On the problem of the existence for connecting trajectories under the action of gravitational and electromagnetic fields*

Flavia Antonacci ${ }^{1}$
Dipartimento di Matematica, Università degli Studi di Roma III, 00146 Roma, Italy

Fabio Giannoni ${ }^{2}$
Dipartimento di Matematica e Fisica, Università degli Studi di Camerino, 62032 Camerino, Italy

Paola Magrone ${ }^{3}$
Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", 00173 Roma, Italy

Communicated by M. Willem
Received February 1999

Abstract

We give sufficient conditions assuring the existence of timelike trajectories connecting two prescribed events in a Lorentzian manifold. They represent the trajectories of a free falling massive particle under the action of a gravitational and electromagnetic field.

Keywords: Lorentzian manifolds, critical points.
MS classification: 53C22.

1. Introduction and statement of the results

Let (\mathcal{M}, g) be a Lorentzian manifold. In this paper we first point out how can be faced the existence of timelike trajectories joining two fixed points z_{0}, z_{1} of a region $\{z \in \mathcal{M}$: $a<T(z)<b\}$ where T is a smooth time function, assuming that its boundary is convex. From a physical point of view we can interpret \mathcal{M} as the space-time where the information about the gravitational field are "included" in the metric tensor g, while the action of the electromagnetic field is given by a smooth vector field A. The trajectories connecting the couple of events are the free falling trajectories of a material point z. The fundamental equation of Classical Physics related to the motion of z inside a gravitational and an electromagnetic field is the Euler-Lagrange equation related to the action functional

$$
\begin{equation*}
F(z)=-m_{0} c \int_{t_{0}}^{t_{1}} \sqrt{-\langle\dot{z}, \dot{z}\rangle} \mathrm{d} t+q \int_{t_{0}}^{t_{1}}\langle A(z), \dot{z}\rangle \mathrm{d} t \tag{1.1}
\end{equation*}
$$

[^0](see [8]) where m_{0} is the rest mass of the particle, q is its charge (and we shall assume $q= \pm 1$), c is the speed of light, $A(z)$ gives the action of the electromagnetic field and $\langle\cdot, \cdot\rangle=g(z)[\cdot, \cdot]$.

To obtain critical points of the functional F one can look for the critical points of the functional

$$
\begin{equation*}
\mathcal{S}=\frac{1}{2} \int_{\sigma_{0}}^{\sigma_{1}}\langle\dot{z}, \dot{z}\rangle \mathrm{d} \sigma+\int_{\sigma_{0}}^{\sigma_{1}}\langle A(z), \dot{z}\rangle \mathrm{d} \sigma, \tag{1.2}
\end{equation*}
$$

satisfying $\langle\dot{z}(\sigma), \dot{z}(\sigma)\rangle<0$, for any σ (cf. Remark 2.2). The functional (1.2) was introduced in [5] to study some fundamental equations in General Relativity.

The existence of critical points for (1.2) has been studied by several authors, but just in the case that $A(z) \equiv 0$ (see [4] and references therein). The presence of $A(z) \neq 0$ makes the problem more complicate. As far as we know the only existence results for critical points of \mathcal{S} are on standard static manifolds (see [2]).

In this paper we assume that the manifold \mathcal{M} has a smooth time function, $T: \mathcal{M} \longrightarrow \mathbb{R}$ namely satisfying

$$
\langle\nabla T(z), \nabla T(z)\rangle<0, \quad \forall z \in \mathcal{M}
$$

Here $\nabla T(z)$ is the Lorentzian gradient of T defined by

$$
d T(z)[\zeta]=\langle\nabla T(z), \zeta\rangle, \quad \forall \zeta \in T_{z} \mathcal{M}
$$

The study of critical points of \mathcal{S} will be done under intrinsic assumptions on the function T. Set

$$
\begin{equation*}
W(z)=\frac{\nabla T(z)}{\sqrt{-\langle\nabla T(z), \nabla T(z)\rangle}} . \tag{1.3}
\end{equation*}
$$

By the help of $W(z)$ we can define a natural Riemannian metric on \mathcal{M} (see [1]) setting

$$
\begin{equation*}
\left\langle\zeta, \zeta_{1}\right\rangle_{R}=\left\langle\zeta, \zeta_{1}\right\rangle+2\langle W(z), \zeta\rangle\left\langle W(z), \zeta_{1}\right\rangle \tag{1.4}
\end{equation*}
$$

(We can easily prove that (1.4) is a Riemannian metric, using the wrong way Schwartz inequality, see [10].) For any fixed constants $a, b \in \mathbb{R}$ with $a<b$, let us consider the strip

$$
\mathcal{M}_{a, b}=\{z \in \mathcal{M}: a<T(z)<b\} .
$$

Our assumptions are the following:

$$
\begin{equation*}
\text { the metric }\langle\cdot, \cdot\rangle \text { is complete in } \mathcal{M}_{a, b} \text {. } \tag{1.5}
\end{equation*}
$$

Let

$$
\beta=\beta(z)=\frac{1}{\left\langle\nabla^{R} T(z), \nabla^{R} T(z)\right\rangle_{R}}=-\frac{1}{\langle\nabla T(z), \nabla T(z)\rangle}
$$

(see Lemma A.1) be such that

$$
\begin{equation*}
\exists v, N>0: \quad v \leqslant \beta(z) \leqslant N \quad \forall z \in \mathcal{M}_{a, b} \tag{1.6}
\end{equation*}
$$

(here ∇^{R} represents the gradient with respect to the Riemannian metric). Denote by H^{T} the hessian of T with respect to the Lorentzian metric $\left(\left\langle H^{T}(z) \zeta, \zeta\right\rangle=\mathrm{d}^{2} / \mathrm{d} s^{2}(T(\gamma(s))) / s=0\right.$ where γ is a geodesic such that $\gamma(0)=z$ and $\dot{\gamma}(0)=\zeta)$. We assume that

$$
\begin{equation*}
\exists K>0: \quad\left\|H^{T}(z)\right\|_{R} \leqslant K \quad \forall z \in \mathcal{M}_{a, b} \tag{1.7}
\end{equation*}
$$

where $\|\cdot\|_{R}=\sqrt{\langle\cdot, \cdot\rangle_{R}}$.

$$
\begin{equation*}
\exists A_{0}, A_{1} \in \mathbb{R}:\|A\|_{R} \leqslant A_{0} \text { and }\|d A\|_{R} \leqslant A_{1} \quad \text { on } \mathcal{M} . \tag{1.8}
\end{equation*}
$$

There exists $\delta>0$:

$$
\begin{align*}
& \left\langle H^{T}(z) \zeta, \zeta\right\rangle<0 \quad \forall z \in T^{-1}(] a, a+\delta[), \forall \zeta \in T_{z} \mathcal{M}, \text { with }\langle\zeta, \nabla T(z)\rangle=0 \tag{1.9}\\
& \left\langle H^{T}(z) \zeta, \zeta\right\rangle>0 \quad \forall z \in T^{-1}(] b-\delta, b[), \forall \zeta \in T_{z} \mathcal{M}, \text { with }\langle\zeta, \nabla T(z)\rangle=0 \tag{1.10}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[d A^{*}-d A\right](z)[\zeta] \equiv 0 \quad \forall \zeta \in T_{z} \mathcal{M}, \forall z \in T^{-1}(] a, a+\delta[) \cup T^{-1}(] b-\delta, b[),} \\
& \quad \text { with }\langle\zeta, \nabla T(z)\rangle=0, \tag{1.11}
\end{align*}
$$

where $d A$ is the covariant differential of A and $d A^{*}$ is the adjoint operator of $d A$.
Finally we need the following assumption, giving the Saddle Point structure for the functional S: there exists $\theta \in(0,2)$ and two continuous maps $c(z), d(z)$ not depending on $T(z)$ such that

$$
\begin{equation*}
\left|\langle\zeta, \zeta\rangle_{R}-\beta(z)\langle\zeta, \nabla T(z)\rangle^{2}\right| \leqslant\left[c(z)+d(z)|T(z)|^{\theta}\right]\langle\zeta, \zeta\rangle_{R} . \tag{1.12}
\end{equation*}
$$

Remark 1.1. Observe that conditions (1.9) and (1.10) are equivalent to the strict convexity of the boundary of $\mathcal{M}_{a, b}$ (cf. [9])

The main result of the paper is the following
Theorem 1.2. Assume (1.5)-(1.12). Then for any fixed z_{0} and z_{1} there exists a solution of the Euler-Lagrange equation corresponding to the functional (1.2) connecting z_{0} with z_{1}.

Remark 1.3. Whenever $A \equiv 0$, Theorem 1.2 gives the results proved in [9], under non-intrinsic hypothesis.

Remark 1.4. Using the a priori estimates in Section 4 and relative category as in [6] allows us to get, under the assumptions of Theorem 1.2, that there exists a sequence $\left\{z_{n}\right\}$ of critical points of \mathcal{S} such that $\left\{z_{n}\right\} \rightarrow+\infty$. Note that the result of Theorem 1.2 has only a geometrical meaning but not yet a physical interpretation. Indeed while we are able to find critical points where \mathcal{S} is strictly negative (if $\left|T\left(z_{1}\right)-T\left(z_{0}\right)\right|$ is sufficiently large), we cannot conclude that they are time-like. This is due to the particular conservation law satisfied by the critical points of \mathcal{S} (see Proposition 2.1). The presence of the term $\int_{0}^{1}\langle A(z), \dot{z}\rangle$ carries such difficulty, together with many others related to the a priori estimates. However the proof of Theorem 1.2 is a first step in the search of time-like critical curves for the functional \mathcal{S}. We hope that the techniques used in that proof will allow also to guarantee the existence of the time-like solutions.

Remark 1.5. For the proof of the existence of time-like critical curves of F the situation is completely different with respect to the case $A \equiv 0$, where the global hyperbolicity assures the existence of a causal critical curve of F, namely a causal geodesic connecting two given events (see, e.g., [3]). Indeed, since both integrals in F are positively homogeneous of the same degree with respect to \dot{z}, if $A \neq 0$, global hyperbolicity is not sufficient to obtain a priori estimates for \dot{z} even if we use the time coordinate to parameterize the admissible paths.

2. The variational principle

Denote with $H^{1,2}([0,1], \mathcal{M})$ the space

$$
H^{1,2}([0,1], \mathcal{M})=\left\{z:[0,1] \longrightarrow \mathcal{M}: z \in A C([0,1], \mathcal{M}) \text { and } \int_{0}^{1}\langle\dot{z}, \dot{z}\rangle_{R} \mathrm{~d} s<+\infty\right\}
$$

where $A C([0,1], \mathcal{M})$ is the set of absolutely continuous curves on \mathcal{M}, and $\langle\cdot, \cdot \cdot\rangle$ is defined in (1.4). Define

$$
\Omega^{1,2}=\left\{z \in H^{1,2}([0,1], \mathcal{M}): z(0)=z_{0}, z(1)=z_{1}\right\}
$$

and

$$
\begin{equation*}
\Omega_{a, b}^{1,2}=\left\{z \in \Omega^{1,2}: z([0,1]) \subset \mathcal{M}_{a, b}\right\} \tag{2.1}
\end{equation*}
$$

where $\mathcal{M}_{a, b}$ is defined in Section 1. It is well known (see, e.g., [10]) that $\Omega^{1,2}$ is a Hilbert submanifold of $H^{1,2}([0,1], \mathcal{M})$ and its tangent space at $z \in \Omega^{1,2}$ is given by

$$
T_{z} \Omega^{1,2}=\left\{\zeta \in H^{1,2}\left([0,1], T_{z} \mathcal{M}\right): \zeta(s) \in T_{z(s)} \mathcal{M} \quad \forall s \in[0,1], \quad \zeta(0)=\zeta(1)=0\right\}
$$

while the Hilbert structure is

$$
\begin{equation*}
\langle\zeta, \zeta\rangle_{1}=\int_{0}^{1}\left\langle D_{s}^{R} \zeta, D_{s}^{R} \zeta\right\rangle d s \tag{2.2}
\end{equation*}
$$

In order to prove Theorem 1.2 we need the following simple result which gives the equation satisfied by the critical points of \mathcal{S}.

Proposition 2.1. If z is a critical point of \mathcal{S} on $\Omega^{1,2}$, then $z \in C^{2}([0,1])$ and satisfies the equation

$$
\begin{equation*}
D_{s} \dot{z}+d A(z)[\dot{z}]-d A^{*}(z)[\dot{z}]=0 . \tag{2.3}
\end{equation*}
$$

Moreover $\langle\dot{z}, \dot{z}\rangle=$ const.
Proof. If z is a critical point of the functional \mathcal{S}, then

$$
\int_{0}^{1}\left\langle\dot{z}+A(z), D_{s} \zeta\right\rangle=-\int_{0}^{1}\left\langle(d A(z))^{*}[\dot{z}], \zeta\right\rangle \quad \forall \zeta \in T_{z} \Omega^{1,2}
$$

and integrating by parts the right-hand side member, since $\zeta(0)=\zeta(1)=0$, we get

$$
\begin{equation*}
\int_{0}^{1}\left\langle\dot{z}+A(z)-\left[\int_{0}^{s}\left((d A(z(r)))^{*}[\dot{z}(r)] \mathrm{d} r\right], D_{s} \zeta\right\rangle=0 \quad \forall \zeta \in T_{z} \Omega^{1,2}\right. \tag{2.4}
\end{equation*}
$$

By (2.3) we deduce that $\dot{z}+A(z)-\left[\int_{0}^{s}\left((d A(z(r)))^{*}[\dot{z}(r)] \mathrm{d} r\right]\right.$ is of class C^{1}. Then \dot{z} is a continuous curve and applying again (2.4), \dot{z} is of class C^{1}. Finally, since $d A^{*}$ is the adjoint of the operator $d A$, multiplying (2.3) by \dot{z}, we obtain $\left\langle D_{s} \dot{z}, \dot{z}\right\rangle=0$, that is

$$
\langle\dot{z}, \dot{z}\rangle \equiv \text { const. }
$$

Remark 2.2. Let $z \in \Omega^{1,2}$ be a critical point of S such that $\langle\dot{z}(s), \dot{z}(s)\rangle=E_{z}<0$ for any $s \in[0,1]$ and $z(0)=z_{0}, z(1)=z_{1}$. Suppose $\sqrt{-E_{z}}=m_{0} c$. Then $w(s)=z(s)$ is a critical point of the functional F whenever $q=1$, and $w(s)=z(-s)$ is a critical point of F whenever $q=-1$. In both cases w is a solution of the differential equation

$$
\begin{equation*}
m_{0} c \frac{d}{d s}\left(\frac{\dot{w}}{\sqrt{-\langle\dot{w}, \dot{w}\rangle}}\right)+q\left[d A^{*}(w)-d A(w)\right][\dot{w}]=0 \tag{2.5}
\end{equation*}
$$

Indeed by Proposition 2.1, z satisfies equation (2.3). Assume $q=1$. By the definition of F

$$
F^{\prime}(w)[\zeta]=-m_{0} c \int_{t_{0}}^{t_{1}} \frac{1}{\sqrt{-\langle\dot{w}, \dot{w}\rangle}}\left\langle\dot{w}, D_{s} \zeta\right\rangle+\int_{t_{0}}^{t_{1}}\langle d A(w)[\zeta], \dot{w}\rangle+\int_{t_{0}}^{t_{1}}\left\langle A(w), D_{s} \zeta\right\rangle
$$

that yelds (2.5) for any w critical point of class C^{1} of F. Since $\sqrt{-E_{z}}=m_{0} c$, putting $w(s)=$ $z(s)$ in (2.5) we obtain the thesis. The same result can be obtained if $q=-1$ choosing $w(s)=z(-s)$.

3. Palais-Smale condition on a strip

For the search of critical points of F via variational methods, we need some compactness assumption on the action functional \mathcal{S}. The most natural one is the Palais-Smale condition.

Definition. Let X be a Hilbert manifold, Ω an open subset of $X, F: \Omega \rightarrow \mathbb{R}$ a C^{1}-functional, and c a real number. We say that F satisfies the Palais-Smale condition at the level $c,(P . S .)_{c}$, on Ω, if for every sequence $\left\{z_{n}\right\}_{n \in \mathbb{N}}$ in Ω satisfying:
(1) $F\left(z_{n}\right) \rightarrow c$,
(2) $\lim _{n \rightarrow \infty} F^{\prime}\left(z_{n}\right)=0$,
there exists a subsequence $\left\{z_{n_{k}}\right\}_{k \in \mathbb{N}}$ converging in Ω. A sequence $\left\{z_{n}\right\}$ in Ω satisfying (1) and (2) is called a Palais-Smale sequence at the level c.

We do not know if the functional \mathcal{S} satisfies tha Palais-Smale condition, for this reason we introduce a penalizing family of functionals, denoted by $\mathcal{S}_{\varepsilon}$, as follows: let $\psi:[0,+\infty) \longmapsto \mathbb{R}$ be a smooth $\left(C^{2}\right)$ real function having the following properties:
(1) $\psi(0)=\psi^{\prime}(0)=\psi^{\prime \prime}(0)=0$,
(2) $\psi(\sigma)>0 \quad \forall \sigma \in \mathbb{R}^{+}, \psi^{\prime}(\sigma)>0$,
(3) $\lim _{\sigma \rightarrow+\infty} \sigma \psi^{\prime}(\sigma)-\psi(\sigma)=+\infty$.

An example of such a function is given by

$$
\psi(\sigma)=e^{\sigma}-\left(1+\sigma+\frac{1}{2} \sigma^{2}\right)
$$

Set

$$
\psi_{\varepsilon}(\sigma)= \begin{cases}\psi\left(\sigma-\frac{1}{\varepsilon}\right) & \text { if } \quad \sigma \geqslant \frac{1}{\varepsilon} \\ 0 & \text { if } \quad \sigma<\frac{1}{\varepsilon}\end{cases}
$$

Now fix two real numbers $a<b$ and take, as in section 1,

$$
\mathcal{M}_{a, b}=\{z \in \mathcal{M}: a<T(z)<b\} .
$$

Fix $0<\delta<\frac{1}{2}(b-a)$ and consider a C^{2}-map $\phi_{\delta}: \mathbb{R} \longmapsto \mathbb{R}$ such that

$$
\phi_{\delta}(\sigma)= \begin{cases}b-\sigma & \text { if } \sigma \in[b-\delta, b+\delta] \\ \sigma-a & \text { if } \sigma \in[a-\delta, a+\delta]\end{cases}
$$

Take $\Phi: \overline{\mathcal{M}_{a, b}} \longmapsto \mathbb{R}$ defined as $\Phi(z)=\phi_{\delta}(T(z))$. By construction Φ vanishes on $\partial \mathcal{M}_{a, b}$ and it is positive on $\mathcal{M}_{a, b}$. For any $\varepsilon>0$ we define the penalized functional

$$
\mathcal{S}_{\varepsilon}: \Omega_{a, b}^{1,2} \longmapsto \mathbb{R}
$$

as follows

$$
\mathcal{S}_{\varepsilon}(z)=\mathcal{S}(z)-\psi_{\varepsilon}\left(\int_{0}^{1}\langle\dot{z}, \nabla T(z)\rangle^{2}\right)-\varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}(z(s))} \mathrm{d} s,
$$

where $\Omega_{a, b}^{1,2}$ has been defined in (2.1). To prove the Palais-Smale condition is more convenient to write S_{ε} in the following form:

$$
\begin{align*}
\mathcal{S}_{\varepsilon}(z)= & \frac{1}{2} \int_{0}^{1}\langle\dot{z}, \dot{z}\rangle_{R}-\int_{0}^{1}\langle\hat{W}, \dot{z}\rangle_{R}^{2}+\int_{0}^{1}\langle A(z), \dot{z}\rangle \tag{3.1}\\
& -\psi_{\varepsilon}\left(\int_{0}^{1}\left\langle\dot{z}, \nabla^{R} T(z)\right\rangle_{R}^{2}\right)-\varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}(z)} \mathrm{d} s
\end{align*}
$$

where

$$
\begin{equation*}
\hat{W}(z)=\frac{\nabla^{R} T(z)}{\sqrt{\left\langle\nabla^{R} T(z), \nabla^{R} T(z)\right\rangle_{R}}} \tag{3.2}
\end{equation*}
$$

is such that $\langle\hat{W}, \zeta\rangle_{R}=\langle W, \zeta\rangle$ (cf. Lemma A.2).
We have the following

Proposition 3.1. Assume (1.6)-(1.8). Let $c \in \mathbb{R},\left\{\delta_{n}\right\}$ be an infinitesimal sequence belonging to \mathbb{R}^{+}. Let $\left\{z_{n}\right\} \subset \Omega_{a, b}^{1,2}$ be a sequence such that

$$
\begin{align*}
& \mathcal{S}_{\varepsilon}\left(z_{n}\right) \leqslant c, \tag{3.3}\\
& \sup _{0 \neq \zeta \in T_{z n} \Omega^{1,2}}\left|\mathcal{S}_{\varepsilon}^{\prime}\left(z_{n}\right)[\zeta]\right| \leqslant \delta_{n} \int_{0}^{1}\left\langle D_{s}^{R} \zeta, D_{s}^{R} \zeta\right\rangle_{R}, \tag{3.4}
\end{align*}
$$

where $\oint_{\varepsilon}^{\prime}$ denotes the differential of \oint_{ε}.
Then $\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla^{R} T\right\rangle_{R}^{2}$ is bounded and z_{n} is uniformly far from $\partial \mathcal{M}_{a, b}$.
Whenever z_{n} is uniformly far from $\partial \mathcal{M}_{a, b}$, the boundedness of $\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla^{R} T\right\rangle_{R}^{2}$ is useful to prove the boundedness of $\int_{0}^{1}\left\langle\dot{z}_{n}, \dot{z}_{n}\right\rangle_{R}$. Indeed we have the following

Lemma 3.2. If $S_{\varepsilon}\left(z_{n}\right) \leqslant c, z_{n}$ is uniformly far from $\partial \mathcal{M}_{a, b}$ and $\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla^{R} T\right\rangle_{R}^{2} \leqslant c_{1}$, then $\int_{0}^{1}\left\langle\dot{z}_{n}, \dot{z}_{n}\right\rangle_{R}$ is bounded.

Proof. Since $\mathcal{S}_{\varepsilon}\left(z_{n}\right) \leqslant c$, by (3.1), (3.2) and (1.6)

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{1}\left\langle\dot{z}_{n}, \dot{z}_{n}\right\rangle_{R}= & \mathcal{S}_{\varepsilon}\left(z_{n}\right)+\int_{0}^{1}\left\langle\hat{W}\left(z_{n}\right), \dot{z}_{n}\right\rangle^{2}-\int_{0}^{1}\left\langle A\left(z_{n}\right), \dot{z}_{n}\right\rangle \\
& +\psi_{\varepsilon}\left(\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla^{R} T\right\rangle_{R}^{2} \mathrm{~d} s\right)+\varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}\left(z_{n}\right)} \mathrm{d} s \\
\leqslant & c+N \int_{0}^{1}\left\langle\dot{z}_{n}, \nabla^{R} T\right\rangle_{R}^{2} \mathrm{~d} s+\|A\|_{R} \int_{0}^{1} \sqrt{\left\langle\dot{z}_{n}, \dot{z}_{n}\right\rangle_{R}} \\
& +\psi_{\varepsilon}\left(\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla^{R} T\right\rangle_{R}^{2} \mathrm{~d} s\right)+\varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}\left(z_{n}\right)} \mathrm{d} s
\end{aligned}
$$

Then

$$
\begin{align*}
\int_{0}^{1}\left\langle\dot{z}_{n}, \dot{z}_{n}\right\rangle_{R} \leqslant & 2\|A\|_{R}\left(\int_{0}^{1}\left\langle\dot{z}_{n}, \dot{z}_{n}\right\rangle_{R}\right)^{1 / 2}+2 c+2 N \int_{0}^{1}\left\langle\dot{z}_{n}, \nabla^{R} T\right\rangle_{R}^{2} \mathrm{~d} s \tag{3.5}\\
& +2 \psi_{\varepsilon}\left(\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla^{R} T\right\rangle_{R}^{2} \mathrm{~d} s\right)+2 \varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}\left(z_{n}\right)} \mathrm{d} s
\end{align*}
$$

Since $\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla^{R} T\right\rangle_{R}^{2} \mathrm{~d} s$ and $\int_{0}^{1} 1 /\left(\Phi^{2}\left(z_{n}\right)\right) \mathrm{d} s$ are bounded, (3.5) implies the boundedness of $\int_{0}^{1}\left\langle\dot{z}_{n}, \dot{z}_{n}\right\rangle_{R}$.

Proof of Proposition 3.1. For the sake of simplicity during this proof we will write z instead of z_{n}. By (3.1) and (3.4), for any $\zeta \in T_{z} \Omega_{a, b}^{1,2}$ we have that

$$
\begin{align*}
0 \leqslant & \mathcal{S}_{\varepsilon}^{\prime}(z)[\zeta]+\delta_{n} \int_{0}^{1}\left\langle D_{s}^{R} \zeta, D_{s}^{R} \zeta\right\rangle_{R} \\
= & \int_{0}^{1}\left\langle\dot{z}, D_{s}^{R} \zeta\right\rangle_{R}-2 \int_{0}^{1}\langle\hat{W}(z), \dot{z}\rangle_{R}\left[D_{\zeta}^{R}\left(\langle\hat{W}(z), \dot{z}\rangle_{R}\right)\right] \\
& +\int_{0}^{1}\langle d A(z)[\zeta], \dot{z}\rangle+\int_{0}^{1}\left\langle A(z), D_{s} \zeta\right\rangle \tag{3.6}\\
& -2 \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1}\left\langle\dot{z}, \nabla^{R} T(z)\right\rangle_{R}^{2}\right)\left[\int_{0}^{1}\left\langle\dot{z}, \nabla^{R} T\right\rangle_{R} D_{\zeta}^{R}\left(\left\langle\dot{z}, \nabla^{R} T\right\rangle_{R}\right)\right] \\
& +\frac{\varepsilon}{2} \int_{0}^{1} \frac{1}{\Phi^{3}(z)}\left\langle\nabla^{R} \Phi, \zeta\right\rangle_{R} \mathrm{~d} s+\delta_{n} \int_{0}^{1}\left\langle D_{s}^{R} \zeta, D_{s}^{R} \zeta\right\rangle_{R}
\end{align*}
$$

where $D_{\zeta}^{R}(\cdot)$ denotes the covariant derivative (with respect to (1.4)) along the direction ζ. Now take

$$
\zeta(s)=\left[t_{n}(s)-t_{*}(s)\right] Y(z),
$$

where

$$
\begin{align*}
Y(z) & =\frac{\nabla^{R} T(z)}{\left\langle\nabla^{R} T(z), \nabla^{R} T(z)\right\rangle_{R}} \tag{3.7}\\
t_{n}(s) & =T(z(s)) \quad \text { and } \quad t_{*}(s)=(1-s) T(z(0))+s T(z(1))
\end{align*}
$$

Note that $\dot{t}_{n}=\left\langle\dot{z}, \nabla^{R} T\right\rangle_{R}$ and $\langle\hat{W}(z), \dot{z}\rangle_{R}^{2}=\beta(z) \dot{t}_{n}^{2}$, where β is defined in (1.6). Therefore,
with the above choice of ζ (see also the form of the metric g in local coordinates), (3.6) becomes

$$
\begin{align*}
0 \leqslant & \int_{0}^{1}\left\langle\dot{z}, D_{\dot{z}}^{R} Y(z)\right\rangle\left[t_{n}(s)-t_{*}(s)\right]+\int_{0}^{1}\langle\dot{z}, Y(z)\rangle\left[\dot{t}_{n}(s)-\dot{t}_{*}(s)\right] \\
& -\int_{0}^{1}\left\langle\nabla^{R} \beta(z), Y(z)\right\rangle\left[t_{n}(s)-t_{*}(s)\right] \dot{t}_{n}^{2}-2 \int_{0}^{1} \beta(z) \dot{t}_{n}\left[\dot{t}_{n}(s)-\dot{t}_{*}(s)\right] \\
& +\int_{0}^{1}\langle d A(z)[Y(z)], \dot{z}\rangle\left[t_{n}(s)-t_{*}(s)\right]+\int_{0}^{1}\left\langle A(z), D_{s}\left[\left(t_{n}(s)-t_{*}(s)\right) Y(z)\right]\right\rangle \\
& -2 \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{n}^{2}\right)\left[\int_{0}^{1} \dot{t}_{n}\left(\dot{t}_{n}(s)-\dot{t}_{*}(s)\right)\right] \tag{3.8}\\
& +\frac{\varepsilon}{2} \int_{0}^{1} \frac{1}{\Phi^{3}(z)} \frac{\left\langle\nabla^{R} \Phi(z), \nabla^{R} T(z)\right\rangle}{\left\langle\nabla^{R} T(z), \nabla^{R} T(z)\right\rangle}\left(t_{n}(s)-t_{*}(s)\right) \\
+ & \delta_{n}\left[\int_{0}^{1}\langle Y, Y\rangle_{R}\left(\dot{t}_{n}(s)-\dot{t}_{*}(s)\right)+\int_{0}^{1}\left\langle D_{\dot{z}}^{R} Y, D_{\grave{z}}^{R} Y\right\rangle_{R}\left(t_{n}(s)-t_{*}(s)\right)^{2}\right. \\
& \left.+2 \int_{0}^{1}\left\langle Y, D_{\dot{z}}^{R} Y\right\rangle_{R}\left(\dot{t}_{n}(s)-\dot{t}_{*}(s)\right)\left(t_{n}(s)-t_{*}(s)\right)\right] .
\end{align*}
$$

An integration by parts yields

$$
\begin{equation*}
\int_{0}^{1}\left\langle A(z), D_{s}\left[\left(t_{n}(s)-t_{*}(s)\right) Y(z)\right]\right\rangle=-\int_{0}^{1}\langle d A(z)[\dot{z}], Y(z)\rangle\left[t_{n}(s)-t_{*}(s)\right] \tag{3.9}
\end{equation*}
$$

Notice that $\left|\dot{t}_{*}(s)\right|=|T(z(1))-T(z(0))| \equiv \bar{t}$, where \bar{t} is constant. Moreover, considering that $z \in \Omega_{a, b}^{1,2}$, it follows that

$$
\begin{equation*}
\left\|t_{n}-t_{*}\right\| \leqslant c_{*} . \tag{3.10}
\end{equation*}
$$

Then, since $\|Y\|_{R} \leqslant \sqrt{N}$ (see (1.6)) using Proposition A. 3 and assumptions (1.6) and (1.8), combining (3.8)-(3.10) gives

$$
\begin{aligned}
0 \leqslant & c_{*} M_{1} \int_{0}^{1}\langle\dot{z}, \dot{z}\rangle_{R}+\sqrt{N} \int_{0}^{1} \sqrt{\langle\dot{z}, \dot{z}\rangle_{R}}\left(\dot{t}_{n}(s)-\dot{t}_{*}(s)\right)+M_{3} c_{*} \int_{0}^{1} \dot{t}_{n}^{2} \\
& +2 N \int_{0}^{1}\left(\dot{t}_{n}^{2}+\left|\dot{t}_{n} \dot{t}_{*}\right|\right)+2 A_{1} \sqrt{N} c_{*} \int_{0}^{1} \sqrt{\langle\dot{z}, \dot{z}\rangle_{R}}+2 \bar{t}^{2} \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{n}^{2}\right) \\
& -2 \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{n}^{2}\right)\left[\int_{0}^{1} \dot{t}_{n}^{2}\right]+\frac{\varepsilon}{2} \int_{0}^{1} \frac{1}{\Phi^{3}(z)} \frac{\left\langle\nabla^{R} \Phi(z), \nabla^{R} T(z)\right\rangle}{\left\langle\nabla^{R} T(z), \nabla^{R} T(z)\right\rangle}\left(t_{n}(s)-t_{*}(s)\right) \\
& +\delta_{n} N \int_{0}^{1}\left(\dot{t}_{n}(s)-\dot{t}_{*}(s)\right)^{2}+\delta_{n} M_{2} c_{*}^{2} \int_{0}^{1}\langle\dot{z}, \dot{z}\rangle_{R}+2 \delta_{n} c_{*} \sqrt{N} M_{2} \int_{0}^{1}\left|\dot{t}_{n} \dot{t}_{*}\right| .
\end{aligned}
$$

Then assuming by contradiction that $\int_{0}^{1} \dot{t}_{n}^{2} \rightarrow+\infty$ (and using the properties of ψ_{ε}) gives the existence of constants $D_{0}, D_{1}>0$ such that

$$
\begin{align*}
0 \leqslant & D_{0}
\end{align*}+D_{1} \int_{0}^{1}\langle\dot{z}, \dot{z}\rangle_{R}-2 \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{n}^{2}\right)\left[\int_{0}^{1} \dot{t}_{n}^{2}\right] .
$$

By (3.5) we deduce the existence of constants $D_{2}, D_{3}>0$ such that

$$
\begin{equation*}
\int_{0}^{1}\langle\dot{z}, \dot{z}\rangle_{R} \leqslant D_{3}+D_{4}\left[\psi_{\varepsilon}\left(\int_{0}^{1} \dot{t}_{n}^{2}\right)+\varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}(z)}\right] . \tag{3.12}
\end{equation*}
$$

Finally, combining (3.11) and (3.12), using the properties of ψ_{ε} and the sign of $\left\langle\nabla^{R} \Phi(z)\right.$, $\left.\nabla^{R} T(z)\right\rangle_{R}\left(t_{n}(s)-t_{*}(s)\right)$ near by $\partial \mathcal{M}_{a, b}$ (see the definition of Φ) allows to conclude that $\int_{0}^{1} \dot{t}_{n}^{2}$ is bounded. Now, as $\Phi(z)=\phi_{\delta}(T(z))$ using once again (3.11) and (3.12) gives the existence of constants $D_{5}, D_{6}>0$ such that

$$
\int_{0}^{1} \frac{1}{\phi_{\delta}^{3}\left(t_{n}\right)} \leqslant D_{5} \int_{0}^{1} \frac{1}{\phi_{\delta}^{2}\left(t_{n}\right)}+D_{6}
$$

By the definition of ϕ_{δ} we deduce the existence of $D_{7}>0$ for which

$$
\left.\frac{1}{\phi_{\delta}^{3}(t)} \geqslant \frac{2 D_{5}}{\phi_{\delta}^{2}(t)}-D_{7} \quad \text { for any } t \in\right] a, b[
$$

Then $\int_{0}^{1} 1 /\left(\phi_{\delta}^{2}\left(t_{n}\right)\right)$ must be bounded. Since $\int_{0}^{1} \dot{t}_{n}^{2}$ is bounded, we have that t_{n} is uniformly far from $\partial \mathcal{M}_{a, b}$.

Proposition 3.3. Assume (1.6)-(1.8). Then $\mathcal{S}_{\varepsilon}$ satisfies (P.S.) ${ }_{c}$ for every $c \in \mathbb{R}$.
Proof. $\mathcal{S}_{\varepsilon}^{\prime}(z)$ is a linear and continuous operator in the space $\Omega_{a, b}^{1,2}$ endowed with the Hilbert structure (2.2). So, if $\left\{z_{n}\right\}$ is a Palais-Smale sequence, for every $n \in \mathbb{N}$ we can write

$$
\mathcal{S}_{\varepsilon}^{\prime}\left(z_{n}\right)[\zeta]=\int_{0}^{1}\left\langle A_{n}, D_{s}^{R} \zeta\right\rangle_{R}
$$

where A_{n} goes to 0 as $n \rightarrow+\infty$ with respect to L^{2}-norm. Therefore, by construction,

$$
\begin{align*}
\int_{0}^{1}\left\langle\dot{z}_{n},\right. & \left.D_{s} \zeta\right\rangle+\int_{0}^{1}\left\langle d A\left(z_{n}\right)[\zeta], \dot{z}_{n}\right\rangle+\int_{0}^{1}\left\langle A\left(z_{n}\right), D_{s} \zeta\right\rangle \\
& -2 \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla T\right\rangle^{2}\right)\left[\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla T\right\rangle\left(\left\langle D_{s} \zeta, \nabla T\right\rangle+\left\langle\dot{z}_{n}, H^{T}\left(z_{n}\right)[\zeta]\right\rangle\right)\right] \tag{3.13}\\
& +2 \varepsilon \int_{0}^{1} \frac{1}{\Phi^{3}\left(z_{n}\right)}\left\langle\Phi^{\prime}\left(z_{n}\right), \zeta\right\rangle \\
= & \int_{0}^{1}\left\langle A_{n}, D_{s}^{R} \zeta\right\rangle_{R}
\end{align*}
$$

By Proposition 3.1 and assumption (1.5), unless to consider a subsequence, $\left\{z_{n}\right\}$ converges to $z \in \Omega_{a, b}^{1,2}$ uniformly and weakly in $H^{1,2}$. We have just to prove that the convergence in $H^{1,2}$ is strong. In order to isolate $D_{s} \zeta$ in (3.13), we shall integrate by parts the terms that contain ζ. Using the same techniques of [7] we can state that the covariant integrals appearing in the integration by parts are bounded in $H^{1,2}$. Moreover

$$
D_{s}^{R} \zeta=D_{s} \zeta+\Gamma\left(z_{n}\right)\left[\dot{z}_{n}, \zeta\right]
$$

where Γ is bilinear form depending continuously on z_{n}. So (3.13) becomes

$$
\begin{align*}
\int_{0}^{1}\left\langle\dot{z}_{n}\right. & \left.+\sigma_{n}, D_{s} \zeta\right\rangle-2 \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla T\right\rangle^{2}\right) \int_{0}^{1}\left\langle\dot{z}_{n}, \nabla T\right\rangle\left\langle D_{s} \zeta, \nabla T\right\rangle \tag{3.14}\\
& =\int_{0}^{1}\left\langle B_{n}, D_{s} \zeta\right\rangle
\end{align*}
$$

where (unless to consider a subsequence) σ_{n} converges uniformly and B_{n} goes to 0 in L^{2}. By (3.14) there exists a sequence k_{n} uniformly bounded, such that $D_{s} k_{n}=0$ and

$$
\begin{equation*}
\dot{z}_{n}+\sigma_{n}-2 \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla T\right\rangle^{2}\right)\left\langle\dot{z}_{n}, \nabla T\right\rangle \nabla T=B_{n}+k_{n} \tag{3.15}
\end{equation*}
$$

Then multiplying both terms by ∇T we have

$$
\begin{equation*}
\left\langle\dot{z}_{n}, \nabla T\right\rangle\left[1-2 \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1}\left\langle\dot{z}_{n}, \nabla T\right\rangle^{2}\right)\langle\nabla T, \nabla T\rangle\right]=\left\langle B_{n}+k_{n}-\sigma_{n}, \nabla T\right\rangle . \tag{3.16}
\end{equation*}
$$

Then by (3.15) and (3.16) we can write

$$
\dot{z}_{n}=a_{n}+b_{n}
$$

where a_{n} converges uniformly and $b_{n} \rightarrow 0$ in L^{2}, showing that $\left\{z_{n}\right\}$ converges strongly to z with respect to the $H^{1,2}$ norm.

4. A priori estimates for the critical points of $\mathcal{S}_{\varepsilon}$

Let us consider a family of curves $\left\{z_{\varepsilon}\right\}_{\varepsilon>0}$ such that any z_{ε} is a critical point of $\mathcal{S}_{\varepsilon}$. Arguing as in the proof of Lemma 2.1 and using (3.16) with $B_{n}=0$, shows that any z_{ε} is of class C^{2}. Moreover putting $A_{n}=0$ in (3.13) and integrating by parts (with z_{n} replaced by z_{ε}) gives the differential equation satisfied by z_{ε}

$$
\begin{gather*}
-D_{s} \dot{z}_{\varepsilon}+\left[d A^{*}\left(z_{\varepsilon}\right)-d A\left(z_{\varepsilon}\right)\right]\left[\dot{z}_{\varepsilon}\right]+2 \varepsilon \frac{\nabla \Phi\left(z_{\varepsilon}\right)}{\Phi^{3}\left(z_{\varepsilon}\right)}+2 \psi_{\varepsilon}^{\prime}\left(\int_{0}^{1}\left\langle\dot{z}_{\varepsilon}, \nabla T\left(z_{\varepsilon}\right)\right\rangle^{2}\right) \tag{4.1}\\
\cdot\left[\left\langle D_{s} \dot{z}_{\varepsilon}, \nabla T\left(z_{\varepsilon}\right)\right\rangle \nabla T\left(z_{\varepsilon}\right)+\left\langle\dot{z}_{\varepsilon}, H^{T}\left(z_{\varepsilon}\right)\left[\dot{z}_{\varepsilon}\right)\right\rangle \nabla T\left(z_{\varepsilon}\right)\right]=0 .
\end{gather*}
$$

Proposition 4.1. Fix $c \in \mathbb{R}$ and assume (1.6), (1.7) and (1.8). Let z_{ε} be a critical point of $\mathcal{S}_{\varepsilon}$ such that

$$
\begin{equation*}
\left.\left.S_{\varepsilon}\left(z_{\varepsilon}\right)<c \quad \text { for any } \varepsilon \in\right] 0,1\right] . \tag{4.2}
\end{equation*}
$$

Then $\int_{0}^{1}\left\langle\dot{z}_{\varepsilon}, \dot{z}_{\varepsilon}\right\rangle_{R}$ is bounded independently of $\left.\varepsilon \in 10,1\right]$.
Proof. Since z_{ε} is a critical point of $\mathcal{S}_{\varepsilon}$, we have

$$
\mathcal{S}_{\varepsilon}^{\prime}\left(z_{\varepsilon}\right)[\zeta]=0 \quad \forall \zeta \in T_{z_{\varepsilon}} \Omega^{1,2}
$$

Choose $\zeta=\left(\nabla T\left(z_{\varepsilon}\right)\right) /\left(\left\langle\nabla T\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle\right) \tau$, where $\tau \in H_{0}^{1,2}([0,1], \mathbb{R})$. Set $t_{\varepsilon}=T\left(z_{\varepsilon}\right)$, so
$\dot{t}_{\varepsilon}=\left\langle\nabla T\left(z_{\varepsilon}\right), \dot{\dot{z}}_{\varepsilon}\right\rangle$. A straightforward computation gives the existence of $C>0$ such that

$$
\begin{align*}
0 \leqslant & C\left(\int_{0}^{1} \frac{1}{2}\left\langle\dot{z}_{\varepsilon}, \dot{z}_{\varepsilon}\right\rangle_{R}+1\right)|\tau|-v \int_{0}^{1} \dot{t}_{\varepsilon} \dot{\tau}+C \int_{0}^{1}|\dot{\tau}| \\
& +2 \varepsilon \int_{0}^{1} \frac{1}{\Phi^{3}\left(z_{\varepsilon}\right)} \frac{\left\langle\nabla \Phi\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle}{\left\langle\nabla T\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle} \tau-\psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right) \int_{0}^{1} \dot{t}_{\varepsilon} \dot{\tau} \tag{4.3}
\end{align*}
$$

where v is defined by (1.6). Now multiplying by \dot{z}_{ε} both sides of (4.1) gives the existence of a constant $E_{\varepsilon} \in \mathbb{R}$ such that

$$
\begin{equation*}
\frac{1}{2}\left\langle\dot{z}_{\varepsilon}, \dot{z}_{\varepsilon}\right\rangle-\psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right)\left\langle\dot{z}_{\varepsilon}, \nabla T\left(z_{\varepsilon}\right)\right\rangle^{2}+\frac{\varepsilon}{\Phi^{2}\left(z_{\varepsilon}\right)} \equiv E_{\varepsilon} \tag{4.4}
\end{equation*}
$$

Then integrating in $[0,1]$ and recalling the definition of $\mathcal{S}_{\varepsilon}$ gives

$$
\begin{align*}
E_{\varepsilon} & =\frac{1}{2} \int_{0}^{1}\left\langle\dot{z}_{\varepsilon}, \dot{z}_{\varepsilon}\right\rangle-\psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right) \int_{0}^{1} \dot{t}_{\varepsilon}^{2}+\varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}\left(z_{\varepsilon}\right)} \\
& =\mathcal{S}_{\varepsilon}\left(z_{\varepsilon}\right)-\int_{0}^{1}\left\langle A\left(z_{\varepsilon}\right), \dot{z}_{\varepsilon}\right\rangle+2 \varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}\left(z_{\varepsilon}\right)}+\psi_{\varepsilon}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right)-\psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right) \int_{0}^{1} \dot{t}_{\varepsilon}^{2} \tag{4.5}
\end{align*}
$$

Since $\frac{1}{2}\langle\dot{z}, \dot{z}\rangle_{R}=\frac{1}{2}\langle\dot{z}, \dot{z}\rangle+\beta(z) \dot{t}^{2}$ and $v \leqslant \beta(z) \leqslant N$ for any $z \in \mathcal{M}_{a, b}$, combining (4.2)-(4.5) gives the existence of $C_{1}>0$ such that

$$
\begin{align*}
0 \leqslant C_{1} & {\left[\int_{0}^{1}|\tau|+\int_{0}^{1} \sqrt{\left\langle\dot{z}_{\varepsilon}, \dot{z}_{\varepsilon}\right\rangle_{R}}|\tau|+2 \varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}\left(z_{\varepsilon}\right)} \int_{0}^{1}|\tau|\right.} \\
& \left.+\psi_{\varepsilon}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right) \int_{0}^{1}|\tau|+\psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right) \int_{0}^{1} \dot{t}_{\varepsilon}^{2}|\tau|+\int_{0}^{1} \dot{t}_{\varepsilon}^{2}|\tau|\right]-v \int_{0}^{1} \dot{t}_{\varepsilon} \dot{\tau} \\
+ & C_{1} \int_{0}^{1}|\dot{\tau}|+2 \varepsilon \int_{0}^{1} \frac{1}{\Phi^{3}\left(z_{\varepsilon}\right)} \frac{\left\langle\nabla \Phi\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle}{\left\langle\nabla T\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle} \tau-\psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right) \int_{0}^{1} \dot{t}_{\varepsilon} \dot{\tau} \tag{4.6}
\end{align*}
$$

Choose $\tau=\sinh \left(\omega\left(t_{\varepsilon}-t_{*}\right)\right)$, where $t_{*}(s)=(1-s) T(z(0))+s T(z(1))$. If $\left.T(z) \in\right] b-\delta, b[$, $\nabla \Phi(z)=-\nabla T(z)$ and $\tau>0$, while if $T(z) \in] a, a+\delta[, \nabla \Phi(z)=\nabla T(z)$ and $\tau<0$. Then there exists $\theta_{0}>0$ (independent of ε) such that

$$
\begin{equation*}
2 \varepsilon \frac{1}{\Phi^{3}\left(z_{\varepsilon}\right)} \frac{\left\langle\nabla \Phi\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle}{\left\langle\nabla T\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle} \tau \leqslant-\frac{\varepsilon \theta_{0}}{\Phi^{3}\left(z_{\varepsilon}\right)} \tag{4.7}
\end{equation*}
$$

for any $s \in] a, a+\delta[\cup] b-\delta, b\left[\right.$. Fix $\omega>1$ such that $1-v \omega>0$. Since $T\left(z_{\varepsilon}\right)$ is uniformly bounded, using (4.6), (4.7) and the definition of ψ_{ε} allows to deduce the existence of a constant $D>0$ such that

$$
\begin{equation*}
\int_{0}^{1} \dot{t}_{\varepsilon}^{2} \leqslant D\left(1+\int_{0}^{1} \sqrt{\left\langle\dot{z}_{\varepsilon}, \dot{z}_{\varepsilon}\right\rangle_{R}}\right) \tag{4.8}
\end{equation*}
$$

As

$$
\begin{align*}
\mathcal{S}_{\varepsilon}\left(z_{\varepsilon}\right)= & \frac{1}{2} \int_{0}^{1}\left\langle\dot{z}_{\varepsilon}, \dot{z}_{\varepsilon}\right\rangle_{R}+\int_{0}^{1}\left\langle A\left(z_{\varepsilon}\right), \dot{z}_{\varepsilon}\right\rangle_{R}-\int_{0}^{1} \beta\left(z_{\varepsilon}\right) \dot{t}_{\varepsilon}^{2} \\
& -\varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}}-\psi_{\varepsilon}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right) \tag{4.9}
\end{align*}
$$

$\oint_{\varepsilon}\left(z_{\varepsilon}\right) \leqslant c,\left|\left\langle A\left(z_{\varepsilon}\right), \dot{z}_{\varepsilon}\right\rangle\right| \leqslant A_{0} \sqrt{\left\langle\dot{z}_{\varepsilon}, \dot{z}_{\varepsilon}\right\rangle_{R}}$ and $\beta \geqslant v$, by (4.8) we obtain the existence of $D_{0}>0$ such that

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{1}\left\langle\dot{z}_{\varepsilon}, \dot{z}_{\varepsilon}\right\rangle_{R} \leqslant D_{0}\left[1+\varepsilon \int_{0}^{1} \frac{1}{\Phi^{2}}+\psi_{\varepsilon}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right)\right] \tag{4.10}
\end{equation*}
$$

Finally, setting (4.10) in (4.6) with τ as above allows to get that $\int_{0}^{1} \dot{t}_{\varepsilon}^{2}$ and $\varepsilon \int_{0}^{1} 1 /\left(\Phi^{2}\left(z_{\varepsilon}\right)\right)$ are bounded independently of ε.

Remark 4.2. Under the assumption of Proposition 4.1, if z_{ε} is a critical point of $\mathcal{S}_{\varepsilon}$ and (4.2) holds (thanks to the definition of ψ_{ε}) we have

$$
\psi_{\varepsilon}^{\prime}\left(\int_{0}^{1} \dot{t}_{\varepsilon}^{2}\right)=0
$$

for all ε sufficiently small. Therefore z_{ε} satisfies

$$
\begin{equation*}
-D_{s} \dot{z}_{\varepsilon}+\left[d A^{*}\left(z_{\varepsilon}\right)-d A\left(z_{\varepsilon}\right)\right]\left[\dot{z}_{\varepsilon}\right]+2 \varepsilon \frac{\nabla \Phi\left(z_{\varepsilon}\right)}{\Phi^{3}\left(z_{\varepsilon}\right)}=0 . \tag{4.11}
\end{equation*}
$$

Lemma 4.3. Fix $c \in \mathbb{R}$ and assume that (4.2) holds. Suppose that (1.6)-(1.11) are satisfied. Then there exist $\delta(c)>0$ and $\varepsilon(c)>0$ such that

$$
\begin{equation*}
\left.\left.\Phi\left(z_{\varepsilon}(s)\right) \geqslant \delta(c) \quad \text { for any } \quad \varepsilon \in\right] 0, \varepsilon(c)\right] \quad \text { and } \quad s \in[0,1] . \tag{4.12}
\end{equation*}
$$

Proof. Take $\rho_{\varepsilon}(s)=\Phi\left(z_{\varepsilon}(s)\right)$. If, by contradiction, (4.12) is not satisfied (since $\rho_{\varepsilon}(0)=\Phi\left(z_{0}\right)$ and $\rho_{\varepsilon}(1)=\Phi\left(z_{1}\right)$ for any ε) there exists $\left.s_{\varepsilon} \in\right] 0,1\left[\right.$ minimum point for ρ_{ε} such that

$$
\lim _{\varepsilon \rightarrow 0} \Phi\left(z_{\varepsilon}\left(s_{\varepsilon}\right)\right)=0
$$

By the construction of $\Phi, T\left(z_{\varepsilon}\left(s_{\varepsilon}\right)\right)$ is an element of interval $] a, a+\delta[\cup] b-\delta, b[$ for any ε sufficiently small and

$$
\begin{equation*}
\rho_{\varepsilon}^{\prime}\left(s_{\varepsilon}\right)=\left\langle\nabla T\left(z_{\varepsilon}\right), \dot{z}_{\varepsilon}\right\rangle=0 . \tag{4.13}
\end{equation*}
$$

It will be enough to consider the case that $\left.T\left(z_{\varepsilon}\left(s_{\varepsilon}\right)\right) \in\right] a, a+\delta\left[\right.$ because when $T\left(z_{\varepsilon}\left(s_{\varepsilon}\right)\right) \in$ $] b-\delta, b$ [can be dealt in the same way. Since $\left.s_{\varepsilon} \in\right] 0,1\left[\right.$ is a minimum point for ρ_{ε} we have

$$
\begin{equation*}
\rho_{\varepsilon}^{\prime \prime}\left(s_{\varepsilon}\right) \geqslant 0 . \tag{4.14}
\end{equation*}
$$

Moreover by the construction of Φ,

$$
\begin{equation*}
\rho_{\varepsilon}^{\prime \prime}\left(s_{\varepsilon}\right)=\left\langle H^{T}\left(z_{\varepsilon}\right)\left[\dot{z}_{\varepsilon}\right], \dot{z}_{\varepsilon}\right\rangle+\left\langle\nabla T\left(z_{\varepsilon}\right), D_{s} \dot{z}_{\varepsilon}\right\rangle . \tag{4.15}
\end{equation*}
$$

Then, combining (4.13)-(4.15) and (4.11), and recalling the construction of Φ gives

$$
0 \leqslant\left\langle H^{T}\left(z_{\varepsilon}\right)\left[\dot{z}_{\varepsilon}\right], \dot{z}_{\varepsilon}\right\rangle+\left\langle\nabla T\left(z_{\varepsilon}\right),\left(d A^{*}\left(z_{\varepsilon}\right)-d A\left(z_{\varepsilon}\right)\right)\left[\dot{z}_{\varepsilon}\right]\right\rangle+2 \varepsilon \frac{\left\langle\nabla \Phi\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle}{\Phi^{3}\left(z_{\varepsilon}\right)} .
$$

From (1.11) and (4.13) it follows that $\left(d A^{*}\left(z_{\varepsilon}\right)-d A\left(z_{\varepsilon}\right)\right)\left[\dot{z}_{\varepsilon}\right]=0$. Then in s_{ε},

$$
-2 \varepsilon \frac{\left\langle\nabla \Phi\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle}{\Phi^{3}\left(z_{\varepsilon}\right)} \leqslant\left\langle H^{T}\left(z_{\varepsilon}\right)\left[\dot{z}_{\varepsilon}\right], \dot{z}_{\varepsilon}\right\rangle .
$$

If $\left.T\left(z_{\varepsilon}\left(s_{\varepsilon}\right)\right) \in\right] a, a+\delta\left[, \nabla \Phi\left(z_{\varepsilon}\right)=\nabla T\left(z_{\varepsilon}\right)\right.$, therefore

$$
-\left\langle\nabla \Phi\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle=-\left\langle\nabla T\left(z_{\varepsilon}\right), \nabla T\left(z_{\varepsilon}\right)\right\rangle>0,
$$

while $\left\langle H^{T}\left(z_{\varepsilon}\left(s_{\varepsilon}\right)\right) \dot{z}_{\varepsilon}\left(s_{\varepsilon}\right), \dot{z}_{\varepsilon}\left(s_{\varepsilon}\right)\right\rangle<0$ by assumption (1.9). Such a contradiction allows to conclude the proof.

Remark 4.4. Under the assumptions of Lemma 4.3, going to the limit as $\varepsilon \rightarrow 0$ allows to obtain a sequence $\left\{z_{\varepsilon_{n}}\right\}$ that converges (with respect to the C^{2}-norm) to a critical point of the functional \mathcal{S}.

5. Existence of critical points of \mathcal{S}

In this section we will prove the main result of this paper.
Remark 5.1. By (1.5) and (1.6), using the flow $\eta(s, z)$ associated to the vector field ∇T, allows easily to obtain an orthogonal splitting structure for \mathcal{M}. More precisely, set $\mathcal{M}_{0}=T^{-1}(a+b / 2)$ and denote by π the projection of \mathcal{M} on \mathcal{M}_{0} obtained by means of the flow η. The map $z \longmapsto(\pi(z), T(z))$ allows to construct an isometry between \mathcal{M} and the manifold $\mathcal{M}_{0} \times \mathbb{R}$ endowed with the metric

$$
d s^{2}=\langle\alpha(x, t) \xi, \xi\rangle d x^{2}-\beta(x, t) \tau^{2} d t^{2}
$$

where $x \in \mathcal{M}_{0}, t \in \mathbb{R}, \zeta=(\xi, \tau) \in T_{x} \mathcal{M}_{0} \times \mathbb{R}, \alpha$ is a positive linear operator and β a positive scalar field. With the above notations we can assume that the space $\Omega_{a, b}^{1,2}$ can be written as

$$
\Omega_{a, b}^{1,2}=\Lambda\left(x_{0}, x_{1}\right) \times H_{a, b}^{1,2}\left(T\left(z_{0}\right), T\left(z_{1}\right) ; \mathbb{R}\right)
$$

with

$$
\Lambda\left(x_{0}, x_{1}\right)=\left\{x \in H^{1,2}\left([0,1] ; \mathcal{M}_{0}\right): x(0)=x_{0}, x(1)=x_{1}\right\}
$$

and

$$
\begin{aligned}
& H_{a, b}^{1,2}\left(T\left(z_{0}\right), T\left(z_{1}\right) ; \mathbb{R}\right) \\
& \quad=\left\{t \in H^{1,2}([0,1], \mathbb{R}): a<t(s)<b \quad \forall s, t(0)=T\left(z_{0}\right), t(1)=T\left(z_{1}\right)\right\}
\end{aligned}
$$

Now set $H_{k}^{1,2}=t_{*}+H_{k, 0}$, where

$$
H_{k, 0}=\operatorname{span}\{\sin (j \pi s), j=1,2, \ldots, k\}
$$

and t_{*} is the segment joining $t_{0}=T\left(z_{0}\right)$ and $t_{1}=T\left(z_{1}\right)$.
In order to prove our result we need to use the Saddle Point Theorem (see [12]) and for this aim we have to introduce a Galerkin approximation argument in the variable t, constructing, for any $k \in \mathbb{N}$, the spaces

$$
\Omega_{a, b, k}^{1,2}=\Lambda\left(x_{0}, x_{1}\right) \times\left(H_{k}^{1,2} \cap H_{a, b}^{1,2}\left(T\left(z_{0}\right), T\left(z_{1}\right) ; \mathbb{R}\right)\right)
$$

Observe that the same proof of Proposition 3.3 implies that the restriction $\mathcal{S}_{\varepsilon, k}$ of $\mathcal{S}_{\varepsilon}$ to the space $\Omega_{a, b, k}^{1,2}$ satisfies Palais-Smale condition for every $k \in \mathbb{N}$.

Proof of theorem 1.2. Define

$$
\Sigma_{*}=\left\{(x, t) \in \Omega_{a, b, k}^{1,2}: t=t_{*}\right\} .
$$

For any $z=\left(x, t_{*}\right)$, using the Riemannian structure, and recalling that

$$
\left\langle\nabla^{R} T, \dot{z}\right\rangle_{R}=\dot{t}_{*}=t_{1}-t_{0}
$$

we easily get the existence of $c_{*}=c_{*}\left(\left|t_{1}-t_{0}\right|\right)>0$ such that for any $\left.\left.\varepsilon \in\right] 0,1\right]$ and any $k \in \mathbb{N}$

$$
\begin{equation*}
\mathcal{S}_{\varepsilon, k} \geqslant-c_{*} . \tag{5.1}
\end{equation*}
$$

Since \mathcal{M}_{0} is connected, there always exists a C^{1}-curve x_{*} joining x_{0} and x_{1}. Put

$$
Q(R)=\left\{\left(x_{*}, t\right) \in \Omega_{a, b}^{1,2}:\left\|t-t_{*}\right\|_{H^{1,2}}<R\right\}
$$

and the corresponding finite-dimensional set

$$
Q_{k}(R)=\left\{\left(x_{*}, t\right) \in \Omega_{a, b, k}^{1,2}:\left\|t-t_{*}\right\|_{H_{k}^{1,2}} \leqslant R\right\} .
$$

By (1.8), for any $z=\left(x_{*}, t\right) \in Q(R)$ we have

$$
\begin{align*}
\mathcal{S}_{\varepsilon}\left(x_{*}, t\right)= & \frac{1}{2} \int_{0}^{1}\left\langle\alpha(x, t) \dot{x}_{*}, \dot{x}_{*}\right\rangle-\frac{1}{2} \int_{0}^{1} \beta\left(x_{*}, t\right) \dot{t}^{2} \\
& +\|A\|_{R} \int_{0}^{1}\left(\left\langle\alpha\left(x_{*}, t\right) \dot{x}_{*}, \dot{x}_{*}\right\rangle+\beta\left(x_{*}, t\right) \dot{t}^{2}\right)^{1 / 2} . \tag{5.2}
\end{align*}
$$

Moreover by (1.6) and (1.12) there exist two positive constants d_{1} and d_{2} such that

$$
\begin{align*}
\mathcal{S}_{\varepsilon}\left(x_{*}, t\right) \leqslant & d_{1}+d_{2} \int_{0}^{1}|t|^{\theta}-\frac{v}{2} \int_{0}^{1} \dot{t}^{2}+\|A\|_{R} \int_{0}^{1} \sqrt{1+d_{2}|t|^{\theta}} \\
& +\|A\|_{R} \sqrt{N} \int_{0}^{1}|\dot{t}| . \tag{5.3}
\end{align*}
$$

Since $\theta \in] 0,2[$, for any \bar{R} sufficiently large and for any $\varepsilon \in] 0,1]$,

$$
\begin{equation*}
\sup _{\varepsilon}(\partial Q(\bar{R}))<\inf \mathcal{S}_{\varepsilon}\left(\Sigma_{*}\right) \tag{5.4}
\end{equation*}
$$

So

$$
c_{k, \varepsilon}=\inf _{h \in \Gamma_{k}} \sup \S_{\varepsilon}\left(h\left(Q_{k}(R)\right)\right) .
$$

Take $\Gamma_{k}=\left\{h \in C\left(\Omega_{a, b, k}^{1,2}, \Omega_{a, b, k}^{1,2}\right) / h(z)=z \forall z \in \partial Q_{k}(R)\right\}$, and set

$$
c_{k, \varepsilon}=\inf _{h \in \Gamma_{k}} \sup \oint_{\varepsilon}\left(h\left(Q_{k}(R)\right)\right),
$$

we have that $c_{k, \varepsilon} \in \inf \mathcal{S}_{\varepsilon}\left(\Sigma_{*}\right)$, $\sup \mathcal{S}_{\varepsilon}(Q(R))[$. By the Saddle Point Theorem (see [12]) it is a critical value of $\mathcal{S}_{k, \varepsilon}$. If z_{k}^{ε} is a critical point of $\mathcal{S}_{\varepsilon, k}$ we have in particular

$$
\mathcal{S}_{\varepsilon, k}\left(z_{\varepsilon}\right)\left[\left(T\left(z_{\varepsilon}\right)-t_{*}\right) Y\left(z_{\varepsilon}\right)\right]=0 \quad \text { for any } k .
$$

Therefore the same proof of Proposition 3.1 allows to obtain that $\left\|\dot{z}_{k}^{\varepsilon}\right\|_{L^{2}}$ is bounded independently of k. Moreover, a slight change in the proof of Proposition 3.3 gives that

$$
z_{k}^{\varepsilon} \rightarrow z^{\varepsilon}
$$

in $H^{1,2}$ (up to a subsequence). Clearly z^{ε} is a critical point of $\mathcal{S}_{\varepsilon}$ such that

$$
\left.\mathcal{S}_{\varepsilon}\left(z^{\varepsilon}\right) \in\right] \inf \mathcal{S}_{\varepsilon}\left(\Sigma_{*}\right), \sup \mathcal{S}_{\varepsilon}(Q(R))[.
$$

By Proposition 4.1, if ε is sufficiently small, z^{ε} is a critical point of δ.

Appendix

In this section we prove some useful properties of $\langle\cdot, \cdot\rangle$.

Lemma A.1.

$$
\begin{equation*}
\langle\nabla T(z), \nabla T(z)\rangle=-\left\langle\nabla^{R} T(z), \nabla^{R} T(z)\right\rangle_{R} \quad \text { and } \quad \nabla T(z)=-\nabla^{R} T(z) \tag{A.1}
\end{equation*}
$$

where ∇^{R} represents the gradient of T with respect to the metric (1.4), while ∇ is the one with respect to the Lorentzian metric.

Proof. As the differentiation is invariant with respect to the choice of the metric structure on \mathcal{M}, we have that

$$
\begin{equation*}
d T(z)[\zeta]=\left\langle\nabla^{R} T(z), \zeta\right\rangle_{R}=\langle\nabla T(z), \zeta\rangle \quad \forall \zeta \in T_{z} \Omega^{1,2} \tag{A.2}
\end{equation*}
$$

In particular, if $\zeta=\nabla^{R} T(z)$, from (A.2) we get

$$
\begin{equation*}
\left\langle\nabla^{R} T(z), \nabla^{R} T(z)\right\rangle=\left\langle\nabla T(z), \nabla^{R} T(z)\right\rangle \tag{A.3}
\end{equation*}
$$

By (1.4), (A.2) can be written as

$$
\begin{equation*}
\langle\nabla T(z), \zeta\rangle=\left\langle\nabla^{R} T(z), \zeta\right\rangle_{R}=\left\langle\nabla^{R} T(z), \zeta\right\rangle+2\left\langle W, \nabla^{R} T(z)\right\rangle\langle W, \zeta\rangle \tag{A.4}
\end{equation*}
$$

for all $\zeta \in T_{z} \Omega^{1,2}$. Then

$$
\begin{equation*}
\nabla T(z)=\nabla^{R} T(z)-2 \frac{\left\langle\nabla T(z), \nabla^{R} T(z)\right\rangle}{\langle\nabla T(z), \nabla T(z)\rangle} \nabla T(z) \tag{A.5}
\end{equation*}
$$

Multiplying (A.5) by $\nabla T(z)$, with respect to the Lorentzian metric, we have that

$$
\langle\nabla T(z), \nabla T(z)\rangle=\left\langle\nabla^{R} T(z), \nabla T(z)\right\rangle-2\left\langle\nabla T(z), \nabla^{R} T(z)\right\rangle=-\left\langle\nabla^{R} T(z), \nabla T(z)\right\rangle
$$

so the thesis follows by (A.3) and (A.5).
Lemma A.2. Let $\hat{W}(z)=\nabla^{R} T(z) / \sqrt{\left\langle\nabla^{R} T(z), \nabla^{R} T(z)\right\rangle_{R}}$. Then

$$
\langle\hat{W}(z), \zeta\rangle_{R}=\langle W(z), \zeta\rangle \quad \forall \zeta \in T_{z} \mathcal{M}
$$

where W is defined by (1.3).
Proof. Follows by straightforward calculations.
Proposition A.3. Assume (1.6) and (1.7). Then there exist constants M_{1}, M_{2} and M_{3} such that
(1) $\left|\left\langle\zeta, D_{\zeta}^{R} Y(z)\right\rangle\right| \leqslant M_{1}\langle\zeta, \zeta\rangle_{R}$,
(2) $\left\|D_{\zeta}^{R} Y(z)\right\|_{R} \leqslant M_{2}\langle\zeta, \zeta\rangle_{R}^{1 / 2}$,
(3) $\left|\left\langle\nabla^{R} \beta(z), Y(z)\right\rangle_{R}\right| \leqslant M_{3}$,
for any $z \in \mathcal{M}$, and $\zeta \in T_{z} \mathcal{M}, Y(z)=\sqrt{\beta(z)} \hat{W}(z), \hat{W}$ as in Lemma A.2, $\beta=\beta(z)=$ $\left(1 /\left\langle\nabla^{R} T(z), \nabla^{R} T(z)\right\rangle_{R}\right)$, and D_{ζ}^{R} is the covariant derivative with respect to the metric (1.4) along the direction ζ.

Proof. First of all we need to prove that

$$
\begin{equation*}
\exists h_{1}>0: \quad\left\|H_{R}^{T}(z)\right\|_{R} \leqslant h_{1} \quad \forall z \in \mathcal{M}_{a, b} \tag{A.6}
\end{equation*}
$$

Since we can consider Riemannian geodesics as critical points of the functional $\int_{0}^{1}\langle\dot{z}, \dot{z}\rangle+$ $\langle W(z), \dot{z}\rangle^{2}$, it is easy to prove that they satisfy the equation

$$
\begin{equation*}
-D_{s} \dot{z}+2\langle W(z), \dot{z}\rangle[\mathrm{d} W(z)]^{T} \dot{z}-2 \frac{\mathrm{~d}}{\mathrm{~d} s}(\langle W(z), \dot{z}\rangle W(z))=0 \tag{A.7}
\end{equation*}
$$

where $[d W(z)]^{T}$ represents the transpose of the differential of W. Let us define the real function $r(s)=T(z(s))$. By construction

$$
\begin{equation*}
r^{\prime \prime}(\zeta)=H_{R}^{T}(z)[\dot{\zeta}, \dot{\zeta}] \tag{A.8}
\end{equation*}
$$

On the other hand, differentiating r with respect to the Lorentzian metric, we have that

$$
\begin{equation*}
r^{\prime \prime}(s)=\left\langle H^{T}(z) \dot{z}, \dot{z}\right\rangle+\left\langle\nabla T(z), D_{s} \dot{z}\right\rangle . \tag{A.9}
\end{equation*}
$$

Therefore, substituing (A.7) in (A.9) and comparing (A.8) and (A.9), from (1.3) we obtain

$$
\begin{align*}
H_{R}^{T}(z)[\dot{\zeta}, \dot{\zeta}]= & \left\langle H^{T}(z) \dot{\zeta}, \dot{\zeta}\right\rangle-2\langle W(z), \dot{\zeta}\rangle\langle\mathrm{d} W(z)[\nabla T], \dot{\zeta}\rangle \tag{A.10}\\
& -2 \sqrt{-\langle\nabla T, \nabla T\rangle}\langle\mathrm{d} W(z)[\dot{\zeta}], \dot{\zeta}\rangle
\end{align*}
$$

By construction, for any $\zeta \in T_{z} \Omega^{1,2}$ we have that

$$
d W(z)[\zeta]=\frac{H^{T}(z)[\zeta]\langle\nabla T, \nabla T\rangle+\nabla T\left\langle H^{T}(z) \zeta, \nabla T\right\rangle}{-\langle\nabla T, \nabla T\rangle \sqrt{-\langle\nabla T, \nabla T\rangle}} .
$$

Then, taking $\zeta=\nabla T$, from (A.1) it follows

$$
\begin{equation*}
d W(z)[\nabla T]=\frac{H^{T}(z)[\nabla T]}{\sqrt{-\langle\nabla T, \nabla T\rangle_{R}}}+\frac{\left\langle H^{T}(z) \nabla T, \nabla T\right\rangle}{{\sqrt{-\langle\nabla T, \nabla T\rangle_{R}}}^{3}} \tag{A.11}
\end{equation*}
$$

so, being

$$
\|G(z)\|_{R}=\sup _{\langle\zeta, \zeta\rangle_{R}=1}|\langle G(z) \zeta, \zeta\rangle|
$$

for any bilinear operator G, (1.6), (1.7), (A.10) and (A.11) imply (A.6).
By construction

$$
D_{\zeta}^{R} Y=\frac{H_{R}^{T}(z)[\zeta]}{\langle\nabla T, \nabla T\rangle_{R}}-\nabla^{R} T\left(\frac{2}{\langle\nabla T, \nabla T\rangle_{R}}\left\langle\nabla^{R} T, H_{R}^{T}(z)[\zeta]\right\rangle_{R}\right) .
$$

Then (1.6), (1.7) and (A.6) yeld

$$
\left|\left\langle\zeta, D_{\zeta}^{R} Y\right\rangle_{R}\right| \leqslant\left(h_{1} N+\frac{2 h_{1} N^{2}}{v}\right)\langle\zeta, \zeta\rangle_{R}
$$

Taking $M_{1}=h_{1} N+\left(2 h_{1} N^{2}\right) / v$ we obtain (1). By construction (2) is an obvious consequence of (1). To finish the proof we have to prove that $\nabla^{R} \beta(z)[Y(z)]$ is bounded. Assumptions (1.6), (A.6) yield $\nabla^{R} \beta(z)[Y(z)]=-2 \beta^{2}\left\langle H_{R}^{T}(z)[Y(z)], \nabla T(z)\right\rangle_{R} \leqslant 2 \beta^{3 / 2}\left\|H_{R}^{T}(z)\right\|_{R}\|Y(z)\|_{R} \leqslant 2 N^{2} h_{1}$, from which the thesis follows.

References

[1] F. Antonacci and P. Piccione, An intrinsic approach to Ljusternik-Schnirelman theory for light rays on Lorentzian manifolds, Differential Integral Equations 12 (1999) 521-562.
[2] R. Bartolo, Trajectories connecting two events of a Lorentzian manifold in the presence of a vector field, J. Differential Equations 153 (1999) 82-95.
[3] J.K. Beem, P.E. Ehrlich and K.L. Easly, Global Lorentzian Geometry (Mercel Dekker, New York, 1996).
[4] V. Benci, Metodi variazionali nella geometria dello spazio-tempo, Boll. Un. Mat. Ital. A 11 (1997) 297-321.
[5] V. Benci and D. Fortunato, A new variational principle for the fundamental equations of classical physics, Found. Phys. 28 (1998) 333-352.
[6] A.M. Candela, F. Giannoni and A. Masiello, Multiple critical points for indefinite functionals and applications, J. Differential Equations 155 (1999) 203-230.
[7] F. Giannoni and P. Piccione, An intrinsic approach to the geodesical connectedness of stationary Lorentzian manifolds, Comm. Anal. Geom. 7 (1999) 157-197.
[8] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1962).
[9] A. Masiello, Convex regions in Lorentzian manifolds, Ann. Mat. Pura Appl. 167 (1994) 299-322.
[10] B. O'Neill, Semiriemannian Geometry with Application to Relativity (Academic Press, New York, 1983).
[11] R.S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963) 299-340.
[12] P.H. Rabinowitz, Min-max methods in critical point theory with applications to differential equations, in: CMBS Reg. Conf. Soc. in Math. 65 (Amer. Math. Soc., Providence, 1984).

[^0]: * Supported by M.U.R.S.T., Project "Metodi Variazionali ed Equazioni Differenziali".
 ${ }^{1}$ flavia@matrm3.mat.uniroma3.it.
 2 giannoni@campus.unicam.it.
 3^{3} magrone@axp.mat.uniroma2.it.

