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Abstract We show that the problem at critical growth, involving the 1-Laplace operator
and obtained by relaxation of −�1u = λ|u|−1u + |u|1∗−2 u, admits a nontrivial solution
u ∈ BV (�) for any λ ≥ λ1. Nonstandard linking structures, for the associated functional,
are recognized.
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1 Introduction and main result

Let � be a bounded domain in R
n , n ≥ 2, with Lipschitz boundary. We are interested in the

existence of nontrivial solutions u to the problem which comes from the relaxation of
⎧
⎪⎪⎨

⎪⎪⎩

−div

( ∇u

|∇u|
)

= λ
u

|u| + |u|1∗−2u in �,

u = 0 on ∂�,

(1.1)
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592 M. Degiovanni, P. Magrone

where λ ∈ R and 1∗ = n/(n − 1) is the critical Sobolev exponent for the embedding of
W 1,1

0 (�) in Lq(�).
Problem (1.1) looks as the formal limit, as p → 1+, of the problem at critical growth

⎧
⎨

⎩

−div
(|∇u|p−2∇u

) = λ|u|p−2 u + |u|p∗−2 u in �,

u = 0 on ∂�,
(1.2)

where p∗ = np/(n − p). Let us set, whenever 1 ≤ p < n,

S = S(n, p) := inf

{ ∫

Rn |∇u|p dx
(∫

Rn |u|p∗ dx
)p/p∗ : u ∈ C∞

c (R
n)\{0}

}

, (1.3)

λ1 = λ1(�, p) := inf

{∫

�
|∇u|p dx

∫

�
|u|p dx

: u ∈ C∞
c (�)\{0}

}

. (1.4)

Problem (1.2) has received much attention in the last years, starting from the celebrated paper
of Brezis and Nirenberg [5], where it was shown that, for p = 2, problem (1.2) admits a
positive solution u for every λ∈ ]0, λ1[ and n ≥ 4. The result has been extended by Egnell,
Garcia Azorero-Peral Alonso, Guedda-Veron [19,22,25], who have proved that (1.2) admits
a positive solution u for any λ∈ ]0, λ1[, provided that p > 1 and n ≥ p2. Such a solution u
can be obtained via the Mountain pass theorem of Ambrosetti and Rabinowitz [1] applied to
the C1-functional f : W 1,p

0 (�) −→ R defined as

f (u) = 1

p

∫

�

|∇u|p dx − λ

p

∫

�

|u|p dx − 1

p∗

∫

�

|u|p∗
dx

and satisfies

0 < f (u) <
1

n
Sn/p. (1.5)

When λ ≥ λ1, it is still meaningful to look for nontrivial solutions u, but the situation is quite
different in the two cases p = 2 and p �= 2. If p = 2, it has been proved by Capozzi et al. [7]
that problem (1.2) has a nontrivial solution u for any λ ≥ λ1, provided that n ≥ 5 (see also
Gazzola and Ruf [23, Corollary 1]). Such a solution can be obtained via the Linking theorem
of Rabinowitz (see e.g. [31, Theorem 5.3]) applied to the functional f and still satisfies (1.5).

On the other hand, when p �= 2 there is in general no direct sum decomposition of
W 1,p

0 (�), which allows to recognize a linking structure in a standard way, unless λ belongs
to a suitable right neighborhood [λ1, λ[ of λ1, as shown in Arioli and Gazzola [3], where it
is proved that, for any p > 1, problem (1.2) has a nontrivial solution u for any λ ∈ [λ1, λ[,
provided that n2

n+1 > p2. Nevertheless, the result of Capozzi–Fortunato–Palmieri has been
recently extended, via a nonstandard linking construction, in Degiovanni and Lancelotti [13],
where it is shown that the result of Arioli–Gazzola actually holds for any λ ≥ λ1.

Coming to the case p = 1, let us first give a precise relaxed formulation of (1.1). First of
all, denote by ‖ ‖p the usual norm in L p and by H k the k-dimensional Hausdorff measure.
For every u ∈ BV (�) (see e.g. [2,24]), let us set

|Du|(�) := sup

⎧
⎨

⎩

∫

�

u div v dx : v ∈ C∞
c (�; R

n), ‖v‖∞ ≤ 1

⎫
⎬

⎭
.
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Linking solutions for the “1-Laplace” operator 593

Then, according to Kawohl and Schuricht [28], we mean that we are looking for u ∈ BV (�)
such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

there exist z ∈ L∞(�; R
n) and γ ∈ L∞(�) such that

‖z‖∞ ≤ 1, div z ∈ Ln(�), − ∫

�
u div z dx = |Du| (�)+ ∫

∂�
|u| dH n−1,

‖γ ‖∞ ≤ 1, γ |u| = u a.e. in �,

−div z = λγ + |u|1∗−2u a.e. in �,

(1.6)

(n is the exponent conjugate to 1∗). Other equivalent formulations can be obtained applying
the next Proposition 3.1. Since u = 0 is a solution for any λ (take (z, γ ) = (0, 0)), we say
that u = 0 is the trivial solution of (1.6). Let us also define a locally Lipschitz functional
f : BV (�) −→ R by

f (u) = |Du| (�)+
∫

∂�

|u| dH n−1 − λ

∫

�

|u| dx − 1

1∗

∫

�

|u|1∗
dx .

The resul of Brezis–Nirenberg has been extended also to this setting by Demengel [17], who
has proved that (1.6) admits a nonnegative, nontrivial solution u satisfying

0 < f (u) <
1

n
Sn (1.7)

for any λ∈ ]0, λ1[. The argument is based on an approximation procedure from the case
p > 1.

Our purpose is to cover the case λ ≥ λ1, in the line of the result of Capozzi–Fortunato–
Palmieri, by a direct approach. Our result is the following

Theorem 1.1 Let � be a bounded open subset of R
n, n ≥ 2, with Lipschitz boundary.

Then, for every λ ≥ λ1, problem (1.6) admits a nontrivial solution u ∈ BV (�) ∩ L∞(�)
satisfying (1.7).

For the proof, we will apply (nonsmooth) variational methods to the functional f . A first
idea could be to apply the approach of Chang [8] to the locally Lipschitz functional f defined
on BV (�). However, it has been already observed that, in such a setting, the Palais–Smale
condition fails even in the subcritical case, as the norm-convergence of BV cannot be usually
obtained for a Palais–Smale sequence (see Marzocchi [29] and Degiovanni et al. [15]). For
this reason, it is more convenient to extend the functional f to L1∗

(�)with value +∞ outside
BV (�). In this setting, the nonsmoothness increases, as f is only lower semicontinuous, but
the techniques of Corvellec–Degiovanni–Marzocchi, Ioffe–Schwartzman, Katriel [11,26,27]
can be applied, in particular as specified in Degiovanni and Schuricht [16]. On the other hand,
we have more compactness and in Theorem 5.3 we will show that f satisfies (P S)c whenever
c < (1/n)Sn , as one may expect from the case p > 1 (see [25, Theorem 3.4]).

A second difficulty, typical in the case p �= 2 when λ ≥ λ1, is that there is no direct sum
decomposition which allows to recognize a linking structure in a standard way. Therefore, as
in [13], we will apply the Linking theorem of [12], in which linear subspaces are substituted
by cones.

In the next section we recall mainly from [16] some tools of nonsmooth analysis. In Sect. 3
we specify our functional framework, taking advantage of the results of [28]. In Sect. 4 we
build the cones which have to substitute linear subspaces in the linking structure. Sect. 5 is
devoted to the Palais–Smale condition, while in the last section we prove the main result.
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594 M. Degiovanni, P. Magrone

2 Tools of nonsmooth analysis

Let Y be a metric space endowed with the distance d and let f : Y → [−∞,+∞] be a
function. We set

dom( f ) = {u ∈ Y : | f (u)| < +∞}
and consider

epi ( f ) = {(u, s) ∈ Y × R : f (u) ≤ s}
endowed with the topology induced by Y ×R. The next definition, equivalent to that of [14],
is taken from [6].

Definition 2.1 For every u ∈ dom( f ), we denote by |d f | (u) the supremum of the σ ’s
in [0,+∞[ such that there exist a neighborhood W of (u, f (u)) in epi ( f ), δ > 0 and a
continuous map H : W × [0, δ] → Y satisfying

d(H ((v, s), t), v) ≤ t, f (H ((v, s), t)) ≤ s − σ t,

whenever (v, s) ∈ W and t ∈ [0, δ].
The extended real number |d f | (u) is called the weak slope of f at u.

The idea is to look for local deformations H , along which the function f can be decreased
with a certain rate σ with respect to the displacement d(H ((v, s), t), v), and then optimize σ .

In particular, if Y is an open subset of a normed space and f is of class C1, then |d f | (u) =
‖ f ′(u)‖ for every u ∈ Y (see [14, Corollary 2.12]).

Moreover, it is easily seen that |d f | is lower semicontinuous with respect to the graph
topology: if (uk) is a sequence convergent to u in dom( f ) with f (uk) → f (u), then

lim inf
k

|d f | (uk) ≥ |d f | (u).

Definition 2.2 An element u ∈ Y is said to be a (lower) critical point of f , if | f (u)| < +∞
and |d f | (u) = 0. A real number c is said to be a (lower) critical value of f , if there exists a
(lower) critical point u of f with f (u) = c.

Definition 2.3 A Palais–Smale sequence ((P S)-sequence, for short) for f is a sequence (uk)

in Y such that

sup
k

| f (uk)| < +∞

and such that |d f | (uk) → 0.
Given a real number c, a Palais–Smale sequence at level c ((P S)c-sequence, for short) is

a (P S)-sequence (uk) such that f (uk) → c.
The function f is said to satisfy (P S)c, if every (P S)c-sequence admits a convergent

subsequence in Y .

Assume now that X is a real Banach space, whose dual space will be denoted by X ′. In
the following, ∂ f (u) will denote the Clarke–Rockafellar subdifferential and f 0 (u; v) the
associated generalized directional derivative [10,32].

Let f0 : X −→] − ∞,+∞] be a convex, lower semicontinuous function and f1, g :
X −→ R two locally Lipschitz continuous functions. Let also f = f0 + f1 and

M = {u ∈ X : g(u) = 0}.
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Linking solutions for the “1-Laplace” operator 595

In such a case, according to the results of [16], we have that the functions

|d f | : dom( f ) −→ [0,+∞], ∣
∣d
(

f
∣
∣
M

)∣
∣ : dom( f ) ∩ M −→ [0,+∞]

are lower semicontinuous with respect to the topology induced by X .
We are first interested in a (nonsmooth) extension of the Linking theorem, in which linear

subspaces are substituted by symmetric cones. If A ⊆ X\{0} is symmetric, we denote by
Index (A) the Z2-cohomological index of Fadell and Rabinowitz [20,21]. Let us recall that
γ+(A) ≤ Index (A) ≤ γ−(A), where, according to [9],

γ+(A) = sup
{
m ∈ N : there exists an odd continuous map ψ : R

m\{0} −→ A
}
,

γ−(A) = inf
{
m ∈ N : there exists an odd continuous map ψ : A −→ R

m\{0}}.
Theorem 2.4 Let X−, X+ be two symmetric cones in X such that X+ is closed in X,

X− ∩ X+ = {0},
Index (X−\{0}) = Index (X\X+) < ∞.

Let also e ∈ X\X−, 0 < r+ < r−,

S+ = {v ∈ X+ : ‖v‖ = r+},
Q = {te + u : t ≥ 0, u ∈ X−, ‖te + u‖ ≤ r−},

P = {u ∈ X− : ‖u‖ ≤ r−} ∪ {te + u : t ≥ 0, u ∈ X−, ‖te + u‖ = r−}
be such that

sup
P

f < inf
S+

f, sup
Q

f < +∞.

Then f admits a (P S)c-sequence with

inf
S+

f ≤ c ≤ sup
Q

f.

In particular, if f satisfies (P S)c, then c is a critical value of f .

Proof If f : X −→ R is of class C1, by [12, Corollary 2.9] the assertion is a particular case
of [12, Theorem 2.2]. If f : X −→ R is continuous, the proof is exactly the same, by the
Deformation theorem of [11]. The case we are treating can be reduced to the continuous one
arguing, as in [16], on the continuous function G f : epi ( f ) → R defined by G f (u, s) = s.

��
We also need an information in the constrained case.

Theorem 2.5 Assume that f and g are even with g(0) �= 0 and that

Index ({u ∈ M : f (u) < +∞}) = ∞.

Suppose also that f|M is bounded from below, satisfies (P S)c for any c ∈ R and that, for
every u ∈ M with f (u) < +∞, there exist u± ∈ X such that f (u±) < +∞ and

g0 (u; u− − u) < 0, g0 (u; u − u+) < 0.

For every m ≥ 1, let

cm = inf

{

sup
A

f : A ⊆ M, A is symmetric and Index (A) ≥ m

}

.
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596 M. Degiovanni, P. Magrone

Then cm → +∞ and, for every m ≥ 1 and c with cm ≤ c < cm+1, we have

Index ({u ∈ M : f (u) ≤ c}) = m.

Proof In the C1 setting, the assertion follows from the Deformation theorem (see e.g. [12,
Theorem 3.2]). For the extension to the nonsmooth case we are treating, we may argue as in
the previous proof. ��

Finally, let us recall from [16, Theorem 3.5] two results which connect the metric notion
of weak slope with that of subdifferential.

Theorem 2.6 Let u ∈ X with f (u) < +∞ and |d f | (u) < +∞. Then there exist w ∈ X ′
with ‖w‖ ≤ |d f | (u) and α ∈ ∂ f1(u) such that −α + w ∈ ∂ f0(u), i.e.

f0(v) ≥ f0(u)− 〈α, v − u〉 + 〈w, v − u〉, ∀v ∈ X.

Theorem 2.7 Let u ∈ M with f (u) < +∞ and
∣
∣d
(

f|M
)∣
∣ (u) < +∞. Assume also that

there exist u± ∈ X such that f (u±) < +∞ and

g0 (u; u− − u) < 0, g0 (u; u − u+) < 0.

Then there exist w ∈ X ′ with ‖w‖ ≤ ∣
∣d
(

f|M
)∣
∣ (u) and α ∈ ∂ f1(u), β ∈ ∂g(u), λ ∈ R such

that −α + λβ + w ∈ ∂ f0(u), i.e.

f0(v) ≥ f0(u)− 〈α, v − u〉 + λ〈β, v − u〉 + 〈w, v − u〉, ∀v ∈ X.

3 The functional framework

Let� be a bounded open subset of R
n , n ≥ 2, with Lipschitz boundary and letλ ∈ R. Accord-

ing to [28], let us define a convex, lower semicontinuous functional f0 : L1∗
(�) −→ [0,+∞]

by

f0(u) =
⎧
⎨

⎩

|Du| (�)+ ∫

∂�
|u| dH n−1 if u ∈ BV (�),

+∞ if u ∈ L1∗
(�)\BV (�),

and two locally Lipschitz continuous functionals f1, g : L1∗
(�) −→ R by

f1(u) = −λ
∫

�

|u| dx − 1

1∗

∫

�

|u|1∗
dx,

g(u) =
∫

�

|u| dx − 1.

As usual, the dual of L1∗
(�) will be identified with L(1

∗)′(�) = Ln(�). Moreover, f0 is a
norm on BV (�) equivalent to the canonical one. According to [17,28], we have

S = S(n, 1) = min

{
f0(u)

‖u‖1∗
: u ∈ BV (�)\{0}

}

, (3.1)

λ1 = λ1(�, 1) = min

{
f0(u)

‖u‖1
: u ∈ BV (�)\{0}

}

, (3.2)
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Linking solutions for the “1-Laplace” operator 597

where S, λ1 are defined in (1.3), (1.4). In particular, contrary to the case p > 1, the constant S
is achieved in (3.1), for instance on characteristic functions of balls contained in� (see [4]).

We are interested in the application of variational methods to f = f0 + f1 on the whole
space L1∗

(�) and to f0 constrained on

M =
{

u ∈ L1∗
(�) : g(u) = 0

}
.

In order to apply the results of the previous section, let us first recall from [28] the next

Proposition 3.1 Let u ∈ BV (�) and w ∈ Ln(�). Then the following facts are equivalent:

(a) we have w ∈ ∂ f0(u);
(b) we have

∫

�

uw dx = |Du| (�)+
∫

∂�

|u| dH n−1

and there exists z ∈ L∞(�; R
n) such that ‖z‖∞ ≤ 1 and −div z = w;

(c) there exists z ∈ L∞(�; R
n) such that ‖z‖∞ ≤ 1, −div z = w and

∫

�

uwϕ dx −
∫

�

uz · ∇ϕ dx = sup

⎧
⎨

⎩

∣
∣
∣
∣
∣
∣

∫

�

u divψ dx

∣
∣
∣
∣
∣
∣
: ψ ∈ C∞

c (R
n; R

n), |ψ | ≤ ϕ

⎫
⎬

⎭

for every ϕ ∈ C∞
c (R

n) with ϕ ≥ 0.

Proof It is enough to combine [28, Proposition 4.23] with [28, Proposition A.12] and recall
that the function defined as

⎧
⎨

⎩

u on �,

0 on R
n\�,

belongs to BV (Rn). ��
In general, the graph of the subdifferential of a convex, lower semicontinuous functional

is strong-weak∗ closed. In our case, we have a better property which will be useful later.

Proposition 3.2 Let (uk) be a sequence in BV (�) and (wk) a sequence in Ln(�) such that
(uk) is weakly convergent to u in L1∗

(�), (wk) is weakly convergent to w in Ln(�) and
wk ∈ ∂ f0(uk) for every k ∈ N.

Then u ∈ BV (�) and w ∈ ∂ f0(u).

Proof For every h > 0, define Th, Rh : R −→ R by Th(s) = min{max{s,−h}, h}, Rh(s) =
s − Th(s). By [2, Theorem 3.99] we have

|Du| (�) = |D(Th(u))| (�)+ |D(Rh(u))| (�),
hence

f0(u) = f0(Th(u))+ f0(Rh(u)), ∀u ∈ BV (�). (3.3)

First of all, from the inequality

0 = f0(0) ≥ f0(uk)−
∫

�

wkuk dx
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598 M. Degiovanni, P. Magrone

we see that (uk) is bounded in BV (�). It follows that u ∈ BV (�) and that (Th(uk)) is
strongly convergent to Th(u) in L1∗

(�), for every h > 0.
We also have

f0(v)+ f0(Rh(uk)) ≥ f0(v + Rh(uk)) ≥ f0(uk)+
∫

�

wk(v + Rh(uk)− uk) dx

= f0(Th(uk))+ f0(Rh(uk))+
∫

�

wk(v − Th(uk)) dx,

whence

f0(v) ≥ f0(Th(uk))+
∫

�

wk(v − Th(uk)) dx .

Passing to the limit as k → ∞ and taking into account the lower semicontinuity of f0, we
get

f0(v) ≥ f0(Th(u))+
∫

�

w(v − Th(u)) dx .

Passing to the limit as h → ∞, the assertion follows. ��

Let us also prove a simple regularity property. A related result is contained in [18,
Proposition 7].

Proposition 3.3 Let u ∈ BV (�) with ∂ f0(u) �= ∅. Then u ∈ L∞(�).

Proof Let w ∈ Ln(�) with w ∈ ∂ f0(u). For every h > 0, we have

f0(Th(u)) ≥ f0(u)+
∫

�

w(Th(u)− u) dx .

By (3.1), (3.3) and Hölder’s inequality, it follows

S‖Rh(u)‖1∗ ≤ f0(Rh(u)) ≤
∫

�

wRh(u) dx ≤
⎛

⎜
⎝

∫

{|u|>h}
|w|n dx

⎞

⎟
⎠

1/n

‖Rh(u)‖1∗ .

If h is large enough to guarantee that

⎛

⎜
⎝

∫

{|u|>h}
|w|n dx

⎞

⎟
⎠

1/n

< S,

we infer that ‖Rh(u)‖1∗ = 0 and the assertion follows. ��
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Linking solutions for the “1-Laplace” operator 599

Finally, from [28] we have the

Proposition 3.4 Let u ∈ BV (�) with |d f | (u) < +∞. Then u ∈ L∞(�) and there exist
γ ∈ L∞(�) and w ∈ Ln(�) such that ‖γ ‖∞ ≤ 1, γ |u| = u a.e. in�, ‖w‖n ≤ |d f | (u) and

f0(v) ≥ f0(u)+ λ

∫

�

γ (v − u) dx +
∫

�

|u|1∗−2u(v − u) dx

+
∫

�

w(v − u) dx, ∀v ∈ BV (�).

Proof It is enough to combine Theorem 2.6 with Proposition 3.3 and [28, Proposition 4.23].
��

Corollary 3.5 If u ∈ L1∗
(�) is a critical point of f , then u ∈ BV (�) ∩ L∞(�) and u is a

solution of (1.6).

Proof It is enough to combine Proposition 3.1 with Proposition 3.4. ��

4 Symmetric cones related to the 1-Laplace operator

In this section we show how to build, for the 1-Laplace operator, two cones X−, X+ with the
properties required in Theorem 2.4. The construction is based on a sequence of eigenvalues
for the 1-Laplace operator. We refer the reader to Milbers and Schuricht [30] for a slightly
different construction of such a sequence.

Proposition 4.1 The following facts hold:

(a) for every u ∈ BV (�) ∩ M, there exist u± ∈ BV (�) such that

g0 (u; u− − u) < 0, g0 (u; u − u+) < 0;
(b) for every u ∈ BV (�) ∩ M with

∣
∣d
(

f0|M
)∣
∣ (u) < +∞, we have u ∈ L∞(�) and there

exist λ ∈ R, γ ∈ L∞(�) and w ∈ Ln(�) such that ‖γ ‖∞ ≤ 1, γ |u| = u a.e. in �,
‖w‖n ≤ ∣

∣d
(

f0|M
)∣
∣ (u) and

f0(v) ≥ f0(u)+ λ

∫

�

γ (v − u) dx +
∫

�

w(v − u) dx, ∀v ∈ BV (�);

(c) the functionals f0 and g are even with g(0) �= 0 and Index (BV (�) ∩ M) = ∞ with
respect to the topology of L1∗

(�); moreover, f0|M is bounded from below and satisfies
(P S)c for any c ∈ R.

Proof In the proof of [28, Theorem 4.6] it is shown that (a) holds. Then assertion (b) follows
from Theorem 2.7, Proposition 3.3 and [28, Proposition 4.23]. Since BV (�) has infinite
dimension, it is obvious that γ+(BV (�) ∩ M) = ∞, also with respect to the topology of
L1∗

(�). Therefore Index (BV (�) ∩ M) = ∞.
If (uk) is a (P S)-sequence for f0|M , by (b) we have

f0(v) ≥ f0(uk)+ λk

∫

�

γk(v − uk) dx +
∫

�

wk(v − uk) dx, ∀v ∈ BV (�)

with λk ∈ R, γk ∈ L∞(�) and wk ∈ Ln(�) satisfying ‖γk‖∞ ≤ 1, γk |uk | = uk a.e. in
� and ‖wk‖n → 0. Since f0 is an equivalent norm in BV (�), up to a subsequence (uk) is
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600 M. Degiovanni, P. Magrone

convergent to u ∈ BV (�)weakly in L1∗
(�) and strongly in L1(�), while (γk) is convergent

to γ in the weak∗ topology of L∞(�). Moreover, by Proposition 3.1 we have

f0(uk) = λk

∫

�

γkuk dx +
∫

�

wkuk dx

= λk

∫

�

|uk | dx +
∫

�

wkuk dx = λk +
∫

�

wkuk dx .

Therefore, also (λk) is bounded, hence convergent, up to a subsequence, to some λ. From
Proposition 3.2 it follows that λγ ∈ ∂ f0(u), whence, by Proposition 3.1,

lim
k

f0(uk) = lim
k

⎛

⎝λk

∫

�

γkuk dx +
∫

�

wkuk dx

⎞

⎠ = λ

∫

�

γ u dx = f0(u).

From [15, Theorem 4.10] we conclude that (uk) is strongly convergent to u in L1∗
(�).

The other assertions contained in (c) are obvious. ��
For every m ≥ 1, let

λm = inf

{

sup
A

f0 : A ⊆ M , A is symmetric and Index (A) ≥ m

}

.

Since Index (A) = 0 only for A = ∅, the definition of λ1 agrees with (3.2).

Theorem 4.2 We have that λm → +∞. Moreover, for every m ≥ 1 and µ with λm ≤ µ <

λm+1, we have

Index

⎛

⎝

⎧
⎨

⎩
u ∈ BV (�)\{0} : |Du| (�)+

∫

∂�

|u| dH n−1 ≤ µ

∫

�

|u| dx

⎫
⎬

⎭

⎞

⎠ = m

with respect to the topology of L1∗
(�).

Proof Since f0 and ‖ ‖1 are both positively homogeneous of degree 1, it is enough to combine
Theorem 2.5 with Proposition 4.1. ��

In view of the application of Theorem 2.4, let us see a first possible choice of X−, X+.

Theorem 4.3 Let m ≥ 1 and let λm < µ < λm+1. Then there exist a symmetric cone X− in
BV (�) and a symmetric cone X+ in L1∗

(�) such that X− is closed in L1(�), X+ is closed
in L1∗

(�) and:

(a) we have

X− ⊆
⎧
⎨

⎩
u ∈ BV (�) : |Du| (�)+

∫

∂�

|u| dH n−1 ≤ λm

∫

�

|u| dx

⎫
⎬

⎭
∩ L∞(�);

(b) X− ∩ M is bounded in L∞(�) and strongly compact in L1(�);
(c) we have

X+ ∩ BV (�) ⊆
⎧
⎨

⎩
u ∈ BV (�) : |Du| (�)+

∫

∂�

|u| dH n−1 ≥ µ

∫

�

|u| dx

⎫
⎬

⎭
;
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Linking solutions for the “1-Laplace” operator 601

(d) we have Index (X−\{0}) = Index
(

L1∗
(�)\X+

)
= m with respect to the topology of

L1∗
(�).

Proof Let

X̃− =
⎧
⎨

⎩
u ∈ BV (�) : |Du| (�)+

∫

∂�

|u| dH n−1 ≤ λm

∫

�

|u| dx

⎫
⎬

⎭
.

Since X̃− ∩ M is an odd deformation retract of X̃−\{0}, by Theorem 4.2 we have that
Index

(
X̃− ∩ M

) = m. Moreover, X̃− ∩ M is strongly compact in L1(�).
Let Th, Rh be defined as before. First of all, we claim that there exists h > 0 such that

f0 (Th(u)) ≤ λm

∫

�

|Th(u)| dx, ∀u ∈ X̃− ∩ M; (4.1)

∫

�

|Th(u)| dx ≥ 1

2
, ∀u ∈ X̃− ∩ M. (4.2)

Actually, for every u ∈ BV (�) Hölder’s inequality and (3.1) yield

∫

�

|u| dx ≤ L n ({u �= 0}) 1
n

⎛

⎝

∫

�

|u|1∗
dx

⎞

⎠

1
1∗

≤ 1

S
L n ({u �= 0}) 1

n f0(u).

Since for every u ∈ BV (�) ∩ M we have Rh(u) ∈ BV (�) and

1 =
∫

�

|u| dx ≥
∫

{Rh(u)�=0}
|u| dx ≥ hL n ({Rh(u) �= 0}),

it follows

S h
1
n

∫

�

|Rh(u)| dx ≤ f0(Rh(u)) ∀u ∈ BV (�) ∩ M.

Then, if h is large enough, we have

λm

∫

�

|Rh(u)| dx ≤ f0(Rh(u)) ∀u ∈ BV (�) ∩ M

and (4.1) follows from (3.3). Moreover, if u ∈ X̃− ∩ M , we also have

S h
1
n

∫

�

|Rh(u)| dx ≤ f0(Rh(u)) ≤ f0(u) ≤ λm .

Then (4.2) also follows, provided that h is large enough.
With this choice of h, let

X− = {
t Th(u) : t ≥ 0, u ∈ X̃− ∩ M

}
.

Then X− is a symmetric cone in BV (�) ∩ L∞(�). From (4.1) it follows that X− ⊆ X̃−,
while (4.2) implies that

‖v‖∞ ≤ 2h ‖v‖1, ∀v ∈ X−.

123



602 M. Degiovanni, P. Magrone

In particular, X− ∩ M is bounded in L∞(�). Since the surjective map

X̃− ∩ M −→ X− ∩ M

u �→ Th(u)

‖Th(u)‖1

is odd and continuous with respect to the topology of L1∗
(�), we have

Index (X−\{0}) ≥ Index (X− ∩ M) ≥ Index
(
X̃− ∩ M

) = m.

Actually, equality holds, as X− ⊆ X̃−. Finally, the above map is also continuous with respect
to the topology of L1(�). Therefore X− ∩ M is strongly compact in L1(�) and X− is closed
in L1(�).

Again from Theorem 4.2 we know that

Index

⎛

⎝

⎧
⎨

⎩
u ∈ BV (�) ∩ M : |Du| (�)+

∫

∂�

|u| dH n−1 ≤ µ

⎫
⎬

⎭

⎞

⎠ = m.

Let U be a symmetric open neighborhood of such a set satisfying Index (U ) = m. Then

X+ = L1∗
(�)\ {tu : t > 0, u ∈ U }

has the required properties. ��

5 The Palais–Smale condition

Lemma 5.1 Let (uk) be a (P S) sequence for f and let u ∈ BV (�). Assume that (uk) is
bounded in BV (�) and weakly convergent to u in L1∗

(�).
Then we have

lim
k

(
f0(uk)− ‖uk‖1∗

1∗
)

= f0(u)− ‖u‖1∗
1∗ ,

lim sup
k

(
f0(Rh(uk))− ‖Rh(uk)‖1∗

1∗
)

≤ f0(Rh(u))− ‖Rh(u)‖1∗
1∗ , ∀h > 0.

Proof By Proposition 3.4, there exist (γk) in L∞(�) and (wk) in Ln(�) such that ‖γk‖∞ ≤ 1,
γk |uk | = uk a.e. in�, ‖wk‖n → 0 and λγk + |uk |1∗−2uk +wk ∈ ∂ f0(uk). Moreover, (uk) is
also strongly convergent to u in L1(�) and, up to a subsequence, (γk) is convergent to some
γ in the weak∗ topology of L∞(�). By Proposition 3.2 it follows λγ + |u|1∗−2u ∈ ∂ f0(u).
Then by Proposition 3.1 we have

f0(uk) = λ

∫

�

γkuk dx +
∫

�

|uk |1∗
dx +

∫

�

wkuk dx

= λ

∫

�

|uk | dx +
∫

�

|uk |1∗
dx +

∫

�

wkuk dx, (5.1)

f0(u) = λ

∫

�

γ u dx +
∫

�

|u|1∗
dx,
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whence

lim
k

⎛

⎝ f0(uk)−
∫

�

|uk |1∗
dx

⎞

⎠ = lim
k

⎛

⎝λ

∫

�

γkuk dx +
∫

�

wkuk dx

⎞

⎠

= λ

∫

�

γ u dx = f0(u)−
∫

�

|u|1∗
dx .

By (3.3) we also have

f0(Rh(uk))− ‖Rh(uk)‖1∗
1∗

=
(

f0(uk)− ‖uk‖1∗
1∗
)

− f0(Th(uk))+
(
‖uk‖1∗

1∗ − ‖Rh(uk)‖1∗
1∗
)
.

On the other hand, (Th(uk)) is convergent to Th(u) in L1∗
(�) and we have that

0 ≤ |s|1∗ − |Rh(s)|1∗ ≤ ε|s|1∗ + Ch,ε, ∀ε > 0.

From [12, Lemma 4.2] it follows that

lim
k

(
‖uk‖1∗

1∗ − ‖Rh(uk)‖1∗
1∗
)

=
(
‖u‖1∗

1∗ − ‖Rh(u)‖1∗
1∗
)
.

By the lower semicontinuity of f0, the second assertion also follows. ��

Lemma 5.2 Each (P S) sequence for f is bounded in BV (�).

Proof Let (uk) be a (P S) sequence for f . Assume, for a contradiction, that f0(uk) → +∞.
If we set

vk = uk

f0(uk)
,

up to a subsequence (vk) is strongly convergent in L1(�) to some v ∈ BV (�). Since

f (uk)

f0(uk)
= 1 − λ ‖vk‖1 − 1

1∗ ( f0(uk))
1∗−1 ‖vk‖1∗

1∗ ,

from the boundedness of ( f (uk)) we deduce that (vk) is strongly convergent to 0 in L1∗
(�).

On the other hand, as before it holds (5.1) with ‖wk‖n → 0. It follows

f (uk) = 1

n
[ f0(uk)− λ ‖uk‖1] + 1

1∗

∫

�

wkuk dx,

namely

f (uk)

f0(uk)
= 1

n
[1 − λ ‖vk‖1] + 1

1∗

∫

�

wkvk dx .

Passing to the limit as k → ∞, we get 0 = 1/n and a contradiction follows. ��

Theorem 5.3 For any λ ∈ R, the functional f satisfies (P S)c whenever c < (1/n)Sn.
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Proof Let (uk) be a (P S)c sequence with c < (1/n)Sn . We already know that (uk) is
bounded in BV (�), hence convergent, up to a subsequence, to some u ∈ BV (�) weakly in
L1∗

(�) and strongly in L1(�). From (5.1) it also follows that

f (uk) = 1

n
‖uk‖1∗

1∗ +
∫

�

wkuk dx,

with ‖wk‖n → 0, whence

lim
k

‖uk‖1∗−1
1∗ = (nc)1/n < S.

Given ε > 0, let h > 0 be such that

f0(Rh(u))− ‖Rh(u)‖1∗
1∗ < ε

(
S − (nc)1/n).

Then we have

lim sup
k

‖Rh(uk)‖1∗−1
1∗ ≤ (nc)1/n

and, by (3.1),
(

S − ‖Rh(uk)‖1∗−1
1∗

)
‖Rh(uk)‖1∗ ≤ f0(Rh(uk))− ‖Rh(uk)‖1∗

1∗ .

From Lemma 5.1 it follows

lim sup
k

‖Rh(uk)‖1∗ < ε,

whence ‖Rh(u)‖1∗ < ε. Since (Th(uk)) is strongly convergent to Th(u) in L1∗
(�), we have

lim sup
k

‖uk − u‖1∗ ≤ lim sup
k

‖Th(uk)− Th(u)‖1∗

+ lim sup
k

‖Rh(uk)‖1∗ + ‖Rh(u)‖1∗ ≤ 2ε

and the assertion follows by the arbitrariness of ε. ��

6 Proof of the main result

Let x0 ∈ � and let

eρ = nn−1 ρ1−n χBρ(x0).

Then it is well known (see [4]) that eρ ∈ BV (Rn) and

|Deρ |(Rn) =
∫

Rn

∣
∣eρ

∣
∣1

∗
dx = Sn, (6.1)

∫

Rn

∣
∣uρ

∣
∣ dx = nn−1 L n (B1 (0)) ρ. (6.2)

Let λ ≥ λ1, let m ≥ 1 be such that λm ≤ λ < λm+1 and let λ < µ < λm+1. Let X−, X+ be
as in Theorem 4.3. Let also

vρ = χRn\ B2ρ(x0) v, ∀v ∈ X−;
Xρ− = {

vρ : v ∈ X−
}
.
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Lemma 6.1 There exist C, ρ > 0 such that B2ρ (x0) ⊆ � and

f0(vρ) ≤ f0(v)+ Cρn−1

⎛

⎝

∫

�

|v|1∗
dx

⎞

⎠

1/1∗

, (6.3)

∫

�

|vρ |1∗
dx ≥

∫

�

|v|1∗
dx − Cρn

∫

�

|v|1∗
dx, (6.4)

∫

�

|vρ | dx ≥
∫

�

|v| dx − Cρn

⎛

⎝

∫

�

|v|1∗
dx

⎞

⎠

1/1∗

, (6.5)

eρ �∈ Xρ− and Xρ− is closed in L1(�), (6.6)

Xρ− ∩ X+ = {0}, Index
(
Xρ−\{0}) = Index

(
L1∗

(�)\X+
)

= m, (6.7)

for every v ∈ X− and ρ ∈]0, ρ].
Proof Let first ρ > 0 be such that B2ρ (x0) ⊆ � and let 0 < ρ ≤ ρ. According to [2]
and Theorem 4.3, we have

f0(vρ) ≤ f0(v)+ ‖v‖∞ |DχB2ρ(x0)|(�) ≤ f0(v)+ C ρn−1 ‖v‖1∗ ,

whence (6.3). The proof of (6.4) and (6.5) is similar and even simpler.
It is clear that eρ �∈ Xρ−. From (6.3), (6.5) and Theorem 4.3 it also follows that

f0(vρ) ≤ 1

2
(λm + µ)

∫

�

|vρ | dx, ∀v ∈ X−,

provided that ρ is small enough. Therefore Xρ− ∩ X+ = {0}. Moreover, for every v ∈ X−
we have

∫

�

|v| dx ≤ L n (B2ρ (x0)
) 1

n

⎛

⎝

∫

�

|v|1∗
dx

⎞

⎠

1
1∗

+
∫

�\ B2ρ(x0)

|v| dx

≤ S−1 L n (B2ρ (x0)
) 1

n f0(v)+
∫

�\ B2ρ(x0)

|v| dx

≤ S−1λm L n (B2ρ (x0)
) 1

n

∫

�

|v| dx +
∫

�\ B2ρ(x0)

|v| dx .

If ρ is small enough, we get
∫

�

|v| dx ≤ C
∫

�\ B2ρ(x0)

|v| dx for every v ∈ X−.

First of all, it follows that we have vρ = 0 only for v = 0. Since
{
v �→ vρ

}
is continuous

and odd with respect to the topology of L1∗
(�) from X−\{0} to Xρ−\{0}, we get

Index
(
Xρ−\{0}) ≥ Index (X−\{0}) = Index

(
L1∗

(�)\X+
)

= m.
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Actually, equality holds, as Xρ−\{0} ⊆ L1∗
(�)\X+. Finally, let (v(k)) be a sequence in

X− with (v(k)ρ ) convergent to some u in L1(�). Then (v(k)) is bounded in L1(�\ B2ρ (x0)),
hence in L1(�), hence in BV (�). Up to a subsequence, (v(k)) is L1(�)-convergent to some
element of X−, whence u ∈ Xρ−. Therefore, Xρ− is closed in L1(�). ��

Lemma 6.2 There exist ρ, δ > 0 such that

sup
{

f (teρ + u) : t ≥ 0, u ∈ Xρ−
} ≤ 1

n
Sn (1 − δρ)n , ∀ρ ∈ ]0, ρ]. (6.8)

Proof Let ρ > 0 be first such that the assertion of Lemma 6.1 holds and let 0 < ρ ≤ ρ.
Since Xρ− is a cone, it is easily seen that

sup
{

f
(
teρ + u

) : t ≥ 0, u ∈ Xρ−
}

= 1

n

[

sup

{
f0(eρ + u)− λ‖eρ + u‖1

‖eρ + u‖1∗
: u ∈ Xρ−

}]n

= 1

n

[

sup

{(
f0(eρ)− λ‖eρ‖1

) + ( f0(u)− λ‖u‖1)
(‖eρ‖1∗

1∗ + ‖u‖1∗
1∗
)1/1∗ : u ∈ Xρ−

}]n

,

as eρ and u have disjoint supports. Writing u = vρ with v ∈ X−, the assertion we need to
prove takes the form

sup

{(
f0(eρ)− λ‖eρ‖1

) + (
f0(vρ)− λ‖vρ‖1

)

(‖eρ‖1∗
1∗ + ‖vρ‖1∗

1∗
)1/1∗ : v ∈ X−

}

≤ S (1 − δρ).

If we set σ = nn−1 L n (B1 (0)), by (6.1), (6.2), Lemma 6.1 and the fact that λm ≤ λ, we
have

(
f0(eρ)− λ‖eρ‖1

) + (
f0(vρ)− λ‖vρ‖1

)

(‖eρ‖1∗
1∗ + ‖vρ‖1∗

1∗
)1/1∗

≤ (Sn − σρ)+ (
Cρn−1‖v‖1∗ + λCρn‖v‖1∗

)

(
Sn + ‖v‖1∗

1∗ − Cρn‖v‖1∗
1∗
)1/1∗ .

Now, arguing by contradiction, let δ = 1/k, let ρk → 0+ and let v(k) ∈ X− be such that

(
f0(eρk )− λ‖eρk ‖1

) +
(

f0(v
(k)
ρk )− λ‖v(k)ρk ‖1

)

(
‖eρk ‖1∗

1∗ + ‖v(k)ρk ‖1∗
1∗
)1/1∗ > S

(
1 − ρk

k

)
.

It follows

(Sn − σρk)+
(

Cρn−1
k ‖vk‖1∗ + λCρn

k ‖vk‖1∗
)

(
Sn + ‖vk‖1∗

1∗ − Cρn
k ‖vk‖1∗

1∗
)1/1∗ > S

(
1 − ρk

k

)
.

Up to subsequences, it is enough to consider the three cases:

(i) ‖vk‖1∗ → +∞,
(ii) ‖vk‖1∗ → �∈ ]0,+∞[,

(iii) ‖vk‖1∗ → 0.
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In case (i) we get

(Sn − σρk)+
(

Cρn−1
k ‖vk‖1∗ + λCρn

k ‖vk‖1∗
)

(
Sn + ‖vk‖1∗

1∗ − Cρn
k ‖vk‖1∗

1∗
)1/1∗ → 0

while in case (ii) we obtain

(Sn − σρk)+
(

Cρn−1
k ‖vk‖1∗ + λCρn

k ‖vk‖1∗
)

(
Sn + ‖vk‖1∗

1∗ − Cρn
k ‖vk‖1∗

1∗
)1/1∗ → Sn

(
Sn + �1∗)1/1∗ < S.

In both cases, a contradiction follows. In case (i i i) we have, eventually as k → ∞,

(Sn − σρk)+
(

Cρn−1
k ‖vk‖1∗ + λCρn

k ‖vk‖1∗
)

(
Sn + ‖vk‖1∗

1∗ − Cρn
k ‖vk‖1∗

1∗
)1/1∗

≤
(Sn − σρk)+

(
Cρn−1

k ‖vk‖1∗ + λCρn
k ‖vk‖1∗

)

Sn−1

= S − S1−nρk

(
σ − Cρn−2

k ‖vk‖1∗ − λCρn−1
k ‖vk‖1∗

)
.

Then a contradiction follows also in this case. ��
Proof of Theorem 1.1 Let λ ≥ λ1, let m ≥ 1 be such that λm ≤ λ < λm+1 and let λ < µ <

λm+1. Let X−, X+ be as in Theorem 4.3 and let ρ > 0 be small enough to guarantee that the
assertions of Lemmata 6.1 and 6.2 hold.

Since λ < µ, for every u ∈ X+ we have

f (u) ≥
(

1 − λ

µ

)

S ‖u‖1∗ − 1

1∗ ‖u‖1∗
1∗ .

Therefore, there exist r+, α > 0 such that f (u) ≥ α for every u ∈ X+ with ‖u‖1∗ = r+. On
the other hand, since λ ≥ λm , by Lemma 6.1 we also have, for every v ∈ X−,

f (vρ) ≤ Cρn−1‖v‖1∗ + λCρn‖v‖1∗ − 1

1∗ ‖v‖1∗
1∗ + C

1∗ ρ
n‖v‖1∗

1∗ ≤ α

2
− 1

2 · 1∗ ‖v‖1∗
1∗ ,

provided that ρ > 0 is small enough. Combining this fact with Lemmata 6.1 and 6.2, we see
that there exists ρ > 0 such that eρ �∈ Xρ−, Xρ− is closed in L1(�) and

Xρ− ∩ X+ = {0}, Index
(
Xρ−\{0}) = Index

(
L1∗

(�)\X+
)

= m,

sup
{

f
(
teρ + u

) : t ≥ 0, u ∈ Xρ−
}
<

1

n
Sn,

sup
{

f (u) : u ∈ Xρ−
} ≤ α

2
.

Since Xρ− is closed in L1(�), hence in L1∗
(�), there exists b > 0 such that

‖teρ‖1∗ + ‖u‖1∗ ≤ b‖teρ + u‖1∗ for every t ∈ R and u ∈ Xρ−
(see also [12]). Consequently, there exists b′ > 0 such that

f0(u) ≤ b′‖u‖1∗ for every u ∈ Reρ + Xρ−,
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608 M. Degiovanni, P. Magrone

whence

f (u) → −∞ whenever ‖u‖1∗ → ∞ with u ∈ Reρ + Xρ−.

In particular, there exists r− > r+ such that f (u) ≤ 0 whenever u ∈ Reρ + Xρ− with
‖u‖1∗ = r−.

From Theorems 2.4 and Theorem 5.3 we deduce that f admits a critical value c with
0 < c < 1

n Sn . By Corollary 3.5, there exists a solution u ∈ BV (�) ∩ L∞(�) of (1.6) with

0 < f (u) <
1

n
Sn .

Of course, u is a nontrivial solution. ��
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