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1. Introduction and statement of the results

Let (M, g) be a Lorentzian manifold. In this paper we first point out how can be faced
the existence of timelike trajectories joining two fixed pointsz0, z1 of a region{z ∈ M :
a < T(z) < b} whereT is a smooth time function, assuming that its boundary is convex. From
a physical point of view we can interpretM as the space-time where the information about the
gravitational field are “included” in the metric tensorg, while the action of the electromagnetic
field is given by a smooth vector fieldA. The trajectories connecting the couple of events
are the free falling trajectories of a material pointz. The fundamental equation of Classical
Physics related to the motion ofz inside a gravitational and an electromagnetic field is the
Euler–Lagrange equation related to the action functional

F(z) = −m0c
∫ t1

t0

√
−〈ż, ż〉dt + q

∫ t1

t0

〈A(z), ż〉dt, (1.1)
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(see [8]) wherem0 is the rest mass of the particle,q is its charge (and we shall assumeq = ±1),
c is the speed of light,A(z) gives the action of the electromagnetic field and〈· , ·〉 = g(z)[· , ·].

To obtain critical points of the functionalF one can look for the critical points of the functional

S = 1

2

∫ σ1

σ0

〈ż, ż〉dσ +
∫ σ1

σ0

〈A(z), ż〉dσ, (1.2)

satisfying〈ż(σ ), ż(σ )〉 < 0, for anyσ (cf. Remark 2.2). The functional(1.2) was introduced
in [5] to study some fundamental equations in General Relativity.

The existence of critical points for(1.2) has been studied by several authors, but just in
the case thatA(z) ≡ 0 (see [4] and references therein). The presence ofA(z) 6= 0 makes the
problem more complicate. As far as we know the only existence results for critical points ofS

are on standard static manifolds (see [2]).
In this paper we assume that the manifoldM has a smooth time function,T : M −→ R

namely satisfying

〈∇T(z),∇T(z)〉 < 0, ∀z ∈M.

Here∇T(z) is the Lorentzian gradient ofT defined by

dT(z)[ζ ] = 〈∇T(z), ζ 〉, ∀ζ ∈ TzM.

The study of critical points ofS will be done under intrinsic assumptions on the functionT. Set

W(z) = ∇T(z)√
−〈∇T(z),∇T(z)〉

. (1.3)

By the help ofW(z) we can define a natural Riemannian metric onM (see [1]) setting

〈ζ, ζ1〉R = 〈ζ, ζ1〉 + 2〈W(z), ζ 〉〈W(z), ζ1〉. (1.4)

(We can easily prove that(1.4) is a Riemannian metric, using the wrong way Schwartz inequality,
see [10].) For any fixed constantsa,b ∈ R with a < b, let us consider the strip

Ma,b =
{
z ∈M : a < T(z) < b

}
.

Our assumptions are the following:

the metric〈· , ·〉 is complete inMa,b. (1.5)

Let
β = β(z) = 1

〈∇RT(z),∇RT(z)〉R
= − 1

〈∇T(z),∇T(z)〉
(see Lemma A.1) be such that

∃ν, N > 0 : ν 6 β(z) 6 N ∀z ∈Ma,b (1.6)

(here∇R represents the gradient with respect to the Riemannian metric). Denote byH T the
hessian ofT with respect to the Lorentzian metric

(〈H T (z)ζ, ζ 〉 = d2/ds2(T(γ (s)))/s=0 where
γ is a geodesic such thatγ (0) = z andγ̇ (0) = ζ ). We assume that

∃K > 0 : ‖H T (z)‖R 6 K ∀z ∈Ma,b, (1.7)
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where‖ · ‖R =
√〈·, ·〉R.

∃ A0, A1 ∈ R : ‖A‖R 6 A0 and ‖d A‖R 6 A1 on M. (1.8)

There existsδ > 0 :

〈H T (z)ζ, ζ 〉 < 0 ∀z ∈ T−1(]a,a+ δ[),∀ζ ∈ TzM, with 〈ζ,∇T(z)〉 = 0, (1.9)

〈H T (z)ζ, ζ 〉 > 0 ∀z ∈ T−1(]b− δ,b[),∀ζ ∈ TzM, with 〈ζ,∇T(z)〉 = 0, (1.10)

and
[d A∗ − d A](z)[ζ ] ≡ 0 ∀ζ ∈ TzM, ∀z ∈ T−1(]a,a+ δ[) ∪ T−1(]b− δ,b[),

with 〈ζ,∇T(z)〉 = 0, (1.11)

whered A is the covariant differential ofA andd A∗ is the adjoint operator ofd A.
Finally we need the following assumption, giving the Saddle Point structure for the func-

tionalS: there existsθ ∈ (0,2) and two continuous mapsc(z),d(z) not depending onT(z) such
that ∣∣〈ζ, ζ 〉R− β(z)〈ζ,∇T(z)〉2∣∣ 6 [c(z)+ d(z) |T(z)|θ]〈ζ, ζ 〉R. (1.12)

Remark 1.1. Observe that conditions (1.9) and (1.10) are equivalent to the strict convexity of
the boundary ofMa,b (cf. [9])

The main result of the paper is the following

Theorem 1.2. Assume(1.5)–(1.12). Then for any fixed z0 and z1 there exists a solution of the
Euler–Lagrange equation corresponding to the functional(1.2) connecting z0 with z1.

Remark 1.3. WheneverA ≡ 0, Theorem 1.2 gives the results proved in [9], under non-intrinsic
hypothesis.

Remark 1.4. Using the a priori estimates in Section 4 and relative category as in [6] allows
us to get, under the assumptions of Theorem 1.2, that there exists a sequence{zn} of critical
points ofS such that{zn} → +∞. Note that the result of Theorem 1.2 has only a geometrical
meaning but not yet a physical interpretation. Indeed while we are able to find critical points
whereS is strictly negative (if|T(z1) − T(z0)| is sufficiently large), we cannot conclude that
they are time-like. This is due to the particular conservation law satisfied by the critical points
of S (see Proposition 2.1). The presence of the term

∫ 1
0 〈A(z), ż〉 carries such difficulty, together

with many others related to the a priori estimates. However the proof of Theorem 1.2 is a first
step in the search of time-like critical curves for the functionalS. We hope that the techniques
used in that proof will allow also to guarantee the existence of the time-like solutions.

Remark 1.5. For the proof of the existence of time-like critical curves ofF the situation is
completely different with respect to the caseA ≡ 0, where the global hyperbolicity assures the
existence of a causal critical curve ofF, namely a causal geodesic connecting two given events
(see, e.g., [3]). Indeed, since both integrals inF are positively homogeneous of the same degree
with respect tȯz, if A 6= 0, global hyperbolicity is not sufficient to obtain a priori estimates
for ż even if we use the time coordinate to parameterize the admissible paths.
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2. The variational principle

Denote withH1,2([0,1],M) the space

H1,2([0,1],M) =
{

z : [0,1] −→M : z ∈ AC([0,1],M) and
∫ 1

0
〈ż, ż〉R ds< +∞

}
,

where AC([0,1],M) is the set of absolutely continuous curves onM, and 〈· , ·〉 is defined
in (1.4). Define

Ä1,2 = {z ∈ H1,2([0,1],M) : z(0) = z0, z(1) = z1
}

and
Ä

1,2
a,b =

{
z ∈ Ä1,2 : z([0,1]) ⊂Ma,b

}
(2.1)

whereMa,b is defined in Section 1. It is well known (see, e.g., [10]) thatÄ1,2 is a Hilbert
submanifold ofH1,2([0,1],M) and its tangent space atz ∈ Ä1,2 is given by

TzÄ
1,2 = {ζ ∈ H1,2([0,1], TzM) : ζ(s) ∈ Tz(s)M ∀s ∈ [0,1], ζ(0) = ζ(1) = 0

}
,

while the Hilbert structure is

〈ζ, ζ 〉1 =
∫ 1

0
〈DR

s ζ, DR
s ζ 〉ds. (2.2)

In order to prove Theorem 1.2 we need the following simple result which gives the equation
satisfied by the critical points ofS.

Proposition 2.1. If z is a critical point ofS on Ä1,2, then z∈ C2([0,1]) and satisfies the
equation

Dsż+ d A(z)[ż] − d A∗(z)[ż] = 0. (2.3)

Moreover〈ż, ż〉 = const.

Proof. If z is a critical point of the functionalS, then∫ 1

0
〈ż+ A(z), Dsζ 〉 = −

∫ 1

0

〈
(d A(z))∗[ż], ζ

〉 ∀ζ ∈ TzÄ
1,2

and integrating by parts the right-hand side member, sinceζ(0) = ζ(1) = 0, we get∫ 1

0

〈
ż+ A(z)−

[ ∫ s

0

(
(d A(z(r ))

)∗
[ż(r )] dr

]
, Dsζ

〉
= 0 ∀ζ ∈ TzÄ

1,2. (2.4)

By (2.3) we deduce thaṫz+ A(z) − [ ∫ s
0

(
(d A(z(r ))

)∗
[ż(r )] dr

]
is of classC1. Then ż is a

continuous curve and applying again(2.4), ż is of classC1. Finally, sinced A∗ is the adjoint of
the operatord A, multiplying (2.3) by ż, we obtain〈Dsż, ż〉 = 0, that is

〈ż, ż〉 ≡ const. ¤
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Remark 2.2. Let z ∈ Ä1,2 be a critical point ofS such that〈ż(s), ż(s)〉 = Ez < 0 for any
s ∈ [0,1] andz(0) = z0, z(1) = z1. Suppose

√−Ez = m0c. Thenw(s) = z(s) is a critical
point of the functionalF wheneverq = 1, andw(s) = z(−s) is a critical point ofF whenever
q = −1. In both casesw is a solution of the differential equation

m0c
d

ds

(
ẇ√
−〈ẇ, ẇ〉

)
+ q

[
d A∗(w)− d A(w)

]
[ẇ] = 0. (2.5)

Indeed by Proposition 2.1, z satisfies equation(2.3). Assumeq = 1. By the definition ofF

F ′(w)[ζ ] = −m0c
∫ t1

t0

1√
−〈ẇ, ẇ〉

〈ẇ, Dsζ 〉 +
∫ t1

t0

〈
d A(w)[ζ ], ẇ

〉+ ∫ t1

t0

〈A(w), Dsζ 〉

that yelds(2.5) for anyw critical point of classC1 of F . Since
√−Ez = m0c, puttingw(s) =

z(s) in (2.5) we obtain the thesis. The same result can be obtained ifq = −1 choosing
w(s) = z(−s).

3. Palais–Smale condition on a strip

For the search of critical points ofF via variational methods, we need some compactness
assumption on the action functionalS. The most natural one is the Palais–Smale condition.

Definition. Let X be a Hilbert manifold,Ä an open subset ofX, F : Ä→ R aC1-functional,
andc a real number. We say thatF satisfies the Palais–Smale condition at the levelc, (P.S.)c,
onÄ, if for every sequence{zn}n∈N in Ä satisfying:

(1) F(zn)→ c,

(2) lim
n→∞ F ′(zn) = 0,

there exists a subsequence{znk}k∈N converging inÄ. A sequence{zn} in Ä satisfying (1) and
(2) is called a Palais–Smale sequence at the levelc.

We do not know if the functionalS satisfies tha Palais–Smale condition, for this reason we
introduce a penalizing family of functionals, denoted bySε, as follows: letψ : [0,+∞) 7−→ R
be a smooth (C2) real function having the following properties:

(1)ψ(0) = ψ ′(0) = ψ ′′(0) = 0,
(2)ψ(σ) > 0 ∀σ ∈ R+, ψ ′(σ ) > 0,
(3) limσ→+∞ σψ ′(σ )− ψ(σ) = +∞.

An example of such a function is given by

ψ(σ) = eσ − (1+ σ + 1
2σ

2
)
.

Set

ψε(σ ) =


ψ
(
σ − 1

ε

)
if σ > 1

ε
,

0 if σ <
1

ε
.

Now fix two real numbersa < b and take, as in section 1,

Ma,b =
{
z ∈M : a < T(z) < b

}
.
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Fix 0< δ < 1
2(b− a) and consider aC2-mapφδ : R 7−→ R such that

φδ(σ ) =
{

b− σ if σ ∈ [b− δ,b+ δ],
σ − a if σ ∈ [a− δ,a+ δ].

Take8 : Ma,b 7−→ R defined as8(z) = φδ(T(z)). By construction8 vanishes on∂Ma,b and
it is positive onMa,b. For anyε > 0 we define the penalized functional

Sε : Ä1,2
a,b 7−→ R

as follows

Sε(z) = S(z)− ψε
(∫ 1

0
〈ż,∇T(z)〉2

)
− ε

∫ 1

0

1

82(z(s))
ds,

whereÄ1,2
a,b has been defined in(2.1). To prove the Palais–Smale condition is more convenient

to writeSε in the following form:

Sε(z) = 1

2

∫ 1

0
〈ż, ż〉R−

∫ 1

0
〈Ŵ, ż〉2R+

∫ 1

0
〈A(z), ż〉

− ψε
(∫ 1

0
〈ż,∇RT(z)〉2R

)
− ε

∫ 1

0

1

82(z)
ds,

(3.1)

where

Ŵ(z) = ∇RT(z)√
〈∇RT(z),∇RT(z)〉R

(3.2)

is such that〈Ŵ, ζ 〉R = 〈W, ζ 〉 (cf. Lemma A.2).
We have the following

Proposition 3.1. Assume(1.6)–(1.8). Let c∈ R, {δn} be an infinitesimal sequence belonging
toR+. Let {zn} ⊂ Ä1,2

a,b be a sequence such that

Sε (zn) 6 c, (3.3)

sup
06=ζ∈TznÄ

1,2

|S′ε(zn)[ζ ]| 6 δn

∫ 1

0
〈DR

s ζ, DR
s ζ 〉R, (3.4)

whereS′ε denotes the differential ofSε.
Then

∫ 1
0 〈żn,∇RT〉2R is bounded and zn is uniformly far from∂Ma,b.

Wheneverzn is uniformly far from∂Ma,b, the boundedness of
∫ 1

0 〈żn,∇RT〉2R is useful to
prove the boundedness of

∫ 1
0 〈żn, żn〉R. Indeed we have the following

Lemma 3.2. If Sε(zn) 6 c, zn is uniformly far from∂Ma,b and
∫ 1

0 〈żn,∇RT〉2R 6 c1, then∫ 1
0 〈żn, żn〉R is bounded.
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Proof. SinceSε(zn) 6 c, by (3.1), (3.2) and(1.6)

1

2

∫ 1

0
〈żn, żn〉R = Sε(zn)+

∫ 1

0

〈
Ŵ(zn), żn

〉2− ∫ 1

0
〈A(zn), żn〉

+ ψε
(∫ 1

0

〈
żn,∇RT

〉2
R
ds

)
+ ε

∫ 1

0

1

82(zn)
ds

6 c+ N
∫ 1

0
〈żn,∇RT〉2R ds+ ‖A‖R

∫ 1

0

√
〈żn, żn〉R

+ ψε
(∫ 1

0
〈żn,∇RT〉2R ds

)
+ ε

∫ 1

0

1

82(zn)
ds.

Then ∫ 1

0
〈żn, żn〉R 6 2‖A‖R

(∫ 1

0
〈żn, żn〉R

)1/2

+ 2c+ 2N
∫ 1

0
〈żn,∇RT〉2R ds

+ 2ψε

(∫ 1

0
〈żn,∇RT〉2R ds

)
+ 2ε

∫ 1

0

1

82(zn)
ds.

(3.5)

Since
∫ 1

0 〈żn,∇RT〉2R ds and
∫ 1

0 1/(82(zn))ds are bounded,(3.5) implies the boundedness of∫ 1
0 〈żn, żn〉R. ¤

Proof of Proposition 3.1. For the sake of simplicity during this proof we will writez instead
of zn. By (3.1) and(3.4), for anyζ ∈ TzÄ

1,2
a,b we have that

06 S′ε(z)[ζ ] + δn

∫ 1

0
〈DR

s ζ, DR
s ζ 〉R

=
∫ 1

0
〈ż, DR

s ζ 〉R− 2
∫ 1

0
〈Ŵ(z), ż〉R

[
DR
ζ

(〈Ŵ(z), ż〉R
)]

+
∫ 1

0

〈
d A(z)[ζ ], ż

〉+ ∫ 1

0
〈A(z), Dsζ 〉

− 2ψ ′ε

(∫ 1

0

〈
ż,∇RT(z)

〉2
R

)[∫ 1

0
〈ż,∇RT〉RDR

ζ

(〈ż,∇RT〉R
)]

+ ε

2

∫ 1

0

1

83(z)
〈∇R8, ζ 〉R ds+ δn

∫ 1

0
〈DR

s ζ, DR
s ζ 〉R

(3.6)

whereDR
ζ (·) denotes the covariant derivative (with respect to(1.4)) along the directionζ . Now

take
ζ(s) = [tn(s)− t∗(s)

]
Y(z),

where

Y(z) = ∇RT(z)〈∇RT(z),∇RT(z)
〉
R

, (3.7)

tn(s) = T(z(s)) and t∗(s) = (1− s)T(z(0))+ sT(z(1)).

Note thatṫn = 〈ż,∇RT〉R and〈Ŵ(z), ż〉2R = β(z)ṫ2
n, whereβ is defined in(1.6). Therefore,
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with the above choice ofζ (see also the form of the metricg in local coordinates),(3.6) becomes

06
∫ 1

0

〈
ż, DR

ż Y(z)
〉[

tn(s)− t∗(s)
]+ ∫ 1

0

〈
ż,Y(z)

〉[
ṫn(s)− ṫ∗(s)

]
−
∫ 1

0

〈∇Rβ(z),Y(z)
〉[

tn(s)− t∗(s)
]

ṫ2
n − 2

∫ 1

0
β(z)ṫn

[
ṫn(s)− ṫ∗(s)

]
+
∫ 1

0

〈
d A(z)[Y(z)], ż

〉[
tn(s)− t∗(s)

]+ ∫ 1

0

〈
A(z), Ds

[(
tn(s)− t∗(s)

)
Y(z)

]〉
−2ψ ′ε

(∫ 1

0
ṫ2
n

)[∫ 1

0
ṫn
(
ṫn(s)− ṫ∗(s)

)]
+ ε

2

∫ 1

0

1

83(z)

〈∇R8(z),∇RT(z)
〉〈∇RT(z),∇RT(z)
〉 (tn(s)− t∗(s)

)
+ δn

[∫ 1

0
〈Y,Y〉R

(
ṫn(s)− ṫ∗(s)

)+ ∫ 1

0
〈DR

ż Y, DR
ż Y〉R

(
tn(s)− t∗(s)

)2
+ 2

∫ 1

0
〈Y, DR

ż Y〉R
(
ṫn(s)− ṫ∗(s)

)(
tn(s)− t∗(s)

)]
.

(3.8)

An integration by parts yields∫ 1

0

〈
A(z), Ds

[(
tn(s)− t∗(s)

)
Y(z)

]〉 = − ∫ 1

0

〈
d A(z)[ż],Y(z)

〉[
tn(s)− t∗(s)

]
. (3.9)

Notice that|ṫ∗(s)| = |T(z(1))− T(z(0))| ≡ t̄, wheret̄ is constant. Moreover, considering that
z ∈ Ä1,2

a,b, it follows that

‖tn − t∗‖ 6 c∗. (3.10)

Then, since‖Y‖R 6
√

N (see(1.6)) using Proposition A.3 and assumptions(1.6) and(1.8),
combining(3.8)–(3.10) gives

06 c∗M1

∫ 1

0
〈ż, ż〉R+

√
N
∫ 1

0

√
〈ż, ż〉R

(
ṫn(s)− ṫ∗(s)

)+ M3c∗
∫ 1

0
ṫ2
n

+ 2N
∫ 1

0

(
ṫ2
n + |ṫnṫ∗|

)+ 2A1

√
Nc∗

∫ 1

0

√
〈ż, ż〉R+ 2t̄2ψ ′ε

(∫ 1

0
ṫ2
n

)
− 2ψ ′ε

(∫ 1

0
ṫ2
n

)[∫ 1

0
ṫ2
n

]
+ ε

2

∫ 1

0

1

83(z)

〈∇R8(z),∇RT(z)
〉〈∇RT(z),∇RT(z)
〉 (tn(s)− t∗(s)

)
+ δnN

∫ 1

0

(
ṫn(s)− ṫ∗(s)

)2+ δnM2c2
∗

∫ 1

0
〈ż, ż〉R+ 2δnc∗

√
N M2

∫ 1

0
|ṫnṫ∗|.

Then assuming by contradiction that
∫ 1

0 ṫ2
n → +∞ (and using the properties ofψε) gives the

existence of constantsD0, D1 > 0 such that

06 D0+ D1

∫ 1

0
〈ż, ż〉R− 2ψ ′ε

(∫ 1

0
ṫ2
n

)[∫ 1

0
ṫ2
n

]
+ ε

2

∫ 1

0

1

83(z)

〈∇R8(z),∇RT(z)
〉〈∇RT(z),∇RT(z)
〉 (tn(s)− t∗(s)

)
.

(3.11)



Connecting trajectories 9

By (3.5) we deduce the existence of constantsD2, D3 > 0 such that∫ 1

0
〈ż, ż〉R 6 D3+ D4

[
ψε

(∫ 1

0
ṫ2
n

)
+ ε

∫ 1

0

1

82(z)

]
. (3.12)

Finally, combining(3.11) and (3.12), using the properties ofψε and the sign of〈∇R8(z),
∇RT(z)〉R (tn(s)− t∗(s)) near by∂Ma,b (see the definition of8) allows to conclude that

∫ 1
0 ṫ2

n

is bounded. Now, as8(z) = φδ(T(z)) using once again(3.11) and(3.12) gives the existence
of constantsD5, D6 > 0 such that∫ 1

0

1

φ3
δ (tn)

6 D5

∫ 1

0

1

φ2
δ (tn)

+ D6.

By the definition ofφδ we deduce the existence ofD7 > 0 for which

1

φ3
δ (t)
> 2D5

φ2
δ (t)
− D7 for anyt ∈ ]a,b[.

Then
∫ 1

0 1/(φ2
δ (tn)) must be bounded. Since

∫ 1
0 ṫ2

n is bounded, we have thattn is uniformly far
from ∂Ma,b. ¤

Proposition 3.3. Assume(1.6)–(1.8). ThenSε satisfies(P.S.)c for every c∈ R.

Proof. S′ε(z) is a linear and continuous operator in the spaceÄ
1,2
a,b endowed with the Hilbert

structure(2.2). So, if {zn} is a Palais–Smale sequence, for everyn ∈ N we can write

S′ε(zn)[ζ ] =
∫ 1

0
〈An, DR

s ζ 〉R,

whereAn goes to 0 asn→+∞ with respect toL2-norm. Therefore, by construction,∫ 1

0
〈żn, Dsζ 〉 +

∫ 1

0

〈
d A(zn)[ζ ], żn

〉+ ∫ 1

0
〈A(zn), Dsζ 〉

− 2ψ ′ε

(∫ 1

0
〈żn,∇T〉2

)[∫ 1

0
〈żn,∇T〉(〈Dsζ,∇T〉 + 〈żn, H T (zn)[ζ ]〉)]

+ 2ε
∫ 1

0

1

83(zn)
〈8′(zn), ζ 〉

=
∫ 1

0
〈An, DR

s ζ 〉R.

(3.13)

By Proposition 3.1 and assumption(1.5), unless to consider a subsequence,{zn} converges to
z ∈ Ä1,2

a,b uniformly and weakly inH1,2. We have just to prove that the convergence inH1,2 is
strong. In order to isolateDsζ in (3.13), we shall integrate by parts the terms that containζ.

Using the same techniques of [7] we can state that the covariant integrals appearing in the
integration by parts are bounded inH1,2. Moreover

DR
s ζ = Dsζ + 0(zn)[żn, ζ ],
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where0 is bilinear form depending continuously onzn. So(3.13) becomes∫ 1

0
〈żn + σn, Dsζ 〉 − 2ψ ′ε

(∫ 1

0
〈żn,∇T〉2

)∫ 1

0
〈żn,∇T〉〈Dsζ,∇T〉

=
∫ 1

0
〈Bn, Dsζ 〉,

(3.14)

where (unless to consider a subsequence)σn converges uniformly andBn goes to 0 inL2. By
(3.14) there exists a sequencekn uniformly bounded, such thatDskn = 0 and

żn + σn − 2ψ ′ε

(∫ 1

0
〈żn,∇T〉2

)
〈żn,∇T〉∇T = Bn + kn. (3.15)

Then multiplying both terms by∇T we have

〈żn,∇T〉
[
1− 2ψ ′ε

(∫ 1

0
〈żn,∇T〉2

)
〈∇T,∇T〉

]
= 〈Bn + kn − σn,∇T〉. (3.16)

Then by(3.15) and(3.16) we can write

żn = an + bn,

wherean converges uniformly andbn → 0 in L2, showing that{zn} converges strongly toz
with respect to theH1,2 norm. ¤

4. A priori estimates for the critical points of Sε

Let us consider a family of curves{zε}ε>0 such that anyzε is a critical point ofSε. Arguing
as in the proof of Lemma 2.1 and using(3.16) with Bn = 0, shows that anyzε is of classC2.

Moreover puttingAn = 0 in (3.13) and integrating by parts (withzn replaced byzε) gives the
differential equation satisfied byzε

−Dsżε +
[
d A∗(zε)− d A(zε)

]
[żε] + 2ε

∇8(zε)
83(zε)

+ 2ψ ′ε

(∫ 1

0
〈żε,∇T(zε)〉2

)
· [〈Dsżε,∇T(zε)〉∇T(zε)+ 〈żε, H T (zε)[żε)〉∇T(zε)

] = 0.

(4.1)

Proposition 4.1. Fix c ∈ R and assume(1.6), (1.7) and(1.8). Let zε be a critical point ofSε
such that

Sε(zε) < c for any ε ∈ ] 0,1]. (4.2)

Then
∫ 1

0 〈żε, żε〉R is bounded independently ofε ∈ ] 0,1].

Proof. Sincezε is a critical point ofSε, we have

S′ε(zε)[ζ ] = 0 ∀ζ ∈ TzεÄ
1,2.

Chooseζ = (∇T(zε))/(〈∇T(zε),∇T(zε)〉)τ, whereτ ∈ H1,2
0 ([0,1],R). Settε = T(zε), so
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ṫε = 〈∇T(zε), żε〉. A straightforward computation gives the existence ofC > 0 such that

06 C

(∫ 1

0

1
2〈żε, żε〉R+ 1

)
|τ | − ν

∫ 1

0
ṫετ̇ + C

∫ 1

0
|τ̇ |

+ 2ε
∫ 1

0

1

83(zε)

〈∇8(zε),∇T(zε)
〉〈∇T(zε),∇T(zε)
〉 τ − ψ ′ε (∫ 1

0
ṫ2
ε

)∫ 1

0
ṫετ̇ ,

(4.3)

whereν is defined by(1.6). Now multiplying byżε both sides of(4.1) gives the existence of a
constantEε ∈ R such that

1
2〈żε, żε〉 − ψ ′ε

(∫ 1

0
ṫ2
ε

)
〈żε,∇T(zε)〉2+ ε

82(zε)
≡ Eε. (4.4)

Then integrating in [0,1] and recalling the definition ofSε gives

Eε = 1

2

∫ 1

0
〈żε, żε〉 − ψ ′ε

(∫ 1

0
ṫ2
ε

)∫ 1

0
ṫ2
ε + ε

∫ 1

0

1

82(zε)

= Sε(zε)−
∫ 1

0
〈A(zε), żε〉 + 2ε

∫ 1

0

1

82(zε)
+ ψε

(∫ 1

0
ṫ2
ε

)
− ψ ′ε

(∫ 1

0
ṫ2
ε

)∫ 1

0
ṫ2
ε .

(4.5)

Since1
2〈ż, ż〉R = 1

2〈ż, ż〉+β(z)ṫ2 andν 6 β(z) 6 N for anyz ∈Ma,b, combining(4.2)–(4.5)
gives the existence ofC1 > 0 such that

06 C1

[∫ 1

0
|τ | +

∫ 1

0

√
〈żε, żε〉R |τ | + 2ε

∫ 1

0

1

82(zε)

∫ 1

0
|τ |

+ψε
(∫ 1

0
ṫ2
ε

)∫ 1

0
|τ | + ψ ′ε

(∫ 1

0
ṫ2
ε

)∫ 1

0
ṫ2
ε |τ | +

∫ 1

0
ṫ2
ε |τ |

]
− ν

∫ 1

0
ṫετ̇

+C1

∫ 1

0
|τ̇ | + 2ε

∫ 1

0

1

83(zε)

〈∇8(zε),∇T(zε)〉
〈∇T(zε),∇T(zε)〉 τ − ψ

′
ε

(∫ 1

0
ṫ2
ε

)∫ 1

0
ṫετ̇ . (4.6)

Chooseτ = sinh(ω(tε − t∗)), wheret∗(s) = (1− s)T(z(0))+ sT(z(1)). If T(z) ∈ ]b− δ,b[,
∇8(z) = −∇T(z) andτ > 0, while if T(z) ∈ ]a,a+ δ[, ∇8(z) = ∇T(z) andτ < 0. Then
there existsθ0 > 0 (independent ofε) such that

2ε
1

83(zε)

〈∇8(zε),∇T(zε)〉
〈∇T(zε),∇T(zε)〉 τ 6 −

εθ0

83(zε)
(4.7)

for anys ∈ ]a,a+ δ[ ∪ ]b− δ,b[. Fix ω > 1 such that 1− νω > 0. SinceT(zε) is uniformly
bounded, using(4.6), (4.7) and the definition ofψε allows to deduce the existence of a constant
D > 0 such that∫ 1

0
ṫ2
ε 6 D

(
1+

∫ 1

0

√
〈żε, żε〉R

)
. (4.8)

As

Sε(zε) = 1

2

∫ 1

0
〈żε, żε〉R+

∫ 1

0
〈A(zε), żε〉R−

∫ 1

0
β(zε)ṫ

2
ε

− ε

∫ 1

0

1

82 − ψε
(∫ 1

0
ṫ2
ε

)
,

(4.9)
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Sε(zε) 6 c, |〈A(zε), żε〉| 6 A0
√〈żε, żε〉R andβ > ν, by (4.8) we obtain the existence of

D0 > 0 such that

1

2

∫ 1

0
〈żε, żε〉R 6 D0

[
1+ ε

∫ 1

0

1

82 + ψε
(∫ 1

0
ṫ2
ε

)]
. (4.10)

Finally, setting(4.10) in (4.6) with τ as above allows to get that
∫ 1

0 ṫ2
ε andε

∫ 1
0 1/(82(zε)) are

bounded independently ofε. ¤

Remark 4.2. Under the assumption of Proposition 4.1, if zε is a critical point ofSε and(4.2)
holds (thanks to the definition ofψε) we have

ψ ′ε

(∫ 1

0
ṫ2
ε

)
= 0

for all ε sufficiently small. Thereforezε satisfies

−Dsżε +
[
d A∗(zε)− d A(zε)

]
[żε] + 2ε

∇8(zε)
83(zε)

= 0. (4.11)

Lemma 4.3. Fix c ∈ R and assume that(4.2) holds. Suppose that(1.6)–(1.11) are satisfied.
Then there existδ(c) > 0 andε(c) > 0 such that

8(zε(s)) > δ(c) for any ε ∈ ] 0, ε(c)] and s∈ [0,1]. (4.12)

Proof. Takeρε(s) = 8(zε(s)). If, by contradiction,(4.12) is not satisfied (sinceρε(0) = 8(z0)

andρε(1) = 8(z1) for anyε) there existssε ∈ ] 0,1[ minimum point forρε such that

lim
ε→0

8(zε(sε)) = 0.

By the construction of8, T(zε(sε)) is an element of interval ]a,a+ δ[ ∪ ]b− δ,b[ for any ε
sufficiently small and

ρ ′ε(sε) = 〈∇T(zε), żε〉 = 0. (4.13)

It will be enough to consider the case thatT(zε(sε)) ∈ ] a , a+ δ[ because whenT(zε(sε)) ∈
]b− δ,b[ can be dealt in the same way. Sincesε ∈ ] 0,1[ is a minimum point forρε we have

ρ ′′ε (sε) > 0. (4.14)

Moreover by the construction of8,

ρ ′′ε (sε) =
〈
H T (zε)[żε], żε

〉+ 〈∇T(zε), Dsżε〉. (4.15)

Then, combining(4.13)–(4.15) and(4.11), and recalling the construction of8 gives

06
〈
H T (zε)[żε], żε

〉+ 〈∇T(zε), (d A∗(zε)−d A(zε))[żε]
〉+ 2ε

〈∇8(zε),∇T(zε)〉
83(zε)

.

From(1.11) and(4.13) it follows that(d A∗(zε)− d A(zε))[żε] = 0. Then insε,

−2ε
〈∇8(zε),∇T(zε)〉

83(zε)
6 〈H T (zε)[żε], żε〉.
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If T(zε(sε)) ∈ ]a,a+ δ[, ∇8(zε) = ∇T(zε), therefore

−〈∇8(zε),∇T(zε)〉 = −〈∇T(zε),∇T(zε)〉 > 0,

while 〈H T (zε(sε))żε(sε), żε(sε)〉 < 0 by assumption(1.9). Such a contradiction allows to
conclude the proof. ¤

Remark 4.4. Under the assumptions of Lemma 4.3, going to the limit asε → 0 allows to
obtain a sequence{zεn} that converges (with respect to theC2-norm) to a critical point of the
functionalS.

5. Existence of critical points ofS

In this section we will prove the main result of this paper.

Remark 5.1. By (1.5) and(1.6), using the flowη(s, z) associated to the vector field∇T, allows
easily to obtain an orthogonal splitting structure forM.More precisely, setM0 = T−1(a+b/2)
and denote byπ the projection ofM on M0 obtained by means of the flowη. The map
z 7−→ (π(z), T(z)) allows to construct an isometry betweenM and the manifoldM0 × R
endowed with the metric

ds2 = 〈α(x, t)ξ, ξ〉dx2− β(x, t)τ 2 dt2,

wherex ∈M0, t ∈ R, ζ = (ξ, τ ) ∈ TxM0× R, α is a positive linear operator andβ a positive
scalar field. With the above notations we can assume that the spaceÄ

1,2
a,b can be written as

Ä
1,2
a,b = 3(x0, x1)× H1,2

a,b

(
T(z0), T(z1);R

)
,

with
3(x0, x1) =

{
x ∈ H1,2

(
[0,1];M0

)
: x(0) = x0, x(1) = x1

}
and

H1,2
a,b

(
T(z0), T(z1);R

)
= {t ∈ H1,2([0,1],R) : a < t (s) < b ∀s, t (0) = T(z0), t (1) = T(z1)

}
.

Now setH1,2
k = t∗ + Hk,0, where

Hk,0 = span
{
sin( jπs), j = 1,2, . . . , k

}
,

andt∗ is the segment joiningt0 = T(z0) andt1 = T(z1).

In order to prove our result we need to use the Saddle Point Theorem (see [12]) and for this
aim we have to introduce a Galerkin approximation argument in the variablet, constructing,
for anyk ∈ N, the spaces

Ä
1,2
a,b,k = 3(x0, x1)×

(
H1,2

k ∩ H1,2
a,b(T(z0), T(z1);R)

)
.

Observe that the same proof of Proposition 3.3 implies that the restrictionSε,k of Sε to the space
Ä

1,2
a,b,k satisfies Palais–Smale condition for everyk ∈ N.
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Proof of theorem 1.2. Define

6∗ =
{
(x, t) ∈ Ä1,2

a,b,k : t = t∗
}
.

For anyz= (x, t∗), using the Riemannian structure, and recalling that

〈∇RT, ż〉R = ṫ∗ = t1− t0,

we easily get the existence ofc∗ = c∗(|t1− t0|) > 0 such that for anyε ∈ ] 0,1] and anyk ∈ N
Sε,k > −c∗. (5.1)

SinceM0 is connected, there always exists aC1-curvex∗ joining x0 andx1. Put

Q(R) = {(x∗, t) ∈ Ä1,2
a,b : ‖t − t∗‖H1,2 < R

}
and the corresponding finite-dimensional set

Qk(R) =
{
(x∗, t) ∈ Ä1,2

a,b,k : ‖t − t∗‖H1,2
k
6 R

}
.

By (1.8), for anyz= (x∗, t) ∈ Q(R) we have

Sε(x∗, t) = 1

2

∫ 1

0
〈α(x, t)ẋ∗, ẋ∗〉 − 1

2

∫ 1

0
β(x∗, t)ṫ2

+ ‖A‖R

∫ 1

0

(〈α(x∗, t)ẋ∗, ẋ∗〉 + β(x∗, t)ṫ2
)1/2

.

(5.2)

Moreover by(1.6) and(1.12) there exist two positive constantsd1 andd2 such that

Sε(x∗, t) 6 d1+ d2

∫ 1

0
|t |θ − ν

2

∫ 1

0
ṫ2+ ‖A‖R

∫ 1

0

√
1+ d2|t |θ

+ ‖A‖R

√
N
∫ 1

0
|ṫ |.

(5.3)

Sinceθ ∈ ] 0,2[, for any R sufficiently large and for anyε ∈ ] 0,1],

supSε(∂Q(R̄)) < inf Sε(6∗). (5.4)

So
ck,ε = inf

h∈0k

supSε
(
h(Qk(R))

)
.

Take0k = {h ∈ C(Ä1,2
a,b,k, Ä

1,2
a,b,k)/h(z) = z ∀z ∈ ∂Qk(R)}, and set

ck,ε = inf
h∈0k

supSε
(
h(Qk(R))

)
,

we have thatck,ε ∈ ]inf Sε(6∗), supSε(Q(R))[. By the Saddle Point Theorem (see [12]) it is a
critical value ofSk,ε. If zεk is a critical point ofSε,k we have in particular

Sε,k(zε)[(T(zε)− t∗)Y(zε)] = 0 for any k.

Therefore the same proof of Proposition 3.1 allows to obtain that‖żεk‖L2 is bounded indepen-
dently ofk. Moreover, a slight change in the proof of Proposition 3.3 gives that

zεk → zε
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in H1,2 (up to a subsequence). Clearlyzε is a critical point ofSε such that

Sε(z
ε) ∈ ]

inf Sε(6∗), supSε(Q(R))
[
.

By Proposition 4.1, if ε is sufficiently small,zε is a critical point ofS. ¤

Appendix

In this section we prove some useful properties of〈· , ·〉.
Lemma A.1.

〈∇T(z),∇T(z)〉 = − 〈∇RT(z),∇RT(z)〉R and ∇T(z) = −∇RT(z) (A.1)

where∇R represents the gradient of T with respect to the metric(1.4), while∇ is the one with
respect to the Lorentzian metric.

Proof. As the differentiation is invariant with respect to the choice of the metric structure on
M, we have that

dT(z)[ζ ] = 〈∇RT(z), ζ 〉R = 〈∇T(z), ζ 〉 ∀ζ ∈ TzÄ
1,2. (A.2)

In particular, ifζ = ∇RT(z), from (A.2) we get

〈∇RT(z),∇RT(z)〉 = 〈∇T(z),∇RT(z)〉. (A.3)

By (1.4), (A.2) can be written as

〈∇T(z), ζ 〉 = 〈∇RT(z), ζ 〉R = 〈∇RT(z), ζ 〉 + 2〈W,∇RT(z)〉〈W, ζ 〉 (A.4)

for all ζ ∈ TzÄ
1,2. Then

∇T(z) = ∇RT(z)− 2
〈∇T(z),∇RT(z)〉
〈∇T(z),∇T(z)〉 ∇T(z). (A.5)

Multiplying (A.5) by ∇T(z), with respect to the Lorentzian metric, we have that

〈∇T(z),∇T(z)〉 = 〈∇RT(z),∇T(z)〉−2〈∇T(z),∇RT(z)〉 = −〈∇RT(z),∇T(z)〉,
so the thesis follows by (A.3) and (A.5).¤

Lemma A.2. Let Ŵ(z) = ∇RT(z)/
√
〈∇RT(z),∇RT(z)〉R. Then

〈Ŵ(z), ζ 〉R = 〈W(z), ζ 〉 ∀ζ ∈ TzM,

where W is defined by(1.3).

Proof. Follows by straightforward calculations.¤

Proposition A.3. Assume(1.6) and(1.7). Then there exist constants M1,M2 and M3 such that
(1) |〈ζ, DR

ζ Y(z)〉| 6 M1〈ζ, ζ 〉R,
(2) ‖DR

ζ Y(z)‖R 6 M2〈ζ, ζ 〉1/2R ,
(3) |〈∇Rβ(z),Y(z)〉R| 6 M3,
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for any z ∈ M, and ζ ∈ TzM, Y(z) = √β(z)Ŵ(z), Ŵ as in LemmaA.2, β = β(z) =(
1/〈∇RT(z),∇RT(z)〉R

)
, and DR

ζ is the covariant derivative with respect to the metric(1.4)
along the directionζ.

Proof. First of all we need to prove that

∃ h1 > 0 : ‖H T
R (z)‖R 6 h1 ∀z ∈Ma,b. (A.6)

Since we can consider Riemannian geodesics as critical points of the functional
∫ 1

0 〈ż, ż〉 +
〈W(z), ż〉2, it is easy to prove that they satisfy the equation

−Dsż+ 2〈W(z), ż〉[dW(z)]T ż− 2
d

ds

(〈W(z), ż〉W(z)
) = 0 (A.7)

where [dW(z)]T represents the transpose of the differential ofW. Let us define the real function
r (s) = T(z(s)). By construction

r ′′(ζ ) = H T
R (z)[ζ̇ , ζ̇ ]. (A.8)

On the other hand, differentiatingr with respect to the Lorentzian metric, we have that

r ′′(s) = 〈H T (z)ż, ż〉 + 〈∇T(z), Dsż〉. (A.9)

Therefore, substituing (A.7) in (A.9) and comparing (A.8) and (A.9), from(1.3) we obtain

H T
R (z)[ζ̇ , ζ̇ ] = 〈H T (z)ζ̇ , ζ̇ 〉 − 2〈W(z), ζ̇ 〉〈dW(z)[∇T ], ζ̇ 〉

− 2
√
−〈∇T,∇T〉〈dW(z)[ζ̇ ], ζ̇ 〉.

(A.10)

By construction, for anyζ ∈ TzÄ
1,2 we have that

dW(z)[ζ ] = H T (z)[ζ ]〈∇T,∇T〉 + ∇T〈H T (z)ζ,∇T〉
−〈∇T,∇T〉

√
−〈∇T,∇T〉

.

Then, takingζ = ∇T, from (A.1) it follows

dW(z)[∇T ] = H T (z)[∇T ]√
−〈∇T,∇T〉R

+ 〈H
T (z)∇T,∇T〉√
−〈∇T,∇T〉R3 , (A.11)

so, being

‖G(z)‖R = sup
〈ζ,ζ 〉R=1

|〈G(z)ζ, ζ 〉|

for any bilinear operatorG, (1.6), (1.7), (A.10) and (A.11) imply (A.6).
By construction

DR
ζ Y = H T

R (z)[ζ ]

〈∇T,∇T〉R − ∇
RT

(
2

〈∇T,∇T〉R 〈∇
RT, H T

R (z)[ζ ]〉R
)
.

Then(1.6), (1.7) and (A.6) yeld

|〈ζ, DR
ζ Y〉R| 6

(
h1N + 2h1N2

ν

)
〈ζ, ζ 〉R.
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TakingM1 = h1N+(2h1N2)/ν we obtain (1). By construction(2) is an obvious consequence of
(1). To finish the proof we have to prove that∇Rβ(z)[Y(z)] is bounded. Assumptions(1.6), (A.6)
yield ∇Rβ(z)[Y(z)] = −2β2〈H T

R (z)[Y(z)],∇T(z)〉R 6 2β3/2‖H T
R (z)‖R‖Y(z)‖R 6 2N2h1,

from which the thesis follows. ¤
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