&1.6)—(1.8). Thens, satisfieq P.S.); for every ce R.

Proof. 8.(z) is a linear and continuous operator in the sp@ép% endowed with the Hilbert
structure(2.2). So, if{z,} is a Palais—Smale sequence, for every N we can write

1
S.@lel = [ (A DI
0
whereA, goes to 0 as — +oo with respect td_2-norm. Therefore, by construction,

1
0

1 1
fo (20, Dsz) + /0 (d AGz[C]. 20) + f (A(zy), Ds¢)

1 1
- 2y, (/0 (zn, VT)Z) [fo {zn, VT)({Dst, VT) + (2n, HT(A)[(]))}

1 l .
4+ 2 /0 T (@@ 0)
1
=/ (An DRE) .
0

By Proposition 31 and assumptiofil.5), unless to consider a subsequereg} converges to

ze Q;ﬁ uniformly and weakly inH'2. We have just to prove that the convergencedih? is

strong. In order to isolat®s¢ in (3.13), we shall integrate by parts the terms that contain
Using the same techniques of [7] we can state that the covariant integrals appearing in the
integration by parts are boundedkh-2. Moreover

(3.13)

D¢ = D¢ + I'(z0)[2n, ¢],
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wherer is bilinear form depending continuously apn So(3.13) becomes

1 1 1
/<'zn+an, Dt} — 29/ (/ <'zn,VT>2)f (20, VT)(Dsz, VT)
0 0 0

1
=f (Bu, Det),
0

where (unless to consider a subsequengaonverges uniformly an@, goes to 0 inL2. By
(3.14) there exists a sequenkguniformly bounded, such th&sk, = 0 and

(3.14)

1
0

Then multiplying both terms by T we have

1
(zn, VT) [1 —2y! (/ (Zn, VT)2> (VT, VT)} = (By+kn—on, VT).  (3.16)
0
Then by(3.15) and(3.16) we can write
zn =an+ bn,

wherea, converges uniformly antd, — 0 in L2, showing that{z,} converges strongly ta
with respect to théd>? norm. 0O

4. A priori estimates for the critical points of 8¢

Let us consider a family of curvdg, }.. such that any, is a critical point ofS,. Arguing
as in the proof of Lemma.2 and using3.16) with B, = 0, shows that any, is of classC?.
Moreover puttingA, = 0 in (3.13) and integrating by parts (with, replaced byz,) gives the
differential equation satisfied by

. . Vo (z,) N 2)
—Dsz, + [dA*(z.) — d AZ)][Z] + 2 2 ., VT (Z
z. + [dA(z,) (z)][2:] + 2¢ ) + 2y, (/0 (z (z0)) @.1)

- [(Dsze, VT (2)) VT (z.) + (2, HT (2:)[2)) VT (z.)] = 0.

Proposition 4.1. Fix ¢ € R and assumél.6), (1.7) and(1.8). Let z be a critical point ofS,
such that

S:.(z;) <c foranye € ]0,1]. (4.2)
Thenfol('ze, Z.)r is bounded independently ofc ]0, 1].
Proof. Sincez, is a critical point ofS,, we have

8.(z)[c]=0 V¢ eT, Q2
Chooser = (VT(z.))/({(VT(z.), VT (z.)))t, wherer € Hy?([0, 1], R). Sett, = T(z.), S0
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t. = (VT (z.), z.). A straightforward computation gives the existenc€of 0 such that
1 1 . 1
OgC(/ %('Zg,'Zg)R—l-l) Irl—v/ t€%+C/ 7]
0 0 0
11 (Vd(z),VT(z L 1o
+2€/ 3 A ())r—¢;</ taz)/ter,
o P°(z0) (VT(ZS)7 VT(ZS)) 0 0
wherev is defined by(1.6). Now multiplying byz, both sides o0f4.1) gives the existence of a
constante, € R such that
&

1
175 5\ _ gt 12 : 2 =
ez -l ([ €) @ VT2 o =

Then integrating in [01] and recalling the definition df, gives
1 1 1 . 1 ) 1 1
E8=_‘/<-Zav-z€>_vf;(/ tgz)/tgz‘f‘g/
2 Jo 0 0 o P%(z)
! S | L 1 L
=s£<z£>—f <A(zg),'z£>+28/ 1o (f tf) ) </ tg)/ i2
0 0o ®%(z) 0 0 0

Since%('z, 2R = %('z, 2) + B(2t? andv < B(2) < N foranyz € M, p, combining(4.2)—(4.5)
gives the existence &; > 0 such that

1 T 1 1
0<Cl[/ |T|+f V(Zsazs>R|T|+28/ / Il
0 0 0 0

®?(z)

1 1 1 1 1 1
+w€</ tf)/ |r|+w;<f tf)/ t3|r|+/ tfm]—v/ t.r
0 0 0 0 0 0

b L1 (Vo(z), VT (2)) Yo\ [
2 _ i (4
+C1./o i gfo z) (VTz). VT "V (/o t)./o tr.  (40)

Chooser = sinh(w(t, —t,)), wheret,(s) = (1 —5)T (z(0)) +sT(z(1)).If T(2) € 1b—34, b,
V®(z) = —VT(2) andtr > 0, whileif T(2) € Ja,a+ [, V®(2) = VT(2) andtr < 0. Then
there exist®y > 0 (independent of) such that
L1 (VO@), VT@) b
®3(z) (VT(2), VT(2)) — @%@z)
foranysela,a+ 8] U Jb—6,b[. Fix w > 1 suchthat - v > 0. SinceT (z,) is uniformly

bounded, using4.6), (4.7) and the definition of/, allows to deduce the existence of a constant
D > 0 such that

1 1
/ t2< D (1+/ ,/<'z€,'z€>R). (4.8)
0 0

(4.3)

E.. (4.4)

(4.5)

4.7)

As
1 1 ] ) 1 ) 1 )
Ss(zs) = 5/ <Zes ZS)R +/ (A(Zs)v Zs)R _/ IB(Ze)tgz
0 0 0

1 t,
‘%@‘%(/o te)’

(4.9)
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S:(z.) < ¢ |[{AZ), 2.)| < Ao {zZ:,2.)r and B > v, by (4.8) we obtain the existence of
Dg > 0 such that

1t b '
5] <'z£,'zg>R<Do[1+sf —2+w£<f tf)] (4.10)
2 0 0 ) 0

Finally, setting(4.10) in (4.6) with t as above allows to get thﬁ;1 t2 ande fol 1/(®%(z,)) are
bounded independently of [

Remark 4.2. Under the assumption of PropositiorL4if z, is a critical point ofS, and(4.2)
holds (thanks to the definition af,) we have

([0)-

for all ¢ sufficiently small. Therefore, satisfies

Vod(z,
—Dsz, + [dA*(z.) — dAZ)][z] + 2¢ 3(2) = 0. (4.11)
®(z.)
Lemma 4.3. Fix ¢ € R and assume tha#.2) holds. Suppose th&l.6)—(1.11) are satisfied.
Then there exisi(c) > 0 ande(c) > 0 such that

®(z.(s)) > 8(c) forany e¢€]0,e(c)] and se]0,1]. (4.12)

Proof. Takep,(s) = ®(z.(s)). If, by contradiction(4.12) is not satisfied (since. (0) = ®(zo)
andp. (1) = ®(zy) for anye) there exists, € ]0, 1[ minimum point forp, such that

Iim0 ®d(z.(s)) = 0.

By the construction oo, T (z.(s.)) is an element of intervab] a + 5[ U ]b — §, b[ for any ¢
sufficiently small and

() = (VT(Z), ) = 0. (4.13)

It will be enough to consider the case tiaiz.(s.)) € ]a, a + §[ because whefl (z.(s.)) €
]b — 8, b[ can be dealt in the same way. Sirge= ] 0, 1[ is @ minimum point forp, we have

pl(s) = 0. (4.14)
Moreover by the construction b,
pl(s) = (HT@)[Z], Z) + (VT (2), DsZ). (4.15)

Then, combining4.13)—(4.15) and(4.11), and recalling the construction df gives
(VO(z), VT (zZ.))
®%(z.)

0< (HT(2)[z], z.)+ (VT (z), (A (z) —d Az ))[z]) + 2¢

From(1.11) and(4.13) it follows that (d A*(z,) — d A(z.))[z.] = 0. Then ins,,

5 (VO(Z), VT (Z)) T L.
2 22 < (H'(2)[z], z).
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If T(z.(s.)) € Ja,a+8[, V®(z,) = VT (z.), therefore
—(V®(z,), VT(z,)) = —(VT(z),VT(Z)) > 0,

while (HT(z:(s.))Z:(S:), z:(S))) < 0 by assumption1.9). Such a contradiction allows to
conclude the proof. O

Remark 4.4. Under the assumptions of Lemma34going to the limit ag — 0 allows to
obtain a sequenci,, } that converges (with respect to tB2-norm) to a critical point of the
functional$.

5. Existence of critical points of§

In this section we will prove the main result of this paper.

Remark5.1. By (1.5) and(1.6), using the flow; (s, z) associated to the vector fie¥dr, allows
easily to obtain an orthogonal splitting structureXiér More precisely, séblo = T1(a+b/2)

and denote byr the projection ofM on Mg obtained by means of the flow. The map
Z —> (m(2), T(2)) allows to construct an isometry betwedfi and the manifoldvy x R

endowed with the metric

ds? = (a(x, D&, £)dx® — B(x, t)r2dt?,

wherex € Mo, t e R, ¢ = (&, 1) € TiMp x R, « is a positive linear operator anfda positive
scalar field. With the above notations we can assume that the Qécjgomn be written as

QL2 = A(xo, X1) x HIZ(T (20), T(20): R).

with
A(Xo, X1) = {x € H"?([0, 1]; Mp) : X(0) = Xo, X(1) = X1}

and 10
Ha;b (T (Z()), T (21)7 IR)

={te H(0,1],R): a<t(s) <b ¥s,t(0) = T(20),t(1) = T(z)}.
Now setH? = t, + Hy o, where
Hio = spar{sin(jrs), j =1,2,...,k},

andt, is the segment joining = T (z) andt; = T (z1).

In order to prove our result we need to use the Saddle Point Theorem (see [12]) and for this
aim we have to introduce a Galerkin approximation argument in the variablnstructing,
for anyk € N, the spaces

QL2 = Ao, x1) x (HEZ N HEE(T (20). T(20): R)).

Observe that the same proof of PropositioBiignplies that the restrictio§, x of S, to the space
QL4 | satisfies Palais-Smale condition for evrg N.
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Proof of theorem 1.2. Define
D= {(x. ) e Qrp it =t}
For anyz = (x, t,), using the Riemannian structure, and recalling that
(VRT, 2=t =ti — to,
we easily get the existence of = c,(|t1 — tp|) > 0 such that for any € ]0, 1] and anyk € N
Sek = —Cy. (5.1)
SinceM, is connected, there always exist€&curvex, joining Xo andx;. Put
Q(R) = {(X, 1) € Q2% ¢ It — tufly22 < R}
and the corresponding finite-dimensional set
Qu(R) = {(x. 1) € Qa5 1 It = tully2e < R}

By (1.8), for anyz = (x,, t) € Q(R) we have

1
SS(X*at) - é\/o

1

11 .
(X, DX, %) = 5 /0 B (X, DE?

1 » (5.2)
+ ||A||R/ (o (X, DX, %) + B(Xs, DE?) o
0
Moreover by(1.6) and(1.12) there exist two positive constards andd, such that
1 1 1
S0t ity [ -3 [ R iAle [ VITGRT
0 2 0 0
1 (5.3)
1AL [
0
Sinced €10, 2[, for any R sufficiently large and for any € 0, 1],
supS: (AQ(R)) < inf8.(=,). (5.4)

So _
Cce = inf sups, (N(Qk(R))-

Takely = {h € C(Q5f . Q25 )/h(@) =z Yz € 3Q«(R)}, and set
Cue = higgk sups, (h(Q«(R))),

we have thaty . € Jinf S.(X,), supS.(Q(R))[. By the Saddle Point Theorem (see [12]) itis a
critical value of$y .. If z_is a critical point ofS, x we have in particular

Ss,k(za)[(T (Zs) - t*)Y(Zs)] =0 for any k.

Therefore the same proof of Propositior &llows to obtain thajz||. - is bounded indepen-
dently ofk. Moreover, a slight change in the proof of Propositiod gives that

. > 7
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in HY2 (up to a subsequence). Clearyis a critical point ofS, such that

8:(z°) € ]inf8.(%.), supS:(Q(R)I[.

By Proposition 41, if ¢ is sufficiently smallz° is a critical point ofs. [

Appendix

In this section we prove some useful propertie$ of).
LemmaA.l.

(VT(2),VT(2)) = — (VRT(2), VRT(2)r and VT(2) = —-VRT(2) (A.1)

whereVR represents the gradient of T with respect to the meitid), while V is the one with
respect to the Lorentzian metric.

Proof. As the differentiation is invariant with respect to the choice of the metric structure on
M, we have that

dT@[¢] = (VRT (@, O)r = (VT(2).¢) V¢ e T,Q (A2)
In particular, ifc = VRT(2), from (A.2) we get

(VRT(2), VRT(2)) = (VT (2), VRT (2)). (A.3)
By (1.4), (A.2) can be written as

(VT (2),¢) = (VRT(2), O)r = (VRT(2), ¢) + 2(W, VRT @)}(W, ¢) (A.4)
forall ¢ € T,Q%2. Then

CoRr 5 VT2, VAT (2)
VTI@)=VT@ -2 ST@ . VT @) VT (2). (A.5)

Multiplying (A.5) by VT (2), with respect to the Lorentzian metric, we have that

(VT (2), VT(2)) = (VRT(2), VT (2))-2(VT (2), VRT(2)) = —(VRT(2), VT (2)),
so the thesis follows by (A.3) and (A.5).00

LemmaA.2. LetW(z) = VRT(2)/\/(VRT (2), VRT (2))g. Then

W@, 0r=(W®,¢) ¥ eTM,
where W is defined byl.3).

Proof. Follows by straightforward calculations.[J

Proposition A.3. Assumé€1.6) and(1.7). Then there exist constants; MV, and M; such that
(1) (¢, DRY (@) < Ma(g, O)r,
(@) IDRY@)Ir < Mat, )R,
(3) {VRB(2),Y(2)rl < Mg,
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forany ze M, and¢ € T,M, Y(2) = VB@W(2), W as in Lemma.2, 8 = B(2) =
(1/(<VRT(2), VRT(2))r), and D} is the covariant derivative with respect to the meitlcd)
along the directiort.

Proof. First of all we need to prove that
Ih;>0: [HXZ@Ir< Yz € Map. (A.6)

Since we can consider Riemannian geodesics as critical points of the funcjjdmat) +
(W(2), 2)?, it is easy to prove that they satisfy the equation

—Dsz+ 2(W(2), 2)[dW(2)] 2z — 2 dﬂs ((W(2), 2W(2)) =0 (A.7)

where HW(2)]" represents the transpose of the differentialbLet us define the real function
r(s) = T(z(s)). By construction

r'(¢) = HR@[¢. <. (A.8)
On the other hand, differentiatingwith respect to the Lorentzian metric, we have that

r'(s) = (H'(2)z, 2) + (VT (2), Ds2). (A.9)
Therefore, substituing (A.7) in (A.9) and comparing (A.8) and (A.9), frdn3) we obtain

Hr@[¢. ¢] = (HT (@), 8) = 2(W(@), e )W (@[T, ¢)

o (A.10)
— 2/ —(VT,VT)(dW(2)[¢]. ¢).
By construction, for any e T,Q%2 we have that
T T
dW(@)[¢] = H @[¢(VT,VT)+ VT(H (2)¢, VT).
—(VT,VT)y/—(VT,VT)
Then, taking; = VT, from (A.1) it follows
T T
AW [vT] = - @IVT] | (H @VT, VT) (A.11)

+ 37
—(VT,VT)r  /—(VT,VT)g

S0, being

IG@)lr= sup (G(2)¢, )l
(¢, ¢)r=1

for any bilinear operato, (1.6), (1.7), (A.10) and (A.11) imply (A.6).
By construction
DRy — MR g 2
¢ (VT,VT)gr (VT,VT)R
Then(1.6), (1.7) and (A.6) yeld

(VRT, HE <z>[¢]>R) .

2h; N2
(g, D§Y>R|<(th+ 1v )(:,QR.
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TakingM; = hyN+(2h;N?)/v we obtain (1). By constructiof®) is an obvious consequence of
(1). Tofinish the proofwe have to prove thak 8 (2)[ Y ()] is bounded. Assumptior4.6), (A.6)
yield VRB(2)[Y (2] = —2B*(HZ @[Y (@], VT (2))r < 2B8¥?|HL @ IIrIIY(@IIr < 2N?hy,
from which the thesis follows. [J
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